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Abstract. We introduce the concept of quasi-Lovász extension as be-
ing a mapping f : In → IR defined over a nonempty real interval I
containing the origin, and which can be factorized as f(x1, . . . , xn) =
L(ϕ(x1), . . . , ϕ(xn)), where L is the Lovász extension of a pseudo-Boolean
function ψ : {0, 1}n → IR (i.e., the function L : IRn → IR whose restric-
tion to each simplex of the standard triangulation of [0, 1]n is the unique
affine function which agrees with ψ at the vertices of this simplex) and
ϕ : I → IR is a nondecreasing function vanishing at the origin. These
functions appear naturally within the scope of decision making under
uncertainty since they subsume overall preference functionals associated
with discrete Choquet integrals whose variables are transformed by a
given utility function.
To axiomatize the class of quasi-Lovász extensions, we propose gener-
alizations of properties used to characterize the Lovász extensions, in-
cluding a comonotonic version of modularity and a natural relaxation of
homogeneity. A variant of the latter property enables us to axiomatize
also the class of symmetric quasi-Lovász extensions, which are compo-
sitions of symmetric Lovász extensions with 1-place nondecreasing odd
functions.

Keywords: Aggregation function, discrete Choquet integral, Lovász extension,
comonotonic modularity, invariance under horizontal differences.
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1 Introduction

Aggregation functions arise wherever merging information is needed: applied and
pure mathematics (probability, statistics, decision theory, functional equations),
operations research, computer science, and many applied fields (economics and
finance, pattern recognition and image processing, data fusion, etc.). For recent
references, see Beliakov et al. [1] and Grabisch et al. [7].

The discrete Choquet integral has been widely investigated in aggregation
theory due to its many applications, for instance, in decision making (see the



2 Miguel Couceiro and Jean-Luc Marichal

edited book [8]). A convenient way to introduce the discrete Choquet integral is
via the concept of Lovász extension. An n-place Lovász extension is a continuous
function L : IRn → IR whose restriction to each of the n! subdomains

IRnσ = {x = (x1, . . . , xn) ∈ IRn : xσ(1) 6 · · · 6 xσ(n)}, σ ∈ Sn,

is an affine function, where Sn denotes the set of permutations on [n] = {1, . . . , n}.
An n-place Choquet integral is simply a nondecreasing (in each variable) n-place
Lovász extension which vanishes at the origin. For general background, see [7,
§5.4].

The class of n-place Lovász extensions has been axiomatized by the authors
[4] by means of two noteworthy aggregation properties, namely comonotonic
additivity and horizontal min-additivity (for earlier axiomatizations of the n-
place Choquet integrals, see, e.g., [2, 6]). Recall that a function f : IRn → IR is
said to be comonotonically additive if, for every σ ∈ Sn, we have

f(x + x′) = f(x) + f(x′), x,x′ ∈ IRnσ.

The function f is said to be horizontally min-additive if

f(x) = f(x ∧ c) + f(x − (x ∧ c)), x ∈ IRn, c ∈ IR,

where x ∧ c denotes the n-tuple whose ith component is xi ∧ c = min(xi, c).
In this paper we consider a generalization of Lovász extensions, which we call

quasi-Lovász extensions, and which are best described by the following equation

f(x1, . . . , xn) = L(ϕ(x1), . . . , ϕ(xn))

where L is a Lovász extension and ϕ a nondecreasing function such that ϕ(0) = 0.
Such an aggregation function is used in decision under uncertainty, where ϕ is a
utility function and f an overall preference functional. It is also used in multi-
criteria decision making where the criteria are commensurate (i.e., expressed in
a common scale). For a recent reference, see Bouyssou et al. [3].

To axiomatize the class of quasi-Lovász extensions, we propose the following
generalizations of comonotonic additivity and horizontal min-additivity, namely
comonotonic modularity and invariance under horizontal min-differences (as well
as its dual counterpart), which we now briefly describe. We say that a function
f : IRn → IR is comonotonically modular if, for every σ ∈ Sn, we have

f(x) + f(x′) = f(x ∧ x′) + f(x ∨ x′), x,x′ ∈ IRnσ,

where x ∧ x′ (resp. x ∨ x′) denotes the n-tuple whose ith component is xi ∧
x′i = min(xi, x′i) (resp. xi ∨ x′i = max(xi, x′i)). We say that f is invariant under
horizontal min-differences if

f(x) − f(x ∧ c) = f([x]c) − f([x]c ∧ c), x ∈ IRn, c ∈ IR,

where [x]c denotes the n-tuple whose ith component is 0, if xi 6 c, and xi,
otherwise.
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The outline of this paper is as follows. In Section 2 we recall the definitions
of Lovász extensions, discrete Choquet integrals, as well as their symmetric
versions, and present representations for these functions. In Section 3 we de-
fine the concept of quasi-Lovász extension and its symmetric version, introduce
natural relaxations of homogeneity, namely weak homogeneity and odd homo-
geneity, and present characterizations of those quasi-Lovász extensions (resp.
symmetric quasi-Lovász extensions) that are weakly homogeneous (resp. oddly
homogeneous). In Section 4 we define the concepts of comonotonic modular-
ity, invariance under horizontal min-differences and invariance under horizontal
max-differences, and present a complete description of those function classes ax-
iomatized by each of these properties. In Section 5 we give axiomatizations of the
class of quasi-Lovász extensions by means of the properties above, and give all
possible factorizations of quasi-Lovász extensions into compositions of Lovász
extensions with 1-place functions. Finally, in Section 6 we present analogous
results for the symmetric quasi-Lovász extensions.

We employ the following notation throughout the paper. Let B = {0, 1},
IR+ = [0,+∞[, and IR− = ]−∞, 0]. The symbol I denotes a nonempty real
interval, possibly unbounded, containing 0. We also introduce the notation I+ =
I ∩ IR+, I− = I ∩ IR−, and Inσ = In ∩ IRnσ. A function f : In → IR, where I is
centered at 0, is said to be odd if f(−x) = −f(x). For any function f : In → IR,
we define f0 = f − f(0). For every A ⊆ [n], the symbol 1A denotes the n-tuple
whose ith component is 1, if i ∈ A, and 0, otherwise. Let also 1 = 1[n] and
0 = 1∅. The symbols ∧ and ∨ denote the minimum and maximum functions,
respectively. For every x ∈ IRn, let x+ = x ∨ 0 and x− = (−x)+. For every
x ∈ IRn and every c ∈ IR+ (resp. c ∈ IR−) we denote by [x]c (resp. [x]c) the
n-tuple whose ith component is 0, if xi 6 c (resp. xi > c), and xi, otherwise.

In order not to restrict our framework to functions defined on IR, we consider
functions defined on intervals I containing 0, in particular of the forms I+, I−,
and those centered at 0.

A full version of the current paper appeared as [5].

2 Lovász extensions and symmetric Lovász extensions

We now recall the concepts of Lovász extension and symmetric Lovász extension.
Consider an n-place pseudo-Boolean function, i.e. a function ψ : Bn → IR, and

define the set function vψ : 2[n] → IR by vψ(A) = ψ(1A) for every A ⊆ [n]. Ham-
mer and Rudeanu [9] showed that such a function has a unique representation
as a multilinear polynomial of n variables

ψ(x) =
∑
A⊆[n]

aψ(A)
∏
i∈A

xi ,

where the set function aψ : 2[n] → IR, called the Möbius transform of vψ, is
defined by

aψ(A) =
∑
B⊆A

(−1)|A|−|B| vψ(B).
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The Lovász extension of a pseudo-Boolean function ψ : Bn → IR is the func-
tion Lψ : IRn → IR whose restriction to each subdomain IRnσ (σ ∈ Sn) is the
unique affine function which agrees with ψ at the n+1 vertices of the n-simplex
[0, 1]n ∩ IRnσ (see [10, 12]). We then have Lψ|Bn = ψ.

It can be shown (see [7, §5.4.2]) that the Lovász extension of a pseudo-Boolean
function ψ : Bn → IR is the continuous function

Lψ(x) =
∑
A⊆[n]

aψ(A)
∧
i∈A

xi , x ∈ IRn.

Its restriction to IRnσ is the affine function

Lψ(x) = ψ(0) +
∑
i∈[n]

xσ(i)

(
vψ(A↑

σ(i)) − vψ(A↑
σ(i+ 1))

)
, x ∈ IRnσ, (1)

or equivalently,

Lψ(x) = ψ(0) +
∑
i∈[n]

xσ(i)

(
Lψ(1A↑

σ(i)) − Lψ(1A↑
σ(i+1))

)
, x ∈ IRnσ, (2)

where A↑
σ(i) = {σ(i), . . . , σ(n)}, with the convention that A↑

σ(n+1) = ∅. Indeed,
for any k ∈ [n + 1], both sides of each of the equations (1) and (2) agree at
x = 1A↑

σ(k). It is noteworthy that Lψ can also be represented by

Lψ(x) = ψ(0) +
∑
i∈[n]

xσ(i)

(
Lψ(−1A↓

σ(i−1)) − Lψ(−1A↓
σ(i))

)
, x ∈ IRnσ,

where A↓
σ(i) = {σ(1), . . . , σ(i)}, with the convention that A↓

σ(0) = ∅. Indeed, for
any k ∈ [n+1], by (2) we have Lψ(−1A↓

σ(k−1)) = ψ(0)+Lψ(1A↑
σ(k))−Lψ(1A↑

σ(1)).
Let ψd denote the dual of ψ, that is the function ψd : Bn → IR defined by

ψd(x) = ψ(0)+ψ(1)−ψ(1−x). The next result provides further representations
for Lψ.

Proposition 1. The Lovász extension of a pseudo-Boolean function ψ : Bn →
IR is given by

Lψ(x) = ψ(0) +
∑
A⊆[n]

aψd(A)
∨
i∈A

xi ,

and
Lψ(x) = ψ(0) + Lψ(x+) − Lψd(x−).

A function f : IRn → IR is said to be a Lovász extension if there is a pseudo-
Boolean function ψ : Bn → IR such that f = Lψ.

An n-place Choquet integral is a nondecreasing Lovász extension Lψ : IRn →
IR such that Lψ(0) = 0. It is easy to see that a Lovász extension L : IRn → IR is
an n-place Choquet integral if and only if its underlying pseudo-Boolean function
ψ = L|Bn is nondecreasing and vanishes at the origin (see [7, §5.4]).
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The symmetric Lovász extension of a pseudo-Boolean function ψ : Bn → IR is
the function Ľ : IRn → IR defined by Ľψ(x) = ψ(0)+Lψ(x+)−Lψ(x−) (see [4]).
In particular, we see that Ľψ − Ľψ(0) = Ľψ − ψ(0) is an odd function.

It is easy to see that the restriction of Ľψ to IRnσ is the function

Ľψ(x) = ψ(0) +
∑

16i6p
xσ(i)

(
Lψ(1A↓

σ(i)) − Lψ(1A↓
σ(i−1))

)
+

∑
p+16i6n

xσ(i)

(
Lψ(1A↑

σ(i)) − Lψ(1A↑
σ(i+1))

)
, x ∈ IRnσ,

where the integer p ∈ {0, . . . , n} is such that xσ(p) < 0 6 xσ(p+1).
A function f : IRn → IR is said to be a symmetric Lovász extension if there is

a pseudo-Boolean function ψ : Bn → IR such that f = Ľψ. Nondecreasing sym-
metric Lovász extensions vanishing at the origin, also called discrete symmetric
Choquet integrals, were introduced by Šipoš [13] (see also [7, §5.4]).

3 Quasi-Lovász extensions and symmetric quasi-Lovász
extensions

In this section we introduce the concepts of quasi-Lovász extension and symmet-
ric quasi-Lovász extension. We also introduce natural relaxations of homogeneity,
namely weak homogeneity and odd homogeneity, and present a characterization
of those quasi-Lovász extensions (resp. symmetric quasi-Lovász extensions) that
are weakly homogeneous (resp. oddly homogeneous). Recall that I is a real in-
terval containing 0.

A quasi-Lovász extension is a function f : In → IR defined by

f = L ◦ (ϕ, . . . , ϕ),

also written f = L◦ϕ, where L : IRn → IR is a Lovász extension and ϕ : I → IR is
a nondecreasing function satisfying ϕ(0) = 0. Observe that a function f : In → IR
is a quasi-Lovász extension if and only if f0 = L0 ◦ ϕ, where f0 = f − f(0) and
L0 = L− L(0).

Lemma 2. Assume I ⊆ IR+. For every quasi-Lovász extension f : In → IR,
f = L ◦ ϕ, we have

f0(x1A) = ϕ(x)L0(1A), x ∈ I, A ⊆ [n]. (3)

Observe that if [0, 1] ⊆ I ⊆ IR+ and ϕ(1) = 1, then the equation in (3)
becomes f0(x1A) = ϕ(x)f0(1A). This motivates the following definition. We say
that a function f : In → IR, where I ⊆ IR+, is weakly homogeneous if there exists
a nondecreasing function ϕ : I → IR satisfying ϕ(0) = 0 such that f(x1A) =
ϕ(x)f(1A) for every x ∈ I and every A ⊆ [n]. Clearly, every weakly homogeneous
function f satisfies f(0) = 0 (take x = 0 in the definition).
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Proposition 3. Assume [0, 1] ⊆ I ⊆ IR+. Let f : In → IR be a nonconstant
quasi-Lovász extension, f = L ◦ ϕ. Then the following are equivalent.

(i) f0 is weakly homogeneous.
(ii) There exists A ⊆ [n] such that f0(1A) 6= 0.

(iii) ϕ(1) 6= 0.

In this case we have f0(x1A) = ϕ(x)
ϕ(1) f0(1A) for every x ∈ I and every A ⊆ [n].

Remark 4. (a) If [0, 1]  I ⊆ IR+, then the quasi-Lovász extension f : In → IR
defined by f(x) =

∧
i∈[n] ϕ(xi), where ϕ(x) = 0 ∨ (x − 1), is not weakly

homogeneous.
(b) When I = [0, 1], the assumption that f is nonconstant implies immediately

that ϕ(1) 6= 0. We then see by Proposition 3 that f0 is weakly homogeneous.
Note also that, if f is constant, then f0 ≡ 0 is clearly weakly homogeneous.
Thus, for any quasi-Lovász extension f : [0, 1]n → IR, the function f0 is
weakly homogeneous.

Assume now that −x ∈ I whenever x ∈ I, that is, I is centered at 0. A
symmetric quasi-Lovász extension is a function f : In → IR defined by f =
Ľ ◦ ϕ, where Ľ : IRn → IR is a symmetric Lovász extension and ϕ : I → IR is a
nondecreasing odd function.

We say that a function f : In → IR, where I centered at 0, is oddly ho-
mogeneous if there exists a nondecreasing odd function ϕ : I → IR such that
f(x1A) = ϕ(x)f(1A) for every x ∈ I and every A ⊆ [n]. Clearly, for every oddly
homogeneous function f , the functions f |In

+
and f |In

−
are weakly homogeneous.

Proposition 5. Assume that I is centered at 0 with [−1, 1] ⊆ I. Let f : In → IR
be a symmetric quasi-Lovász extension, f = Ľ ◦ ϕ, such that f |In

+
or f |In

−
is

nonconstant. Then the following are equivalent.

(i) f0 is oddly homogeneous.
(ii) There exists A ⊆ [n] such that f0(1A) 6= 0.

(iii) ϕ(1) 6= 0.

In this case we have f0(x1A) = ϕ(x)
ϕ(1) f0(1A) for every x ∈ I and every A ⊆ [n].

Remark 6. Similarly to Remark 4(b), we see that, for any symmetric quasi-
Lovász extension f : [−1, 1]n → IR, the function f0 is oddly homogeneous.

4 Comonotonic modularity

Recall that a function f : In → IR is said to be modular (or a valuation) if

f(x) + f(x′) = f(x ∧ x′) + f(x ∨ x′) (4)

for every x,x′ ∈ In. It was proved (see Topkis [14, Thm 3.3]) that a function
f : In → IR is modular if and only if it is separable, that is, there exist n functions
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fi : I → IR, i ∈ [n], such that f =
∑
i∈[n] fi. In particular, any 1-place function

f : I → IR is modular.
Two n-tuples x,x′ ∈ In are said to be comonotonic if there exists σ ∈ Sn such

that x,x′ ∈ Inσ . A function f : In → IR is said to be comonotonically modular (or
a comonotonic valuation) if (4) holds for every comonotonic n-tuples x,x′ ∈ In.
This notion was considered in the special case when I = [0, 1] in [11]. We observe
that, for any function f : In → IR, condition (4) holds for every x,x′ ∈ In of the
forms x = x1A and x′ = x′1A, where x, x′ ∈ I and A ⊆ [n]. Observe also that,
for every x ∈ IRn+ and every c ∈ IR+, we have x − x ∧ c = [x]c − [x]c ∧ c. This
motivates the following definition. We say that a function f : In → IR, where
I ⊆ IR+, is invariant under horizontal min-differences if, for every x ∈ In and
every c ∈ I, we have

f(x) − f(x ∧ c) = f([x]c) − f([x]c ∧ c). (5)

Dually, we say that a function f : In → IR, where I ⊆ IR−, is invariant under
horizontal max-differences if, for every x ∈ In and every c ∈ I, we have

f(x) − f(x ∨ c) = f([x]c) − f([x]c ∨ c). (6)

We observe that, for any function f : In → IR, where I ⊆ IR+, condition (5)
holds for every x ∈ In of the form x = x1A, where x ∈ I and A ⊆ [n]. Dually,
for any function f : In → IR, where I ⊆ IR−, condition (6) holds for every tuple
x ∈ In of the form x = x1A, where x ∈ I and A ⊆ [n]. We also observe that
a function f is comonotonically modular (resp. invariant under horizontal min-
differences, invariant under horizontal max-differences) if and only if so is the
function f0.

Theorem 7. Assume I ⊆ IR+ and let f : In → IR be a function. Then the
following are equivalent.

(i) f is comonotonically modular.
(ii) f is invariant under horizontal min-differences.

(iii) There exists a function g : In → IR such that, for every σ ∈ Sn and every
x ∈ Inσ , we have

f(x) = g(0) +
∑
i∈[n]

(
g(xσ(i)1A↑

σ(i)) − g(xσ(i)1A↑
σ(i+1))

)
.

In this case, we can choose g = f .

Remark 8. The equivalence between (i) and (iii) in Theorem 7 generalizes The-
orem 1 in [11], which describes the class of comonotonically modular functions
f : [0, 1]n → [0, 1] under the additional conditions of symmetry and idempotence.

We observe that if f : In → IR is comonotonically modular then necessarily

f0(x) = f0(x+) + f0(−x−) (take x′ = 0 in (4)).

We may now present a characterization of the class of comonotonically mod-
ular functions on an arbitrary interval I containing 0.
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Theorem 9. For any function f : In → IR, the following are equivalent.

(i) f is comonotonically modular.
(ii) There exist g : In+ → IR comonotonically modular (or invariant under hori-

zontal min-differences) and h : In− → IR comonotonically modular (or invari-
ant under horizontal max-differences) such that f0(x) = g0(x+) + h0(−x−)
for every x ∈ In. In this case, we can choose g = f |In

+
and h = f |In

−
.

(iii) There exist g : In+ → IR and h : In− → IR such that, for every σ ∈ Sn and
every x ∈ Inσ ,

f0(x) =
∑

16i6p

(
h(xσ(i)1A↓

σ(i)) − h(xσ(i)1A↓
σ(i−1))

)
+

∑
p+16i6n

(
g(xσ(i)1A↑

σ(i)) − g(xσ(i)1A↑
σ(i+1))

)
,

where p ∈ {0, . . . , n} is such that xσ(p) < 0 6 xσ(p+1). In this case, we can
choose g = f |In

+
and h = f |In

−
.

Remark 10. Observe that using condition (iii) in Theorems 7 and 9, we can
easily derive characterizations of Choquet integrals and of symmetric Choquet
integrals given in terms of comonotonic modularity. Indeed, we simply need to
suppose that f : In → IR is nondecreasing and satisfies

f(x1A) = xf(1A), for every x ∈ I and every A ⊆ [n],

and assume that [0, 1] ⊆ I ⊆ IR+ (in Theorem 7) and that I is centered at 0
with [−1, 1] ⊆ I ⊆ IR (in Theorem 9).

From Theorem 9 we obtain the “comonotonic” analogue of Topkis’ charac-
terization [14] of modular functions as separable functions, and which provides
an alternative description of comonotonically modular functions.

Corollary 11. Let J be any nonempty real interval, possibly unbounded. A func-
tion f : Jn → IR is comonotonically modular if and only if it is comonotonically
separable, that is, for every σ ∈ Sn, there exist functions fσi : J → IR, i ∈ [n],
such that

f(x) =
n∑
i=1

fσi (xσ(i)) =
n∑
i=1

fσσ−1(i)(xi), x ∈ Jn ∩ IRnσ.

5 Axiomatization and representation of quasi-Lovász
extensions and their symmetric counterparts

We now present axiomatizations of the class of quasi-Lovász extensions and
describe all possible factorizations of quasi-Lovász extensions into compositions
of Lovász extensions with 1-place nondecreasing functions. Similarly, we provide
analogous results concerning the class of symmetric quasi-Lovász extensions.
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Theorem 12. Assume [0, 1] ⊆ I ⊆ IR+ and let f : In → IR be a nonconstant
function. Then the following are equivalent.

(i) f is a quasi-Lovász extension and there exists A ⊆ [n] such that f0(1A) 6= 0.
(ii) f is comonotonically modular (or invariant under horizontal min-differences)

and f0 is weakly homogeneous.
(iii) There is a nondecreasing function ϕf : I → IR satisfying ϕf (0) = 0 and

ϕf (1) = 1 such that f = Lf |Bn ◦ ϕf .

Let f : In → IR be a quasi-Lovász extension, where [0, 1] ⊆ I ⊆ IR+, for
which there exists A∗ ⊆ [n] such that f0(1A∗) 6= 0. Then the inner function ϕf
introduced in Theorem 12 is unique. Indeed, by Proposition 3, we have f0(x1A) =
ϕf (x)f0(1A) for every x ∈ I and every A ⊆ [n]. The function ϕf is then defined
by ϕf (x) = f0(x1A∗ )

f0(1A∗ ) , x ∈ I.

Theorem 13. Assume [0, 1] ⊆ I ⊆ IR+ and let f : In → IR be a quasi-Lovász
extension, f = L ◦ ϕ. Then there exists A∗ ⊆ [n] such that f0(1A∗) 6= 0 if and
only if there exists a > 0 such that ϕ = aϕf and L0 = 1

a (Lf |Bn )0.

We now present an axiomatization of the class of symmetric quasi-Lovász
extensions and describe all possible factorizations of symmetric quasi-Lovász
extensions into compositions of symmetric Lovász extensions with 1-place non-
decreasing odd functions.

Theorem 14. Assume that I is centered at 0 with [−1, 1] ⊆ I and let f : In →
IR be a function such that f |In

+
or f |In

−
is nonconstant. Then the following are

equivalent.

(i) f is a symmetric quasi-Lovász extension and there exists A ⊆ [n] such that
f0(1A) 6= 0.

(ii) f is comonotonically modular and f0 is oddly homogeneous.
(iii) There is a nondecreasing odd function ϕf : I → IR satisfying ϕf (1) = 1 such

that f = Ľf |Bn ◦ ϕf .

Assume again that I is centered at 0 with [−1, 1] ⊆ I and let f : In → IR be
a symmetric quasi-Lovász extension for which there exists A∗ ⊆ [n] such that
f0(1A∗) 6= 0. Then the inner function ϕf introduced in Theorem 14 is unique.
Indeed, by Proposition 5, we have f0(x1A) = ϕf (x)f0(1A) for every x ∈ I and
every A ⊆ [n]. The function ϕf is then defined by ϕf (x) = f0(x1A∗ )

f0(1A∗ ) , x ∈ I.

Theorem 15. Assume that I is centered at 0 with [−1, 1] ⊆ I and let f : In →
IR be a symmetric quasi-Lovász extension, f = Ľ◦ϕ. Then there exists A∗ ⊆ [n]
such that f0(1A∗) 6= 0 if and only if there exists a > 0 such that ϕ = aϕf and
Ľ0 = 1

a (Ľf |Bn )0.

Remark 16. If I = [−1, 1], then the “nonconstant” assumption and the second
condition in assertion (i) of Theorem 14 can be dropped off.
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