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Abstract—We propose a parametrized version of arity gap.
The parametrized arity gap gap(f, /) of a function f: A" — B
measures the minimum decrease in the number of essential
variables of f when ¢ consecutive identifications of pairs of
essential variables are performed. We determine gap(f,¢) for
an arbitrary function f and a positive integer /. We also
propose other variants of arity gap and discuss further problems
pertaining to the effect of identification of variables on the
number of essential variables of functions.

I. INTRODUCTION

Let A and B be arbitrary nonempty sets. We investigate a
variant of the so-called arity gap of functions f: A" — B.
The study of arity gap goes back to the 1963 paper by Salo-
maa [13], where he addressed the question how the number
of essential variables of a function is affected by substitution
of constants for variables or by identification of variables.

The arity gap of a function f: A™ — B is defined as the
minimum decrease in the number of essential variables when
any two essential variables of f are identified, and it is denoted
by gap f. Concerning the effect of identifying variables on the
number of essential variables, Salomaa’s main result asserts
that in the case when A = B = {0, 1}, it holds that gap f <
2 for every function f: {0,1}" — {0,1} with at least two
essential variables. (In fact, it is implicit in Salomaa’s work
that if |A| = k and | B| > 2, then the arity gap of any function
f: A™ — B, all variables of which are essential, is at most k&,
and that there exist functions of arity & for which this upper
bound is met.) For background and developments on this topic
see, e.g., [4], [5], [6], [71, [8], [14], [16].

In this paper we introduce a parametrized version of arity
gap which measures the minimum decrease in the number
of essential variables when we make ¢ > 1 successive
identifications of pairs of essential variables. For a function
f+ A" — B, let gap(f,¢) denote this minimum decrease.
This parametrized notion extends that of arity gap as gap f =
gap(f,1). Also, it is tightly related to yet another problem
which appears naturally when studying the effect of identi-
fication of variables on the number of essential variables of
functions: Given a function f: A" — B and an integer p > 1,
what is the smallest number m such that any m successive
identifications of essential variables result in the loss of at
least p essential variables? Denoting this smallest number by
pag(f,p), it will become clear that pag(f,p) is the smallest

£ such that gap(f,¢) > p.

This paper is organized as follows. In Section II, we recall
basic notions and establish preliminary results concerning the
simple minor relation and the arity gap, which will be needed
in the later sections. Section III is devoted to the study of
the parametrized arity gap. In particular, given sets A and B
and positive integers n, p, we explicitly determine the possible
sequences

gap(f7 1)7ga’p(f’ 2)7 A 7ga’p(f7 g)’ et

for functions f: A™ — B depending on all of their variables
such that gap f = p. In Section IV, we briefly discuss some
further problems related to the effect of several identifications
of essential variables on the number of essential variables of
a function, as that mentioned above.

The current study was motivated by the questions and re-
marks made by Dan A. Simovici at the IEEE 41st International
Symposium on Multiple-Valued Logic ISMVL 2011).

II. PRELIMINARIES

A. Functions of several variables and simple minors

For a positive integer n, we will denote [n] := {1,...,n},
and we will assume throughout this paper that A and B are
arbitrary sets with at least two elements. A function of several
variables (or arguments) from A to B is a map f: A" - B
for some positive integer n called the arity of f. We denote
the set of all finitary functions from A to B by

Fap = U BAn.

n>1

We say that the i-th variable is essential in f: A" — B,
or f depends on the i-th variable, if there exist tuples a :=
(a1,...,an) and b := (b1,...,b,) such that a; = b; for all
j # i and f(a) # f(b). A variable that is not essential is
called inessential. The essential arity of f is defined to be the
cardinality of the set

Ess f := {i € [n] : the i-th variable is essential in f}

and is denoted by ess f. If ess f = n, then we say that f is
essentially n-ary.

Let f: A — B and g: A™ — B. We say that g is a
simple minor of f, and we write g < f, if there exists a map
a: [n] — [m] such that g(ay,...,am) = f(aa),---,0a(n))



forall ay,...,a, € A.(Informally, g is a simple minor of f, if
g can be obtained from f by permutation of variables, addition
of inessential variables, deletion of inessential variables, or
identification of variables.)

Let f: A” — B. For i,j € [n], i # j, the simple minor
fiej: A" — B of f given by the rule

.,an) = f(al,. .

for all aq,...,a, € A, is called an identification minor of f,
obtained by substituting x; for x;. Note that a; occurs twice
on the right-hand side of the above equality while a; does not
appear at all. Thus, the i-th variable is necessarily inessential
in fij.

The simple minor relation < is a quasiorder on F4p. As for
quasiorders, < induces an equivalence relation = on F4p. If
f = g, then we say that f and g are equivalent. (Informally, f
and g are equivalent, if each of f and g can be obtained from
the other by permutation of variables, addition of inessential
variables, and deletion of inessential variables.)

fi<—j(a17" '7ai—1va’j7a’i+1a"'7an)7

Remark 1. If f = g, then ess f = essg. Every nonconstant
function is equivalent to a function that depends on all of its
variables.

If g < f but f # g, then we write ¢ < f and say that g
is a strict minor of f. If g < f but there is no h such that
g < h < f, then we say that g is a lower cover of f and
denote this fact by g < f or, equivalently, by f > g.

Remark 2. It was shown in [2] that the lower covers of any
function f: A™ — B have the same essential arity when A =
B = {0, 1}. The proof of this fact given in [2] actually shows
that this claim is true whenever |A| = 2 and | B| > 2. However,
this is not the case when |A| > 2.

To this extent, let A be a set with at least three elements, let
B be a set with at least two elements, and assume that 0 and 1
are distinct elements of B. Let v: A2 — B be the inequality

predicate
1, ifz+#y,
v(z,y) = .
0, ifz=y,

and let A: B> — B and V: B? — B be arbitrary extensions
of the Boolean conjunction and disjunction to B (i.e., arbitrary
binary operations on B satisfying 0OAN0=0A1=1A0=0,
IN1=1,0v0=0,1v0=0Vv1=1VvV1=1). Consider
the function f: A* — B defined by

fla1, a2, a3, a4) == v(a1,a2) v /\
1<i<j<4
(4,5)#(1,2)

V(ai7aj)7

for all (ai,az,as,as) € A% It is easy to see that
ficjlar,a2,a3,a4) = v(ai,az) for 1 < i < j < 4,

(i,7) # (1,2), and
/\ v(a;, a;).

fl(—Q(aflv a2, as, a4) —
2<i< <4

Furthermore, ess f = 4, ess fi«a = 3, ess fi—; = 2, and
fiea £ fiej & frieo, forevery 1 < i < j <4, (i,j) #

(1,2). Hence, f has two lower covers of different essential
arities.

For background on the simple minor relation and its vari-
ants, see [3], [9], [10], [11], [12], [15], [17].

We say that f is fotally symmetric, if for all permutations 7
of [n] the identity f(a1,...,an) = f(ax(1),---;0xr(n)) holds
for all ay,...,a, € A. Observe that a totally symmetric
function depends on either all or none of its variables.

Fact 1. If f: A™ — B is totally symmetric, then for all

i,5,i',j" € [n] (i #j, 3" # j'), ficj = fireyj. Therefore,
if f is nonconstant, then for all distinct i,j € [n), fi—; is, up
to equivalence, the unique lower cover of f.

B. Functions determined by supp and oddsupp

Following Berman and Kisielewicz [1], we define
supp: U,,»; A" = P(A) and oddsupp: |J,~; A" — P(A4)
as

yan) i={a1,...,an},
yan) :={a€ A:|{i € [n]:a; =a}|is odd}.

supp(az, - . .
oddsupp(ay, . ..

We say that f: A™ — B is determined by supp (respec-
tively, determined by oddsupp), if there exists a function
@: P(A) — B such that f = ¢ o supp|an (respectively,
f = ¢ooddsupp |4»). Note that every function determined by
supp or oddsupp is totally symmetric; hence such a function
either depends on all of its variables or on none of them.
However, not every totally symmetric function is determined
by supp or oddsupp.

Remark 3. For any positive integer n, let us define the
following subsets of P(A):

Pcn(A) :={SCA:1<|5| <n},
PL,(A):={SCA:[S|e{nn-2.. }}

Clearly, {supp(x): x € A"} = P<,(A), therefore the
restriction of ¢: P(A) — B to P<,(A) uniquely determines
the function ¢ o supp | a», and vice versa. Similarly, we have
{oddsupp(x): x € A"} = PL,.(A), and consequently there
is a one-to-one correspondence between functions f: A" — B
determined by oddsupp and maps ¢: P, (4) — B. In
particular, ¢ o supp |an (resp. o o oddsupp|4») is constant
if and only if ()O|'p§n(A) (resp. g0|p/<n(,4)) is constant, and has
essential arity n otherwise. B

Example 2. Every constant function and every unary func-
tion is determined by both supp and oddsupp. Furthermore,
for each 2 < n < |A|, there are nonconstant functions
f: A™ — B that are determined by both supp and oddsupp.
For instance, let a and b be distinct elements of B and define
f: A™ — B by the rule

{aﬁm¢%mmm¢¢
) an) = .

b otherwise.

f(al,...



It is easy to see that f = ¢ o supp
where ¢: P(A) — B is the map

An = ¢ o oddsupp

Ans

a if |S|=n,
S) =
#(5) {b otherwise.

Our next result shows that, in fact, such nontrivial examples
of functions determined by both supp and oddsupp can only
be found among functions with small arities.

Proposition 3. If n > |A|, then f: A™ — B is determined by
both supp and oddsupp if and only if f is a constant function.

As it will become clear from Propositions 4 and 7 below,
if a nonconstant function f is determined by oddsupp (supp,
respectively) then every simple minor of f is equivalent to a
function that is determined by oddsupp (supp, respectively).

Proposition 4. Let A and B be finite nonempty sets, and let
k:=|A|. If f: A™ — B is a nonconstant function determined
by oddsupp, then the simple minors of [ form a chain

f= o> fa—2> > fn_oi—2 > fn-2t

of length t such that ess f,,_o; = n—2i for all © < t. Moreover,
we either have ess f,, o = 1 and t = ”7_1 oress frn_o=0
and [255] < 0 < [4].

In the following two examples we construct for all possible
values of k, n and ¢ a function determined by oddsupp whose
simple minors form a chain as stated in Proposition 4, thereby
showing that this result cannot be sharpened.

Example 5. Let k, n, t be positive integers such that & > 2
and [25%] < ¢ < |2]. Then s := n — 2t + 2 satisfies the
inequalities 2 < s < k. Let A be a set with k elements,
let B be a set with at least two elements, and let us define

p: P(A) = B by

P(5) 1= {é

where 0 and 1 denote two distinct elements of B. For every
0<i<tlet fr_oi: A""2 — B be the function determined
by oddsupp via ¢, i.e., let f,—o; = ¢ o oddsupp |gn-2i. It
is straightforward to verify with the help of Remark 3 that
fn—2t = fs—o is constant, and that ess f,,_o;, = n — 2¢ if
i < t. Moreover, for ¢ < t, the unique lower cover of f,,_o; is
frn—2i—2. Thus the simple minors of f,, form a chain exactly
as in (the second case of) Proposition 4.

if |S| > s,
if |S] < s,

Example 6. Let k, n, ¢t be positive integers such that £ > 2 and
t= %71 Let A be a set with &k elements, let B be a set with
at least two elements, and let ¢: P(A) — B be any function
that is not constant on singletons, i.e., there exist aj,as € A
such that o({a1}) # ¢({az}). For every odd number r, let
fr: A" — B be the function determined by oddsupp via ¢,
i.e., let f,. = ¢ ooddsupp|a-. Then f, is not constant, hence
ess f, = r, and the unique lower cover of f, is f,._o. Thus
the simple minors of f,, form a chain exactly as in (the first
case of) Proposition 4.

Reasoning as above, by making use of Remark 3, we have
the following analogue of Proposition 4.

Proposition 7. Let A and B be finite nonempty sets, and let
k:=|A|. If f: A™ — B is a nonconstant function determined
by supp, then the simple minors of f form a chain

f = fn - fn—l Il fn—t+1 >~ .fn—t

of length t such that ess f,_; =n—1 for all i < t. Moreover,
we either have ess fp,_t =1l andt =n—1, oress f,_; =0
andn—k <t<n.

As for functions determined by oddsupp, we can find
functions which fall into each of the two possible cases
provided in Proposition 7.

C. Arity gap

Let f: A™ — B be a function that depends on at least two
variables, i.e., ess f > 2. The arity gap of f, denoted gap f,
is defined as
min (ess f —ess fi—;).

i,jEEss f
i#j

gap f =

While f;.; is not necessarily a lower cover of f in the simple
minor quasiorder, every lower cover of f is of the form f;;.
Therefore, we could define the arity gap of f in an equivalent
way as

gap f := min(ess f — essg).
g=f

Whenever we consider the arity gap of a function f: A™ — B,
we may assume, without loss of generality, that f depends on
all of its variables (see Remark 1).

As made apparent by Willard [16], the notion of arity gap
is tightly related to determinability by supp and oddsupp.
The following statements are immediate consequences of
Propositions 4 and 7.

Corollary 8. Let f: A™ — B, n > |A|, be nonconstant.

(1) If f is determined by oddsupp, then gap f = 2.
(2) If f is determined by supp, then gap f = 1.

We now recall a noteworthy result about the arity gap.

Theorem 9 (Willard [16]). Let A and B be finite nonempty
sets, and let k := |A|. Suppose that f: A™ — B depends on
all of its variables. If n > k, then gap f < 2. Moreover, if
n > max(k, 3), then gap f = 2 if and only if | is determined
by oddsupp.

III. PARAMETRIZED ARITY GAP

In this section we are interested in a parametrized version
of arity gap which measures the minimum decrease in the
essential arity when we take ¢ > 0 steps downwards in the
simple minor quasiorder. Let f: A™ — B, and let | f := {f},
and for ¢ > 1, let

Vf={g€Fan|

Ifi,ofeer s f = fi- o= fer - gl



If [“f # (), then we define
gap(f,¢) :== min (ess f —essg). ()
geltf

Note that gap(f, ) is defined only if there exists a chain of
length ¢ below f, and in this case ¢ < gap(f,¢) < essf.
The arity gap (as defined in Section II-C) corresponds to the
case ¢ = 1, that is, gap(f,1) = gap f for every function f.
Observe also that gap(f,0) = 0 for every function f.

We saw in Section II-A that taking a strict minor of a
function f requires the identification of at least one pair of
essential variables of f; otherwise, the minors we obtain are
equivalent to f. This means that gap(f, ¢) can be computed by
sequentially identifying a pair of essential variables ¢ times in
all possible ways, starting from f, and then determining the
sequence of ¢ identifications which results in the minimum
loss of essential variables.

Remark 4. It is worth stressing the fact that the identification
of variables is performed sequentially, and at each step only
one pair of essential variables is identified; otherwise, ambigu-
ities could occur since a priori we do not know which essential
variables become inessential after a pair is identified.

We mentioned in Section II-C that not every identification
minor f;; is a lower cover of f, and if f;; is not a
lower cover of f, then gap f < ess f — ess f;.;. Moreover,
it can be the case that f has two lower covers f; and f
such that ess fi < ess f3, and again we would conclude that
gap f < ess f — ess f1. Hence, one might be led to thinking
that in order to compute gap(f, ¢) it suffices to choose at each
recursion step an identification which results in the minimum
loss of essential variables. However, as the following example
illustrates, this is not true.

Example 10. Let A be the 5-element field and consider the
function f: A% — A represented by the polynomial

(1‘1 —1‘2)(1‘5 —m6)+ H (331' —$j).
1<i<;<6
(2,3)#(5,6)

It is easy to verify that ess f = 6, fi1.o = 0, and that f has,
up to equivalence, two lower covers, namely,

fres = (w1 — x2) - (x5 — ),

[T @i—a)- [T @i—as)

1<i<j<4 1<i<4

f556 =

Figure 1 presents the Hasse diagram of the principal ideal
generated by the equivalence class of f in the simple minor
poset. The label of each edge g < h is the number ess h—ess g.

Fig. 1. The simple minors of the function f given in Example 10.

We use the following notation for simple minors of f:
[T @-=p- [T (@—as)?

1<i<j<4 1<i<4

g2 = (¥1 — 22) - (¥3 — 24),

g3 = (v1 — x2) - (21 — 23),

q4 = (z1 — x2) - (22 — 73),

g5 = (z1 — 1’2)2

g6 = —(331 - 362)2-

g1 =

Now if we would choose as our first identification the pair
{5,6}, then any other identification of essential variables
results in the loss of all the remaining essential variables. In
other words, any downward path in Figure 1 which starts from
f and passes through ¢; has length 2, and along it we first lose
1 and then 5 essential variables. However, the downward paths
that start from f and pass through g» have length 4, and along
them we lose 2, 1, 1, and then 2 essential variables. This shows
that, in order to compute gap(f,1) as in (1), the minimum
value is attained at the lower cover ¢, whereas, for 2 < £ < 4,
we need to pass through ¢y for computing gap(f,¢). Hence,
gap(f? 0) =0, gap(fv 1) =1 gap(fa 2) =3, gap(fv 3) =4,
and gap(f,4) = 6.

The following recursion formula is an immediate conse-
quence of the definition:

gap(f,0) = grg?(essf —essg+ gap(g, ¢ — 1)). 2)

Theorem 11. Let A and B be finite nonempty sets, and let
k := |A|. Ler f: A — B, essf =nand gapf = 1. If
1 <€ <n—max(k,3), then gap(f,£) = L.

Informally speaking, Theorem 11 means that if gap f = 1,
then we can walk down from f in the simple minor quasiorder
in such a way that in each step we lose only one essential
variable, provided that the walk is not too long. The next result
asserts that if we consider arbitrarily long walks, then we can
lose any number of essential variables. More precisely, for
each 2 </ < ¢ < n we can find a function f with gap f =1
and gap(f,£) = q.

Theorem 12. For every 2 < £ < q < n, there exist sets A and
B and a function f: A™ — B such thatess f =n, gap f =1,
gap(f.0) =q |A] <n.

Next we consider the analogue of Theorem 11 for the case
gap f = 2.

Theorem 13. Let A and B be finite nonempty sets, and let
k := |A|l. Let f: A* — B, essf = nand gapf = 2. If
1< < {"T_lﬂ then gap(f,¢) = 2¢.

The following result makes explicit the fact that, for almost
every integer sequence 0 = ng < nj; < ng < --- < n, < n,



we can find a function f: A™ — B whose parametrized arity
gap meets every member of the sequence.

Theorem 14. Let A be a finite set with k elements and let B be
a set with at least two elements. Let2 <n <k, 1 <r <n-—1,
O=np<ni<ng<---<np<nsuchthatn—1<n, <n
and n,_1 # n — 1. Then there exists a function f: A" — B
such that gap(f,£) = ny for every 0 < £ <.

Note that the condition n,._; # n — 1 is necessary, because
no function has both an essentially unary function and a
constant function as its simple minors.

IV. CONCLUDING REMARKS

As mentioned in Section I, the parametrized arity gap
constitutes a tool for tackling yet another natural problem per-
taining to the effect of variable identification on the number of
essential variables of a function. Given a function f: A — B
and an integer p > 1, what is the smallest number m such that
any m successive identifications of essential variables result
in the loss of at least p essential variables? Let us denote
this smallest number by pag(f,p). As already mentioned in
the introduction, pag(f,p) is indeed the smallest ¢ such that

gap(f,{) = p.

Example 15. Consider the 6-ary function f of Example 10.

We can read off of Figure 1 that
pag(f,1) =1,  pag(f,2) =2,
pag(f,4) =3,  pag(f,5) =4,

pag(f,3) =2,
pag(f,6) = 4.

We may also consider similar problems when we perform
several simultaneous identifications of variables. Following
the formalism of Willard [16], we view functions of several
variables as maps f: AV — B, where V C {z; : i € N}. The
cardinality of V is called the arity of f. In this framework, a
function g: AW — B is a simple minor of f: AV — B, if
there exists a map a: V' — W such that g(a) = f(ao «) for
allac AW,

We denote the set of all equivalence relations on a set V'
by Eq(V). Given an equivalence relation 6 € Eq(V'), denote
the canonical surjection by vg: V' — V/6. For a function
f: AV — B, we define the function f7: AY/Y — B by
f%(a) = f(aowvg), and we say that f? is obtained from f
by block identification of variables through 6. We informally
identify V/6 with any one of its distinct representatives; in
this way f? is a simple minor of f, and every simple minor
of f is equivalent to f¥ for some ¢» € Eq(V). The number
of variables identified through 6 is

Y (XI=n=|VI-|v/el.

Xev/o

e() :=

Assuming that f depends on all of its variables, i.e., ess f =
|V|, we have that ess 7 < |V/0] = |[V|—e(0) = ess f —e(0).

Now we can define the analogue of the parametrized ar-
ity gap for block identification of variables. For a function

f: AV — B with ess f = |V| = n and for an integer ¢ such
that 0 < ¢ <n — 1, we define
o : 0
b-gap(f,¢) := eerélé{lv)(essf —ess f7).
e(0)=¢

Note that if e(f) = 0, then 6 is the trivial equivalence relation
{(z,xz) : © € V}; hence b-gap(f,0) = 0. Note also that
b-gap(f,1) = gap f for every function f. It is also clear
that ¢ < b-gap(f,f) < n for every 0 < £ < n — 1, and
b-gap(f, ) < gap(f,¢) for every ¢ for which gap(f,?) is
defined.

Let H(f) := {essf —essg : g < f}. It is clear that
{b-gap(f,£) : 0 < ¢ < n—1} C H(f). Moreover, if
f: AV — B is a function such that ess f = |V| = n, then

b-gap(f, £) = min{m € H(f) :m > £},
forevery 0 </ <n—1.

Example 16. Consider the 6-ary function f of Example 10.
We can read off of Figure 1 that H(f) = {1,2,3,4,6} and

b-gap(f,1) =1, b-gap(f,2) =2, b-gap(f,3) =3,
b-gap(f,4) =4, b-gap(f,5) = 6.

We can still consider an analogue of the problem stated in
the first paragraph of this section. Given a function f: AV —
B that depends on all of its variables and an integer p > 1,
what is the smallest number m such that block identification of
variables of f through every equivalence relation 6 on V' with
e(f) = m results in the loss of at least p essential variables?
Let us denote this smallest number by b-pag(f, p). It is again
clear that b-pag(f, p) is the smallest ¢ such that b-gap(f, £) >

.
Example 17. Consider the 6-ary function f of Example 10.

We can determine from the values of b-gap(f,¢) listed in
Example 16, or we can easily read off of Figure 1 that

b_pa‘g(f7 1) = 17 b_pag(.f7 2) = 2a b_pag(f7 3) = 3a
b-pag(f,4) =4, b-pag(f,5) =5, b-pag(f,6)=5.
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