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Scattering through a straight quantum waveguide with combined boundary conditions

I. INTRODUCTION

Free motion of the non-relativistic quantum mechanical particle is described by Laplace operator as the Hamiltonian up to unessential constants, i.e. if units where = 1 and particle mass m = 1 2 are used. Impenetrable walls guiding the particle motion are described by boundary conditions on the wave function annulating the current through the walls and at the same time making the Laplacian to be a self-adjoint operator with the suitable domain.

Restricting ourselves to the local boundary conditions, they are of the Robin form with the real coefficient. The important special cases are Dirichlet and Neumann boundary conditions known also from other parts of physics. They can also effectively appear for the wave functions of special symmetry, e.g. 1,2 . If walls with different types of boundary conditions can be realized e.g. in some semiconductor materials we would have at our disposal a new type of electron motion control giving perspectives of new microelectronic elements. The study of quantum mechanical problems with combined Dirichlet and Neumann boundary conditions is also a mathematical challenge which can lead to further solvable or nearly solvable models. Two-dimensional straight quantum waveguides with the combined Dirichlet and Neumann boundary conditions are studied for years. They were examined as auxiliary problems in 1,2 and the existence of bound states was proved for some configurations. The existence of bound states in a Dirichlet planar waveguide with Neumann window was shown in 3 . In 4 , the existence or non-existence of bound states for the cases of Dirichlet and Neumann boundary conditions on half-lines of each boundary were shown in dependence of the overlap of Neumann part projections to the waveguide axis. The Hamiltonian domain was also studied thoroughly. The existence of discrete spectrum for the same system was reconsidered also in 5 where a lower bound on the Hamiltonian of the Hardy inequality type was proved.

Further details on the discrete spectrum were obtained in 6 . Paper 7 show the existence of bound states for the 3-dimensional layer with Dirichlet boundary conditions outside one or two Neumann disc-shaped windows. The time decay of heat equation solution in twodimensional waveguides with combined boundary conditions was studied in 8 . The cases with infinitely many changes of boundary condition type were studied in 9 . The limit of infinitely thin waveguide was investigated in 10 and the Dirichlet-like decoupling of parts with different boundary conditions proved in the limit. In the above mentioned papers, mostly spectral properties were studied.

In the present paper we investigate a simple situation of scattering occuring in the planar straight strip-like domain that is displayed on Figure ??. The Hamiltonian H is the (minus) Laplace operator in the waveguide Ω = R × (0, d) with the Dirichlet boundary condition on (R * -× {0}) ∪ (R * + × {d}) and the Neumann boundary condition on (R * -× {d}) ∪ (R * + × {0}). Its domain reads (see 4 )

D(H) = { ψ ∈ H 1 (Ω)| -∆ψ ∈ L 2 (Ω), ψ(-x, 0) = ψ(x, d) = ∂ψ ∂y (x, 0) = ∂ψ ∂y (-x, d) = 0 for x > 0 } .
The domain of H is not H 2 (Ω) but it is contained in H 2 loc (Ω). In fact, functions from D(H) are in H 2 (Ω 1 ) for any open Ω 1 ⊂ Ω such that Ω 1 ∩ {(0, 0) , (0, d)} = ∅. This is an analogy of the well known situation for the Dirichlet Laplacian on a planar domains with angles larger than π on the boundary 11 . 

χ - n (y) = √ 2 d sin ( (2n -1) πy 2d ) , χ + n (y) = √ 2 d cos ( (2n -1) πy 2d ) (1) 
where n ∈ N * , with eigenvalues µ n = (2n -1) 2 π 2 4d 2 . We obtain the following results. 

f (k, x, y) ≈ e ikx χ - n 0 (y) + n 1 ∑ l=1 r l (k)e -ik l x χ - l (y) as x → -∞ , f (k, x, y) ≈ n 1 ∑ l=1 t l (k)e ik l x χ + l (y) as x → +∞ .
Here E > 0 is the energy of scattered particle, k > 0 the longitudinal momentum of incoming particle, k l > 0 outgoing momenta, χ - n 0 incoming transversal mode, χ ± l outgoing transversal modes, r l and t l reflection and transmission coefficients. The result is formulated below as Theorem 1, the proof consists of formulating the matching conditions at x = 0 and showing the existence of their solution. 

II. STATIONARY SCATTERING WAVE FUNCTION

Given an initial transversal mode n 0 ∈ N * , we fix the energy E ∈ (µ N , µ N +1 ) for some natural number N ≥ n 0 and pick a longitudinal momentum k ∈ R * + such that

E = µ n 0 + k 2 . ( 2 
)
We skip the case of E equal to the energy of some transversal mode µ n for some n ∈ N * , whose set has zero Lebesgue measure on the real line generated by k. Let us denote the maximal excitable transversal mode as

n 1 (k) =   1 2 + √ ( n 0 - 1 2 
) 2 + d 2 π 2 k 2   , ( 3 
)
where the symbol [•] stands for the integer part, and set

k n = √ µ n 0 -µ n + k 2 > 0, for n = 1, 2, . . . , n 1 (k), (4) 
and

κ n = √ µ n -µ n 0 -k 2 > 0 for n ≥ n 1 (k) + 1. (5) 
In light of ( 5) we may find constants c 0 (k), c 1 (k) > 0, depending only on k, such that the estimates

c 0 (k) ≤ κ n (k) n ≤ c 1 (k) (6) 
hold for all n sufficiently large.

We note

F E,n 0 ,k the set of functions f (k, •, •) of the form f (k, x, y) = e ikx χ - n 0 (y) + n 1 ∑ l=1 r l (k)e -ik l x χ - l (y) + ∞ ∑ n=n 1 +1
r n (k)e κnx χ - n (y) (7) for x < 0, and

f (k, x, y) = n 1 ∑ l=1 t l (k)e ik l x χ + l (y) + ∞ ∑ n=n 1 +1 t n (k)e -κnx χ + n (y) (8) 
for x > 0. Here r n (k) and t n (k), for n ∈ N * , are complex coefficients.

We look for a function f (k, •, •) ∈ F E,n 0 ,k , which is solution to the eigenvalue equation

-∆f (k, •, •) = Ef (k, •, •)
in Ω, and satisfies the following matching conditions

f (k, 0 -, •) = f (k, 0 + , •), ∂f ∂x (k, 0 -, •) = ∂f ∂x (k, 0 + , •). ( 9 
)
We shall justify and precise (9) in subsection II B. We require in addition that f (k, •, •) be locally in D(H), entailing that the restrictions of f (k, •, •) to (-L, 0)×(0, d) and (0, L)×(0, d)

are respectively in H 1 ((-L, 0) × (0, d)) and H 1 ((0, L) × (0, d)), for all L > 0. Namely, this yields that

∞ ∑ n=1 n|r n | 2 < ∞ and ∞ ∑ n=1 n|t n | 2 < ∞. ( 10 
)

A. Suitable functional spaces

For any α ∈ R, the space

H α ± = { g = ∞ ∑ n=1 c n χ ± n ∥g∥ 2 α,± = ∞ ∑ n=1 n 2α |c n | 2 < ∞ }
is Hilbertian for the scalar product (•, •) α,± induced by the above defined norm ∥ • ∥ α,± . For α ≥ 0, H α ± ⊂ L 2 (0, d) while for α < 0 this is a space of functionals defined below. For all f (k, •, •) ∈ F E,n 0 ,k , it can be checked that the trace from left at x = 0,

f (k, 0 -, y) = χ - n 0 (y) + n 1 ∑ l=1 r l (k)χ - l (y) + ∞ ∑ n=n 1 +1 r n (k)χ - n (y), (11) 
belongs to

H 1 2
-, while the trace from right

f (k, 0 + , y) = ∞ ∑ n=1 t n (k)χ + n (y), (12) 
is in H

1 2
+ . Identity (11) (resp., (12)) may be verified upon taking finite partial sums in the right hand side of (7) (resp., (8)) as approximating C ∞ -functions in H 1 ((-L, 0)×(0, d)) norm (resp., H 1 ((0, L) × (0, d)) norm) and combining the exponential decay of the corresponding terms for x ̸ = 0 with (10).

Imposing on f (k, •, •) that the two expressions in the right hand side of (11) and (12) coincide in L 2 (0, d), the common value f (k, 0 -, •) = f (k, 0 + , •) then belongs to the space

H 1 2 = H 1 2 -∩ H 1 2
+ . More generally, for any α > 0, the space H α = H α -∩ H α + , endowed with the scalar product, (f, g) α = (f, g) α,-+ (f, g) α,+ , is Hilbertian and thus a reflexive Banach space. Moreover, the dual space (H α ± ) ′ of H α ± , and H -α ± are isometric. These two spaces may be identified through the duality bracket

(f, g) H -α ± ,H α ± = +∞ ∑ n=1 f n g n , f = +∞ ∑ n=1 f n χ ± n , g = +∞ ∑ n=1 g n χ ± n .
Analogously, we put for every α > 0,

H -α = (H α ) ′ ⊃ H -α -∪ H -α + ,
and we write (f, g) -α,α instead of (f, g) H -α ,H α .

B. Matching conditions

As we seek for generalized eigenfunctions of the operator H, we look for the solution f to the equation (∆ + E)f = 0 in Ω, where E ∈ R.

For k ∈ R fixed, we know from (6) that κ n scales like n so the series appearing in (7) (resp., in (8)) converges locally uniformly in (-∞, 0) × (0, d) (resp., on (0, +∞) × (0, d)).

Differentiating term by term in ( 7)-( 8) we obtain through direct computation that any

function f (k, •, •) ∈ F E,n 0 ,k verifies (∆ + E)f (k,
x, y) = 0 for every (x, y) ∈ R * ± × (0, d) pointwise as well as distributionally. For every φ ∈ C ∞ 0 (Ω), it follows from this upon applying Stokes theorem that the scalar product (f (k,

•, •), (∆ + E)φ) L 2 (Ω) expresses as: lim ε↓0 (∫ d 0 f (k, -ε, y) ∂φ ∂x (-ε, y)dy - ∫ d 0 f (k, ε, y) ∂φ ∂x (ε, y)dy - ∫ d 0 ∂ f ∂x (k, -ε, y)φ(-ε, y)dy + ∫ d 0 ∂ f ∂x (k, ε, y)φ(ε, y)dy ) . ( 13 
)
Taking the limit in the above identity and bearing in mind that

f (k, 0 ± , •) ∈ H 1 2 ± ⊂ L 2 (0, d), we find out that (f (k, •, •), (∆ + E)φ) L 2 (Ω) = ( f (k, 0 -, •) -f (k, 0 + , •), ∂φ ∂x (0, •) ) L 2 (0,d) +(f x (k, 0 + , •) -f x (k, 0 -, •), φ(0, •)) -1 2 , 1 2 , ( 14 
)
for all φ ∈ C ∞ 0 (Ω). Here φ(0, •) is regarded as an element of H 1 2 , and

f x (k, 0 -, •) = ikχ - n 0 -i n 1 ∑ l=1 k l r l (k)χ - l + ∞ ∑ n=n 1 +1 κ n r n (k)χ - n ∈ H -1 2 -, (15) 
f x (k, 0 + , •) = i n 1 ∑ l=1 k l t l (k)χ + l - ∞ ∑ n=n 1 +1 κ n t n (k)χ + n ∈ H -1 2 + . ( 16 
)
The two above expressions are obtained upon formally differentiating at x = 0 each term in the series ( 7)-( 8) with respect to x. Actually, (15)-( 16) may be rigorously justified with the help of ( 5) and (10). We refer to Appendix B for more details. In light of ( 14) we have obtained the following result.

Proposition 1 For n 0 ∈ N * fixed, pick E ∈ (µ n 0 , ∞) and k ∈ R * + in accordance with (2) and let f (k, •, •) ∈ F E,n 0 ,k .
Assume moreover that the two following conditions holds simultaneously:

f (k, 0 -, •) = f (k, 0 + , •) in H 1 2 (17) f x (k, 0 -, •) = f x (k, 0 + , •) in H -1 2 (18)
where f x (k, 0 ± , •) is defined in ( 15)-( 16). Then we have

(∆ + E)f (k, •, •) = 0 in the distri- butional sense in Ω.

Remark 1 The equality (17) is a necessary condition for the conclusion of Proposition

1 to hold, but we do not know whether this is the case for ( 18). This can be seen upon taking φ(x, y) = φ 1 (x)φ 2 (y) in ( 14) for two arbitrary functions

φ 1 ∈ C ∞ 0 (R) and φ 2 ∈ C ∞ 0 (0, d),
getting that both terms in the right hand side of ( 14) vanish. This entails that 17), and that the restrictions of f x (k, 0 -, •)

f (k, 0 -, •) = f (k, 0 + , •) in L 2 (0, d), which yields (
and f x (k, 0 + , •) to C ∞ 0 (0, d) coincide. As we did not succeed to prove that C ∞ 0 (0, d) is dense in H 1 2
, it is not clear whether (18) can be derived from this. Notice that it is not clear whether our H

1 2 = H 1 2 -∩H 1 2
+ given as intersection with the above defined norm is the standard Sobolev space H 

= f (k, 0 -, •) = f (k, 0 + , •) the common value in H 1 2
of traces from left and right at x = 0 of f (k, •, •). In view of ( 7)-( 8), we have

φ = χ - n 0 + ∞ ∑ n=1 r n (k)χ - n = ∞ ∑ n=1 t n (k)χ + n ∈ H 1 2 . ( 19 
)
Relation (19) holds necessarily in L 2 (0, d), expressing the function φ in two different Hilbertian basis of this space, so there is one-to-one correspondence between the coefficients r n (k) and t n (k). We are thus left with the task of finding a function φ of the form prescribed by (19) which fulfills (18). To this purpose we put for all n ∈ N * ,

p ± n = (χ ± n , •) L 2 (0,d) χ ± n , ( 20 
)
and we recall (15)-( 16) and ( 19) in order to re-express f x (k, 0 ± , •) in terms of φ, getting:

f x (k, 0 -, •) = ( -i n 1 ∑ l=1 k l p - l + ∞ ∑ n=n 1 +1 κ n p - n ) φ + 2ikχ - n 0 , f x (k, 0 + , •) = ( i n 1 ∑ l=1 k l p + l - ∞ ∑ n=n 1 +1 κ n p + n ) φ.
In light of the two above identities, the matching condition (18) may be equivalently reformulated as

Dφ = -2ikχ - n 0 , ( 21 
)
where D :

H 1 2 → H -1 2
is the operator

D = -iD 1 + D 2 , D 1 = n 1 ∑ l=1 k l (p - l + p + l ), D 2 = ∞ ∑ n=n 1 +1 κ n (p - n + p + n ). ( 22 
)
Since k n /n and κ n /n are both majorized by 2 √ E, uniformly in n ∈ N * , then the estimate

∥Dψ∥ -1 2 ≤ 2 √ E∥ψ∥1 2 holds true for any ψ = ∑ n≥1 a n χ - n = ∑ n≥1 b n χ + n ∈ H 1 2 . As a consequence, the linear operator D is bounded from H 1 2 into H -1 2 , with ∥D∥ B(H 1 2 ,H -1 2 ) ≤ 2 √ E.
The proof of the existence of φ obeying (21) boils down to the following technical but essential result, whose proof is postponed to Appendix A 2.

Lemma 1

The operator D 2 is a strictly positive and boundedly invertible from

H 1 2 onto H -1 2 . Moreover, the restriction (D -1 2 ) |L 2 (0,d) of D -1 2 to L 2 (0, d), is symmetric.
In light of (22), the matching condition (21) reads -iD 1 φ + D 2 φ = -2ikχ - n 0 so it may be equivalently rephrased as

φ -iD -1 2 D 1 φ = -2ikD -1 2 χ - n 0 , ( 23 
)
according to Lemma 1.

For every n ∈ N * , we denote by P n the orthogonal projection onto the finite dimensional subspace P n = span{χ ± j , j = 1, . . . , n}. Due to (4), D 1 is a positive self-adjoint bounded operator in P n 1 and the same is true for D . Further, putting

φ 1 = D 1/2 1 P n 1 φ, we may rewrite (23) as φ -iD -1 2 D 1/2 1 φ 1 = -2ikD -1 2 χ - n 0 . Applying D 1/2
1 P n 1 and I -P n 1 successively to both sides of the above equation, we end up getting that (23) is equivalent to the system formed by the two following equations:

(I -iD 1/2 1 P n 1 D -1 2 P n 1 D 1/2 1 )φ 1 = -2ikD 1/2 1 P n 1 D -1 2 χ - n 0 (24) φ 2 -i(I -P n 1 )D -1 2 P n 1 D 1/2 1 φ 1 = -2ik(I -P n 1 )D -1 2 χ - n 0 , ( 25 
)
where

φ 2 = (I -P n 1 )φ.
Notice from the second part of Lemma 1 that the operator M = D

1/2 1 P n 1 D -1 2 P n 1 D 1/2 1 is symmetric in P n 1 .
As a consequence, all the eigenvalues λ j , j = 1, . . . , n 1 , of M , are real and det(I

-iM ) = ∏ n 1 j=1 (1 -iλ j ) ̸ = 0,
showing that (24) admits a unique solution φ 1 ∈ P n 1 ⊂ L 2 (0, d). From this and (25) then follows that φ 2 ∈ L 2 (0, d), which in turn

yields φ = D -1 2 1 φ 1 + φ 2 = iD -1 2 (P n 1 D 1/2 1 φ 1 -2kχ - n 0 ) ∈ H 1 2 , since L 2 (0, d) ⊂ H -1 2
. This proves the existence of φ and consequently of f . Summing up, we have obtained the:

Theorem 1 Let n 0 , E and k be the same as in Proposition 1. Then there exists f (k,

•, •) ∈ F E,n 0 ,k satisfying the equation (∆ + E)f (k, •, •) = 0 in the distributional sense in Ω.
Remark 2 Let ψ ∈ H -1 2 be arbitrary. It is clear that the above reasonning remains valid upon substituting ψ for -2ikχ - n 0 in the right hand side of (21). Therefore the equation Dφ = ψ admits a unique solution solution φ ∈ H 1 2 . This entails that the linear bounded

operator D is invertible from H 1 2 onto H -1 2
. By the inverse mapping theorem, its inverse

D -1 is thus bounded from H -1 2 onto H 1 2 .

D. Smooth k-dependence

For all (x, y) ∈ R * × (0, d), it is apparent from ( 7)-( 8) that k → f (k, x, y) is continuously differentiable in R \ M , where the set

M = {k ∈ R * + | ∃n ∈ N * , µ n = k 2 + µ n 0 }
is discrete. Moreover, for x = 0 we have the:

Theorem 2 The solution to (21), regarded as a function of the parameter k

∈ R * + , belongs to C 1 (R * + \ M ; H 1 2 ).
Proof. We prove that k → f (k, 0, y) is continuously differentiable for any y ∈ (0, d). To this purpose we first estimate the variation of the operators D = D(k) with respect to k.

To do that we fix k ∈ R and refer to (4)-( 5) in order to choose ε 1 = ε 1 (k) > 0 so small that

n 1 (k + ε) = n 1 (k) for ε ∈ (-ε 1 , ε 1
). Then we apply (22), getting

D(k + ε) -D(k) = -i n 1 ∑ l=1 (k l (k + ε) -k l (k))(p - l + p + l ) + ∞ ∑ n=n 1 +1 (κ n (k + ε) -κ n (k))(p - n + p + n ), (26) 
where n 1 stands for n 1 (k) = n 1 (k + ε). Next we recall from ( 4)-( 5) that there exist a continuous functions c n (k, •) obeying

k n (k + ε) -k n (k) = k k n (k) ε + c n (k, ε)ε 2 , n = 1, .., n 1 , κ n (k + ε) -κ n (k) = - k κ n (k) ε + c n (k, ε)ε 2 , n ≥ n 1 + 1,
for (-ε 1 , ε 1 ). Moreover, we know from ( 6) that the estimate

|c n (k, ε)| ≤ c(k)/n holds uniformly in ε ∈ (-ε 1 , ε 1 )
, where the constant c(k) > 0 depends only on k and ε 1 . Hence

C(k, ε) = ∞ ∑ n=1 c n (k, ε)(p - n + p + n ) ∈ B(H 1 2 , H -1 2 ),
with

∥C(k, ε)∥ B(H 1 2 ,H -1 2 ) ≤ c(k), ε ∈ (-ε 1 , ε 1 ). ( 27 
)
for some positive constant c(k) independent of ε. Arguing in the same way as above we obtain that the linear term with respect to ε, appearing in (26), satisfies -ik

n 1 ∑ l=1 1 k l (p - l + p + l ) -k ∞ ∑ n=n 1 +1 1 κ n (p - n + p + n ) B(H 1 2 ,H -1 2 ) ≤ c(k), ( 28 
)
where c(k) is another constant depending only on k. Putting ( 26) and ( 27)-(28) together we obtain for all |ε| < ε 1 that

∥D(k + ε) -D(k)∥ B(H 1 2 ,H -1 2 ) ≤ c(k)ε(1 + ε), hence ∥D(k) -1 (D(k + ε) -D(k))∥ B(H 1 2 ) < 1, upon eventually shortening ε 1 . Therefore I + D(k) -1 (D(k + ε) -D(k)) is invertible in B(H 1 2 ) for every ε ∈ (-ε 1 , ε 1 ) and the same is true for D(k + ε) = D(k)(I + D(k) -1 (D(k + ε) -D(k))) in B(H 1 2 , H -1 2 ). Moreover ∥D(k + ε) -1 ∥ B(H -1 2 ,H 1 2
) is uniformly bounded by, say, c ′ = c ′ (k) > 0, in ε ∈ (-ε 1 , ε 1 ). Thus, bearing in mind that

∥D(k + ε) -1 -D(k) -1 ∥ B(H -1 2 ,H 1 2 ) = ∥D(k) -1 (D(k) -D(k + ε))D(k + ε) -1 ∥ B(H -1 2 ,H 1 2 ) ≤ c ′2 ∥(D(k) -D(k + ε))∥ B(H 1 2 ,H -1 2 ) ,
we end up getting that

lim ε→0 ∥D(k + ε) -1 -D(k) -1 ∥ B(H -1 2 ,H 1 2 ) = 0. ( 29 
) For ε ∈ (-ε 1 , ε 1 ), let φ(k + ε) = D(k + ε) -1 (-2i(k + ε)χ - n 0 ) denotes the solution to (21). Then we have D(k + ε)(φ(k + ε) -φ(k)) = -(D(k + ε) -D(k))φ(k) -2iεχ - n 0 by direct calculation, hence φ(k + ε) -φ(k) ε = -D(k + ε) -1 ∂ k D(k)φ(k) -2iD(k + ε) -1 χ - n 0 -εD(k + ε) -1 C(k, ε)φ(k),
for any 0 < |ε| < ε 1 , where

∂ k D(k) = -ik n 1 ∑ l=1 1 k l (p - l + p + l ) -k ∞ ∑ n=n 1 +1 1 κ n (p - n + p + n ).
From this, (27) and (29) then follows that φ is differentiable in

H 1 2 at k, with ∂φ ∂k (k) = -D(k) -1 ∂ k D(k)φ(k) -2iD(k) -1 χ - n 0 ∈ H 1 2 .
Notice that this expression coincides with the one obtained by formal differentiation of (21).

Its continuity with respect to k was actually established in the proof.

Remark 3 By induction, the continuity for higher derivatives of k → φ(k) follows from the reasoning developped in the proof of Theorem 2.

III. TIME-DEPENDENT SOLUTIONS

We now characterize the scattering properties of the physical model under study with the aid of the generalized eigenfunctions of H, described in section II (see Theorem 1).

For the sake of simplicity we consider sufficiently small quasi-momenta intervals [α, β], with 0 < α < β, so that the index n 1 (k) of the highest excited transversal mode remains constant with respect to k ∈ [α, β]. For any fixed k 0 ∈ R, it is clear from (3) that this can be achieved

upon imposing √ µ n 1 (k 0 ) -µ n 0 < α < β < √ µ n 1 (k 0 )+1 -µ n 0 . ( 30 
) Let a ∈ C ∞ 0 (R) be such that supp a ⊂ [α, β] ⊂ (0, ∞) \ M, ( 31 
)
where M is as in Theorem 2, and let f ∈ F E,n 0 ,k be defined by Theorem 1. In view of characterizing the asymptotic behaviour of the time-evolution generated by H of

ψ(t, x, y) = ∫ R a(k)e -i(µn 0 +k 2 )t f (k, x, y)dk, (32) 
we introduce the two following states,

ψ -(t, x, y) = ∫ R a(k)e -i(µn 0 +k 2 )t e ikx χ - n 0 (y) dk (33)
and

ψ + (t, x, y) =    ψ DN (t, x, y) if x < 0, ψ N D (t, x, y) if x > 0, (34) 
where we have set

ψ DN (t, x, y) = ∫ R a(k)e -i(µn 0 +k 2 )t n 1 ∑ l=1 r l (k)e -ik l x χ - l (y)dk, ( 35 
)
ψ N D (t, x, y) = ∫ R a(k)e -i(µn 0 +k 2 )t n 1 ∑ l=1 t l (k)e ik l x χ + l (y)dk. ( 36 
)
As can be seen from the following statement, ψ DN (resp. 

Proposition 2 For every t ∈ R, the function ψ(t, •, •), defined by (32), belongs to D(H).

Moreover ψ is a solution to the equation

( i ∂ ∂t + H ) ψ = 0. ( 37 
)
Similarly ψ -(t, •, •) ∈ D(∆ DN ) for each t ∈ R and we have

( i ∂ ∂t + ∆ DN ) ψ -= 0. ( 38 
)
Finally ψ DN (t, •, •) and ψ N D (t, •, •) are respectively in D(∆ DN ) and in D(∆ N D ) for all t ∈ R, with ( i ∂ ∂t + ∆ DN ) ψ DN = ( i ∂ ∂t + ∆ N D ) ψ N D = 0. ( 39 
)
Proof. We only show the first part of the statement, the remaining part being obtained by arguing in the same way.

From the expression (19 Therefore there exists a constant c 1 > 0 such that we have

) of φ = f (k, 0 -, •) = f (k, 0 + , •) we get that r n (k) = (χ - n (•), φ(k, •)) L 2 (0,d) (up to some additive constant for n = n 0 ) and t n (k) = (χ + n (•), φ(k, •)) L 2 (0,
|r n (k)| ≤ c 1 n -1 2 and |t n (k)| ≤ c 1 n -1 2 , ( 40 
)
for all n ≥ 1 and k ∈ [α, β], by (10). On the other hand (5) yields κ n ≥ c 2 n uniformly in

n ≥ n 1 + 1 and k ∈ [α, β],
for another positive constant c 2 . As a consequence the function defined by

ψND (t, x, y) = ∫ R a(k)e -i(µn 0 +k 2 )t ∞ ∑ n=n 1 +1 t n (k)e -κnx χ + n (y)dk, (41) 
for every (t, x, y

) ∈ R × R * + × (0, d), satisfies ∫ d 0 | ψND (t, x, y)| 2 dy = ∞ ∑ n=n 1 +1 ∫ R a(k)e -i(µn 0 +k 2 )t t n (k)e -κnx dk 2 ≤ c 2 1 ∥a∥ 2 L 1 (R) ∞ ∑ n=n 1 +1 e -2c 2 nx n , (t, x) ∈ R × R * + , whence ∫ ∞ 0 ∫ d 0 | ψND (t, x, y)| 2 dydx ≤ c 2 1 ∥a∥ 2 L 1 (R) 2c 2 ( ∞ ∑ n=n 1 +1 1 n 2 ) < ∞. Therefore ψND (t, •, •) ∈ L 2 (R * + × (0, d))
for any t ∈ R, and we get in the same way that ψDN (t, •, •) ∈ L 2 (R * -× (0, d)), where we have set

ψDN (t, x, y) = ∫ R a(k)e -i(µn 0 +k 2 )t ∞ ∑ n=n 1 +1 r n (k)e κnx χ - n (y)dk, (42) 
for all (t, x, y) ∈ R × R * -× (0, d). By performing the change of integration variable k → k l in each term of the sum appearing in ( 35)-(36), we obtain the Fourier transform of an L 2 -function (with respect to the variable k l ), which is consequently square integrable with respect to x. Therefore the functions defined in ( 35)-( 36) are lying in L 2 (Ω), and we have ψ ∈ L 2 (Ω) from ( 7)-( 8) and (32). The next step of the proof is to check out that the first order partial derivatives of ψ(t, •, •) are square integrable in Ω for any t ∈ R. We shall do it for ∂ψ/∂y, the case of ∂ψ/∂x being handled in the same manner. We start by computing ∂ψ/∂y in the distributional sense. We have

⟨ ∂ψ ∂y (t, •, •), ζ⟩ (C ∞ 0 (Ω)) ′ ,C ∞ 0 (Ω) = - ∫ Ω (∫ R a(k)e -i(µn 0 +k 2 )t f (k, x, y)dk ) ∂ζ ∂y (x, y)dxdy, ( 43 
)
for any arbitrary test function ζ ∈ C ∞ 0 (Ω). For y ∈ (0, d) and k ∈ R fixed, we deduce from (8) that |f (k, x, y)| is majorized by

( 2 d ) 1/2 ( n 1 ∑ l=1 |t l (k)| + ∞ ∑ n=n 1 +1 |t n (k)|e -c 2 nx ) ≤ ( 2 d ) 1/2   n 1 ∑ l=1 |t l (k)| + (1 -e -2c 2 x ) -1 2 ( ∞ ∑ n=n 1 +1 |t n (k)| 2 ) 1/2   ,
for all x > 0, and a similar estimate holds from (7) for x < 0. Hence the integral over (supp ζ) × (supp a) in the right hand side of (43) converges so we may apply Fubini's theorem. By integrating by parts over y, we find out by direct calculation that

∂ψ ∂y (t, x, y) = ∫ R a(k)e -i(µn 0 +k 2 )t f y (k, x, y)dk,
in the distributional sense, where f y (k, x, y) expresses as

µ 1/2 n 0 e ikx χ + n 0 (y) + n 1 ∑ l=1 µ 1/2 l r l (k)e -ik l x χ + l (y) + ∞ ∑ n=n 1 +1 µ 1/2 n r n (k)e κnx χ + n (y),
for x < 0, and as

- ( n 1 ∑ l=1 µ 1/2 l t l (k)e ik l x χ - l (y) + ∞ ∑ n=n 1 +1 µ 1/2 n t n (k)e -κnx χ - n (y)
) , for x > 0. We are thus left with the task of checking out that the two above expressions lead to square integrable functions in Ω. Since this is obviously the case for all terms expressed by a finite sum, we shall only examine the one of

ψND (t, x, y) = ∞ ∑ n=n 1 +1 µ 1/2 n χ - n (y) ∫ R a(k)e -i(µn 0 +k 2 )t t n (k)e -κnx dk.
Actually, it turns out that

∫ d 0 ψND (t, x, y) 2 dy = ∞ ∑ n=n 1 +1 µ n ∫ R a(k)e -i(µn 0 +k 2 )t t n (k)e -κnx dk 2 so we have ∫ ∞ 0 ∫ d 0 ψND (t, x, y) 2 dxdy ≤ ∥a∥ 2 L 2 (R) ∫ supp a ∞ ∑ n=n 1 +1 µ n 2κ n (k) |t n (k)| 2 dk < ∞,
the last series being majorized (up to some multiplicative constant) by ∥φ(k)∥ 2 , which is bounded on supp a. Now, bearing in mind that f (k, •, •) is locally in the domain of the Laplacian (this is guaranteed by the matching conditions (17)-( 18)), so that x → f (k, •, y) ∈ C 1 (R) for almost every y ∈ (0, d) and any arbitrary fixed k, we may apply the same method to ∂ψ/∂x, proving that ψ(t,

•, •) ∈ H 1 (Ω).
Further, as ψ evidently satisfies the specified boundary conditions, it remains to prove (37), which involves calculating ∆ψ in the distributional sense. Arguing as above, we find out that,

-∆ψ(t, x, y) = ∫ R (µ n 0 + k 2 )a(k)e -i(µn 0 +k 2 )t f (k, x, y)dk, ( 44 
)
with the integrand lying in L 2 (Ω). Since the r.h.s. of (44) coincides with -i∂ψ(t, x, y)/∂t (the derivative is computed for the topology of the norm in L 2 (Ω)), we end up getting (37).

Having established the main properties of the functions ψ defined by (32) and ψ ± defined by ( 33)-(36) in Proposition 2, we are in position to prove the main result of this section.

Theorem 3 Let a ∈ C 1 0 (R) obey (30)-(31), let ψ be the same as in (32) and let ψ ± be defined by (33)-(36). Then we have

lim t→±∞ ∥ψ(t, •, •) -ψ ± (t, •, •)∥ L 2 (Ω) = 0. (45) 
Proof. We first examine the case of t > 0. In light of ( 7)-( 8), ( 32)-( 36) and ( 41)-( 42), the function ψ decomposes for any x ∈ R as

ψ(•, x, •) = θ(-x) ( ψ -(•, x, •) + ψ DN (•, x, •) + ψDN (•, x, •) ) + θ(x) ( ψ N D (•, x, •) + ψND (•, x, •) ) , ( 46 
)
where θ stands for the usual Heaviside function, and ψ -, ψ DN , ψ N D , ψDN and ψND are respectively defined by (33), ( 35), ( 36), ( 42) and (41).

Let us now establish that the transversal modes associated with n ≥ n 1 + 1, appearing in the decomposition of ψ(t, •, •), vanish as t → ±∞. In view of (32), ( 35)-( 36) and ( 46), it is enough to examine the functions ψDN and ψND . Applying Fubini Theorem, we obtain that

∥ ψND (t, •, •)∥ 2 L 2 (Ω) = ∫ R + ∞ ∑ n=n 1 +1 ∫ R a(k)e -i(µn 0 +k 2 )t t n (k)e -κn(k)x dk 2 dx, (47) 
since {χ

(+) n , n ≥ 1} is an orthornomal basis of L 2 (0, d). Further we get ∫ R a(k)e -i(µn 0 +k 2 )t t n (k)e -κn(k)x dk = 1 2it ∫ R e -i(µn 0 +k 2 )t ∂ ∂k ( k -1 a(k)t n (k)e -κn(k)x ) dk, x ∈ R + , t > 0,
by integrating by parts. Taking into account that a ∈ C 1 (R) is supported in [α, β], with α > 0, that t n (k) satisfies the estimate (40), that

dt n dk (k) = d dk (χ + n , φ(k)) L 2 (0,d) = ( χ + n , ∂φ ∂k (k) ) L 2 (0,d)
,

where k → ∂φ ∂k (k) ∈ C 0 (R * + , H 1 
2 ) from Theorem 2, and that

κ n (k) ≥ κ n (β) for all k ∈ [α, β],
we find out two positive constants d 1 and d 2 , both of them being independent of n, such

that the estimate ∫ R a(k)e -i(µn 0 +k 2 )t t n (k)e -κn(k)x dk ≤ d 1 + d 2 x 2|t| √ n e -κn(β)x ,
holds uniformly in t ∈ R * and x ∈ R * + . From this and (47) then follows that

∥ ψND (t, •, •)∥ 2 L 2 (Ω) ≤ c |t| , t ∈ R * , (48) 
for some constant c > 0, which does not depend on t. Arguing in the same way we get in addition that

∥ ψDN (t, •, •)∥ 2 L 2 (Ω) ≤ c |t| , t ∈ R * . ( 49 
)
The next step of the proof involves estimating ∥ψ

-(t, •, •) -ψ N D (t, •, •)∥ L 2 (R * + ×(0,d))
for t < 0. Recalling (33) and (36), we get

ψ -(t, x, y) -ψ N D (t, x, y) = ∫ R a(k)e -i(µn 0 +k 2 )t n 1 ∑ l=1 e ik l x ( δ ln 0 χ - l (y) -t l (k)χ + l (y) ) dk = - n 1 ∑ l=1 ∫ R e i(k l x-(µn 0 +k 2 )t) ∂q l ∂k (k, t, x, y)dk,
upon integrating by parts, where

q l (k, t, x, y) = a(k) i(-2kt + kk -1 l x) (δ ln 0 χ - l (y) -t l (k)χ + l (y)).
From this and (4) then follows that

|ψ -(t, x, y) -ψ N D (t, x, y)| ≤ e 1 x -2k n 1 (α)t + e 2 x -e 3 t (x -2k n 1 (α)t) 2 ,
for t < 0, x > 0 and y ∈ (0, d), where e 1 , e 2 and e 3 are three positive constants which are independent of t, x and y. As a consequence we may find c > 0, such that for all t < 0, we have

∥ψ -(t, •, •) -ψ N D (t, •, •)∥ 2 L 2 (R * + ×(0,d)) ≤ c |t| . ( 50 
)
Analogously, recalling from Theorem 2 that k → r l (k) and k → t l (k) are smooth for all l = 0, . . . , n 1 , we get for every t < 0 that

∥ψ DN (t, •, •)∥ 2 L 2 (R * -×(0,d)) ≤ c |t| . ( 51 
)
Now, since

∥ψ(t, •, •) -ψ -(t, •, •)∥ 2 L 2 (Ω) ≤ ∥ψ -(t, •, •) -ψ N D (t, •, •)∥ 2 L 2 (R * + ×(0,d)) + ∥ψ DN (t, •, •)∥ 2 L 2 (R * -×(0,d)) + ∥ ψDN (t, •, •)∥ 2 L 2 (Ω) + ∥ ψND (t, •, •)∥ 2 L 2 (Ω) ,
from (46), we obtain the desired result for t → -∞ by putting (48)-(51) together.

Similarly, arguing as above for t > 0, by means of the decomposition

ψ(•, x, •) = ψ + (•, x, •) + θ(x) ψND (•, x, •) + θ(-x) ( ψ -(•, x, •) + ψDN (•, x, •) ) ,
we obtain the desired result for t → +∞.

As seen in the proof of (45), ∥ψ(t, •, •) -

ψ ± (t, •, •)∥ L 2 (Ω) scales like O(t -1/2 ). Actually,
this is due to the fact that a is C 1 , as a smoother a would allow for several integrations by parts, and consequently for a faster time decay.

Further, assumption (30) guarantees that the quasi-momenta involved in the framework of in Theorem 3 remain separated from the discrete threshold momentum values of M . This is not a very strong restriction when studying the scattering of particles with momentum close to given value of k > 0, which is sufficient for the definition of reflection and transmission coefficients, as the skipped threshold points form a zero measure set where the reflection and transmission coefficients need not necessarily be defined. However, their behavior near the thresholds, which we do not attempt to study in this paper, is certainly a point of interest.

IV. NUMERICAL RESULTS

For the illustration, we present here also numerically computed transition probabilities.

Recall that reflection and transmission probability densities from the initial state of transversal mode n 0 and longitudinal momentum k to the final transversal mode m are

P Rm = k m (k) k |r m (k)| 2 , P T m = k m (k) k |t m (k)| 2 .
The matching conditions were cut to the finite number of transversal modes, projected on a suitable finite-dimensional basis, and the resulting system of linear equations for the reflection and transmission coefficients solved numerically. No attempt to prove the convergence of this procedure was done, the precision was tested only numerically.

The computed probability densities for n 0 = 1, 2 are shown in Figures 2 and3. They seem to be continuous but not smooth at the thresholds where excitations of the further transversal modes in the final state are opened. The total reflection at k → 0 is seen in accordance with the Dirichlet decoupling at d → 0 proved by Borisov and Cardone 10 (notice, that the dimesionless value of kd is a relevant parameter). 

Thus we have P +

N φ 0 = φ 0 = P - N φ 0 . Since {χ ± n , n = 1, . . . , N } is linearly independent, then φ 0 = 0, contradicting the fact that ∥φ 0 ∥ L 2 (0,d) = 1. As a consequence the statement is true for every φ ∈ P N such that ∥φ∥ L 2 (0,d) = 1. Therefore it holds for any ϕ ∈ P N since it is valid for ϕ = 0 and for ϕ/∥ϕ∥ L 2 (0,d) when ϕ ̸ = 0. Lemma 3 Let N ∈ N * . Then there exists η N ∈ (0, 1) such that the estimate

max ( ∥(I -P + N )ϕ∥ L 2 (0,d) , ∥(I -P - N )ϕ∥ L 2 (0,d) ) ≥ η N ∥ϕ∥ L 2 (0,d) ,
holds for all ϕ ∈ L 2 (0, d).

Proof. The proof boils down to the fact that

∥(I -P ± N )ϕ∥ 2 L 2 (0,d) = ∥ϕ∥ 2 L 2 (0,d) -∥P ± N ϕ∥ 2 L 2 (0,d) = ∥ϕ∥ 2 L 2 (0,d) -∥P ± N P N ϕ∥ 2 L 2 (0,d) ,
and

∥ϕ∥ 2 L 2 (0,d) = ∥(I -P N )ϕ∥ 2 L 2 (0,d) + ∥P N ϕ∥ 2 L 2 (0,d) . Indeed, this entails max ( ∥(I -P + N )ϕ∥ 2 L 2 (0,d) , ∥(I -P - N )ϕ∥ 2 L 2 (0,d) ) = ∥(I -P N )ϕ∥ 2 L 2 (0,d) + ∥P N ϕ∥ 2 L 2 (0,d) -min ( ∥P + N P N ϕ∥ 2 L 2 (0,d) , ∥P - N P N ϕ∥ 2 L 2 (0,d)
) ,

which, together with Lemma 2, yields max

( ∥(I -P + N )ϕ∥ 2 L 2 (0,d) , ∥(I -P - N )ϕ∥ 2 L 2 (0,d) ) ≥ ∥(I -P N )ϕ∥ 2 L 2 (0,d) + (1 -ϵ 2 N )∥P N ϕ∥ 2 L 2 (0,d) .
Since the right hand side of the above estimate is lower bounded by (1 -ϵ 2 N )∥ϕ∥ 2 L 2 (0,d) , we obtain the desired result.

Completion of the proof

For all ϕ ∈ H 1 2 , we have

(D 2 ϕ, ϕ) -1 2 , 1 2 = ∞ ∑ n=n 1 +1 κ n ( (p - n ϕ, ϕ) L 2 (0,d) + (p + n ϕ, ϕ) L 2 (0,d)
) , from ( 22), so we get

(D 2 ϕ, ϕ) -1 2 , 1 2 ≥ κ n 1 +1 ( ∥(I -P - n 1 )ϕ∥ 2 L 2 (0,d) + ∥(I -P + n 1 )ϕ∥ 2 L 2 (0,d) ) ≥ κ n 1 +1 η 2 n 1 ∥ϕ∥ 2 L 2 (0,d) , (A1)
by Lemma 3, showing that D 2 is injective.

To prove that D 2 is a surjection, we first establish the two following lemmas.

Lemma 4

For each ψ ∈ H -1 2 , the functional

F ψ (ϕ) = (D 2 ϕ, ϕ) -1 2 , 1 2 -2ℜ(ψ, ϕ) -1 2 , 1 2 
is real-valued, strictly convex, continuous and coercive on H Proof. First, it is apparent from the definition of

F ψ that F ψ (ϕ) ∈ R for all ϕ ∈ H 1 2 .
Next, we get through direct calculation that

tF ψ (ϕ 1 ) + (1 -t)F ψ (ϕ 2 ) -F ψ (tϕ 1 + (1 -t)ϕ 2 ) = t(1 -t)(D 2 (ϕ 1 -ϕ 2 ), ϕ 1 -ϕ 2 ) -1 2 , 1 2 , for each t ∈ [0, 1] and all ϕ 1 , ϕ 2 ∈ H 1 2
. This and (A1) yield that F ψ is strictly convex.

Further, ∥D 2 δ∥ -1 2 being majorized, up to some multiplicative positive constant, by ∥δ∥1

2 , uniformly in δ = ∑ +∞ n=1 δ ± n χ ± n ∈ H 1 2
, as can be seen from the following computation arising from (5),

∥D 2 δ∥ 2 -1 2 = +∞ ∑ n=n 1 +1 κ 2 n n ( |δ + n | 2 + |δ - n | 2 ) ≤ π 2 d 2 +∞ ∑ n=n 1 +1 n 2 -n 2 0 n ( |δ + n | 2 + |δ - n | 2 ) ≤ π 2 d 2 +∞ ∑ n=n 1 +1 n ( |δ + n | 2 + |δ - n | 2 ) ≤ π 2 d 2 ∥δ∥ 2 1 2
, the continuity of F ψ follows readily from the basic estimate

|F ψ (ϕ + δ) -F ψ (ϕ)| ≤ 2 ℜ(D 2 ϕ, δ) -1 2 , 1 2 -ℜ(ψ, δ) -1 2 , 1 2 
+ (D 2 δ, δ) -1 2 , 1 2 ≤ 2 ( ∥D 2 ϕ∥ -1 2 + ∥ψ∥ -1 2 + ∥D 2 δ∥ -1 2 ) ∥δ∥1 2 ,
which holds true for any ϕ ∈ H for every ε ∈ (0, ε 0 ), we get that

c -1 ∥f (k, -ε, •) -f (k, 0 -, •)∥1 2 ≤ ∥f (k, •, •) -f n ∥ H 1 ((-L-ε,-ε)×(0,d)) + ∥f n (• -ε, •) -f n (•, •)∥ H 1 ((-L,0)×(0,d)) + ∥f n -f (k, •, •)∥ H 1 ((-L,0)×(0,d)) . (B2)
In light of (B1), the first and third terms in the right hand side of (B2) can de made arbitrarily small upon chosing n sufficiently large. For such an n, using the uniform continuity of the function f n or applying [START_REF] Zuily | Éléments de distributions et d'équations aux dérivées partielles[END_REF] [Chapter 1, Lemma 3.5], it is possible to make the second term arbitrarily small by taking ε > 0 small enough. As a consequence we have

lim ε↓0 f (k, -ε, •) = f (k, 0 -, •) in H 1 2
, and thus in L 2 (0, d), which is the statement of (ii).

Putting (i) and (ii) together, we obtain that .

(B3)

The rest of the proof is to compute ∫ d 0 ∂ f ∂x (k, ±ε, •)φ(±ε, y)dy as ε ↓ 0. We shall actually restrict ourselves to calculating the limit from the left, the other case being fully analogical.

To do that we start by decomposing φ(-ε, •) ∈ H 
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 1 FIG. 1. The shape of waveguide.

  (i) There exists scattering stationary wave function f (k, x, y) satisfying the stationary Schrödinger equation (∆ + E)f (k, x, y) = 0 in the distributional sense inside the strip Ω, Dirichlet, respectively Neumann, boundary conditions at the appropriate parts of the boundary of Ω, and having the scattering asymtotics

(

  ii) From the non-integrable functions f (k, •, •), time-dependent wave packets ψ(t, •, •) are formed belonging to L 2 (Ω) and the Hamiltonian domain and satisfying the time-dependent Schrödinger equation (Proposition 2). Their scattering behavior is shown as asymptotics (Theorem 3) lim t→±∞ ∥ψ(t, •, •) -ψ ± (t, •, •)∥ L 2 (Ω) = 0 where ψ ± are solutions of the free Schrödinger equations, i.e., ψ -satisfies Dirichlet boundary condition at y = 0 and Neumann boundary condition at y = d for arbitrary x, and vice versa for ψ + .

  This section is devoted to proving the existence of an actual f (k, •, •) ∈ F E,n 0 ,k satisfying the stationary Schrödinger equation (∆ + E)f = 0 in the distributional sense in Ω. In light of Proposition 1, it is enough to seek for a function f (k, •, •) in F E,n 0 ,k fulfilling the matching conditions (17)-(18). With reference to (17), we denote by φ

  ψ N D ) is a weak solution to the Schrödinger equation associated with the Laplace operator ∆ DN (resp. ∆ N D ) acting in L 2 (Ω) with the Dirichlet (resp. Neumann) boundary conditions at y = 0 and Neumann (resp. Dirichlet) boundary conditions at y = d.

  d) for any n ∈ N * . Each r n and t n as well as ∥φ∥ 1 2 is thus a continuous function of k ∈ [α, β] by Theorem 2.

FIG. 2 .

 2 FIG.2. Reflection (dashed) and transmission probabilities P Rm and P T n from the initial transversal state n 0 = 1 and longitudinal momentum k (in units of π 2d ) to the transversal states m and n respectively.
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 3 FIG.3. Reflection (dashed) and transmission probabilities P Rm and P T n from the initial transversal state n 0 = 2 and longitudinal momentum k (in units of π 2d ) to the transversal states m and n respectively.

1 2 . 1 2 2 ≤ 2 + 2 +

 121222 For the second statement (ii), we shall only prove that lim ε↓0 f (k, -ε, •) = f (k, 0 -, •) in L 2 (0, d), the case of the limit from the right being fully analogical. From the definition of the trace f (k, 0 -, •), we may find L > 0, ε 0 > 0 and a sequence of functions(f n ) n≥1 in C ∞ (Ω) satisfying lim n→+∞ ∥f n -f (k, •, •)∥ H 1 ((-L-ε 0 ,0)×(0,d)) = 0, (B1)such that f n (0, •) tends to f (k, 0 -, •) in H as n goes to infinity. Moreover we have∥f n (0, •) -f (k, 0 -, •)∥1 c∥f n -f (k, •, •)∥ H 1 ((-L,0)×(0,d)) ,for some positive constant c which is independent of f and f n . Further, since ∥f (k, -ε, •) -f (k, 0 -, •)∥1 2 is majorized by the sum ∥f (k, -ε, •) -f n (-ε, •)∥1 ∥f n (-ε, •) -f n (0, •)∥1 ∥f n (0, •) -f (k, 0 -, •)∥1 2 ,

  0 -, •) -f (k, 0 + , •),

1 2 - 1 2 , 1 2 = 1 ∑∑ n=n 1 κ n |r n | µ 2 n. 1 2 , 1 2 ,

 121211212 , asφ(-ε, •) = ∞ ∑ n=1 b n (-ε)χ - n , b n (-ε) = ∫ d 0 χ - n (y)φ(-ε, y)dy, n ∈ N * ,and notice from (1) upon integrating several times by parts, that|b n (-ε)| = -ε, y)φ(-ε, y)dy -(f x (k, 0 -, •), φ(0, •)) --ik(b n 0 (0) -b n 0 (-ε)e -ikε ) + i n l=1 k l r l (b l (0) -b l (-ε))e ik l ε ) -∞ +1 κ n r n (b n (0) -b n (-ε)e -knε ), (B4)from where we get∫ d 0 ∂ f ∂x (k, -ε, y)φ(-ε, y)dy -(f x (k, 0 -, •), φ(0, •))Bearing in mind that µ n scales like n 2 , and recalling (5) and (10), we see that the series in the above expression is convergent. Thus we obtain lim -ε, y)φ(-ε, y)dy = (f x (k, 0 -, •), φ(0, •)) -by taking the limit ε → 0 + term by term in (B4) and using the continuity of ε → b n (-ε) at 0. Now the desired result follows from this and (B3).
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Appendix A: Proof of lemma 1

The proof is by means of the two following technical lemmas. With the notation (20), we shall also write

Preliminary results

Lemma 2 Let N ∈ N * . Then there exists ϵ N ∈ (0, 1) such that we have

Proof. Let us first establish that {χ ± n , n = 1, . . . , N } is linearly independent. We consider 2N complex numbers α ± n for n = 1, . . . , N such that

Evaluating this identity at x = 0, we obtain ∑ N n=1 µ r n α + n = 0. The determinant of the system formed by the above equations with r = 0, . . . , N -1, is Vandermonde and equals ∏ 1≤r<s≤N (µ s -µ r ) > 0. Therefore α + n = 0 for all n = 1, . . . , N . Arguing as before with x = d we obtain that α - n = 0 for n = 1, . . . , N , showing that the vectors χ ± n , for n = 1, . . . , N , are linearly independent.

Assuming that the statement of the Lemma does not hold, there would be a sequence

for every n ∈ N * . As the unit sphere in the finite dimensional linear space P N is compact, we may find a subsequence that converges to a limit φ 0 ∈ P N obeying

Let us now prove that F ψ is coercive. We use (5), getting κ n ≥

we derive from Lemma 3 that

Bearing in mind that η n 1 ∈ 1), this entails that

, for all ϕ ∈ H 1 2 . From this and (A2) then follows that

showing that F ψ is coercive.

Lemma 5 Let ψ and F ψ be the same as in Lemma 4. Assume that F ψ has its minimum at

. Then we have

has a minimum at t = 0, by assumption, so its derivative is zero there. As

= 0. Further, substituting iδ for δ in this equation, we find out that

We are now in position to prove the first assertion in Lemma 1. For ψ in H -1 2 fixed, we know from Lemma 4 that F ψ admits a unique minimum ϕ ∈ H 1 2 (see e.g. [START_REF] Jaffe | Vortices and Monpoles[END_REF] ), which is solution to (A3), according to Lemma 5. This establishes that D 2 is surjective, and thus one-to-one from H

, since it is already known to be injective. Moreover, the boundedness of D -1 2 follows from the inverse mapping theorem (e.g. 12 [Theorem III.11]). Last, we prove that the operator (D -1

2

2 g in this equation we get that

In the peculiar case where f, g

A4), which is the required symmetry relation.

Appendix B: Limits in matching conditions

This appendix is devoted to proving that the limit (13) coincides with the right hand side of (14). To do that we start by establishing that (i) ∂φ ∂x (±ε, •) goes to ∂φ ∂x (0, •) in L 2 (0, d) as ε ↓ 0;

(ii) f (k, ±ε, •) tends to f (k, 0 ± , •) in L 2 (0, d) as ε ↓ 0.

First, we notice for every y ∈ (0, d) and ε > 0 that

ε, so we get ∂φ ∂x (±ε, •) -∂φ ∂x (0, •)

which entails (i).