
HAL Id: hal-01093576
https://hal.science/hal-01093576

Submitted on 10 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Reducing trace size in multimedia applications
endurance tests

Serge Vladimir Emteu Tchagou, Alexandre Termier, Jean-François Méhaut,
Brice Videau, Miguel Santana, René Quiniou

To cite this version:
Serge Vladimir Emteu Tchagou, Alexandre Termier, Jean-François Méhaut, Brice Videau, Miguel
Santana, et al.. Reducing trace size in multimedia applications endurance tests. Design, Automation
& Test in Europe Conference & Exhibition (DATE) , 2015, Grenoble, France. �hal-01093576�

https://hal.science/hal-01093576
https://hal.archives-ouvertes.fr

Reducing trace size in multimedia applications

endurance tests

Serge Vladimir Emteu Tchagou

University of Grenoble Alpes

Email: serge-vladimir.emteu-tchagou@imag.fr

Alexandre Termier

University of Rennes 1

Email: alexandre.termier@irisa.fr

Jean-Franois Méhaut

University of Grenoble Alpes

Email: jean-francois.mehaut@imag.fr

Brice Videau

University of Grenoble Alpes

Email: brice.videau@imag.fr

Miguel Santana

STMicroelectronics

Email: miguel.santana@st.com

Ren Quiniou

Inria Rennes

Email: rene.quiniou@inria.fr

Abstract—Proper testing of applications over embedded sys-
tems such as set-top boxes requires endurance tests, i.e. running
applications for extended periods of times, typically several days.
In order to understand bugs or poor performances, execution
traces have to be analyzed, however current trace analysis meth-
ods are not designed to handle several days of execution traces due
to the huge quantity of data generated. Our proposal, designed
for regular applications such as multimedia decoding/encoding,
is to monitor execution by analyzing trace on the fly in order
to record trace only in time periods where a suspicious activity
is detected. Our experiments show a significant reduction in the
trace size compared to recording the whole trace.

I. INTRODUCTION

Nowadays, there is a huge market for electronics consumer
products such as smart-phones, tablets or set-top boxes. These
products are powered by MultiProcessor System-on-Chip (MP-
SoC), which are highly integrated chips having on a single die
several generalist computation cores, specialized accelerators,
memories and I/O components. Demanding applications such
as 4K video decoding require to exploit all the processing
power of MPSoC through a parallel approach. However paral-
lel programming is notoriously difficult and even small timing
errors between components may lead to low QoS of the
applications. In such cases, traditional debuggers cannot be
used as they are extremely intrusive: they will change the
timings of components execution and hide potential errors. The
solution used in industry is to continuously collect traces of the
application execution through dedicated, low-intrusive tracing
hardware. These traces are analyzed post-mortem in order to
understand bugs or reasons for poor performance.

Industrial validation of the applications requires “endurance
tests” (typically several hours/days of continuous execution) in
order to verify that bugs do not occur after long period of time.
Tracing such tests would generate hundreds of GigaBytes of
traces, which are difficult to analyze with state of the art ap-
proaches based on visualization [1] or data-mining [2]. Hence
currently these tests do not benefit from tracing, whereas they
exhibit some of the most complex bugs to detect.

Based on the observation that most applications tested
are multimedia applications, which exhibit regular behaviors,
our proposal (Section II) consists in capturing only parts of
the trace from long running tests that contain problematic

execution periods (if any) and that can be analyzed by existing
tools. For this purpose, we use machine learning to model
correct behavior during the monitoring of the application and
record the trace only when the detected behavior departs
significantly from the correct behavior. Using such approach
on real execution traces, our experiments (Section III) show
that trace size can be significantly reduced.

II. METHODOLOGY

In this section, we describe our main contribution: an
online approach to analyze the trace stream of a multimedia
application, and record only suspicious portions of the trace.
This approach is based on anomaly detection techniques from
the data mining field.

Such techniques require two steps: first a learning step in
order to model the correct behavior from a reference execution
trace. Then a monitoring step where incoming trace data is
compared to that model. If the difference is too large, the
corresponding trace data is recorded to a storage device.

Data representation: In order to perform these steps, an
adequate trace representation has to be found. A raw trace is a
sequence of timestamped events. In a streaming context, trace
data is not provided event by event by the tracing hardware, but
by windows of N consecutive events. The value of N is usually
correlated to the size of the buffers of the tracing hardware.
Such window will be our elementary processing unit.

Each window is transformed as a probability mass function
(pmf), i.e. a vector giving for each event type the number of
occurrences of that event type in the window. Such vectors are
easy to manipulate and give a good abstraction of the trace in
a window.

Learning: Our approach exploits the Local Outlier Factor
(LOF) [3] anomaly detection method, which is designed to
handle such pmfs. The learning step of LOF is simple and
requires only a reference trace for a correct execution of the
application. This trace is divided in windows, and the pmf
of each window is computed. This gives a set of points in
an high dimensional space, which constitutes the model of
the reference trace. Depending on objectives of the endurance
tests planned, a reference trace can be simply the trace of
the first few minutes of application execution, during which

the developer noticed no QoS errors. A curated database of
reference traces can be constituted in order to skip the learning
step.

Online anomaly detection: Once the model is constructed,
the anomaly detection step can take place. As trace windows
arrive, their pmf representation is computed. The algorithm
evaluates the similarity between Npmf , the pmf vector of the
current window, and Ppmf , the pmf vector associated with
past windows. We use Kullback-Leibler distance [4] because
it is well suited to compare pmf vectors. If Npmf and Ppmf

are similar, we consider that no significant change occurred,
no anomaly detection tests are performed. In this case Npmf

is merged with Ppmf and Ppmf is updated: this helps to detect
slow changes of behavior.

On the contrary, if Ppmf and Npmf are dissimilar, then a
LOF computation is performed on Npmf in order to determine
if the new window is an anomaly. The idea of the LOF
computation is to place Npmf in the space of high dimensional
points found during the learning set, and to compare the
density of points around Npmf with the density of points
around the K nearest neighbors of Npmf . If Npmf has the
same density than its neighbors (LOF = 1), then it is embedded
in a cluster of “regular” points and does not represent an
anomaly. If Npmf has a lower density than its neighbors (LOF
≥ α > 1), then it is not in a cluster of “regular” points and is
likely to represent an anomaly. α is a user given parameter of
the approach.

If an anomaly is detected, the corresponding window of
trace is recorded to a storage device.

III. EXPERIMENTS

In this section, we demonstrate the applicability of our
approach on a real application by monitoring its trace in a
controlled setting. In this preliminary experiment, the appli-
cation monitored is GStreamer, a well known video decoding
framework. GStreamer is run on a standard laptop with an Intel
core i7 processor X 920 @ 2.00GHz and is limited to using
one core. It is tasked to decode a video of 6h17m. Its trace
output is monitored by our prototype. Other parameters are:
windows size of 40ms, K = 20.

The first 300s of decoding are used as a reference in order
to learn a trace model for the correct behavior. Then every
3 minutes, a “perturbation” is made during 20s through an
heavy processing application. The goal of the experiment is to
verify that our monitoring approach records trace mostly for
windows impacted by the perturbation. Note that due to the
Gstreamer buffering mechanism, the perturbation impact on
the video is delayed (∆s) from start of the perturbation and
the end of the perturbation impact is delayed (∆e) from the
return to the normal video playback. The status of playback
can be deduced from error messages sent by GStreamer. We
computed a mean value ∆avg

s and ∆avg
e on a two minutes

part of the video in order to fix these experimental parame-
ters. During monitoring, each trace window W monitored is
labeled as: True Positive (TP) if it is in [Perturbationstart+
∆avg

s , P erturbationend + ∆avg
e] and GStreamer reports an

error and LOF (W) ≥ α, False Negative (FN) if it is in
[Perturbationstart + ∆avg

s , P erturbationend + ∆avg
e] and

GStreamer reports an error and LOF (W) < α, False Positive

(FP) if LOF (W) ≥ α and either GStreamer does not
report an error or the window is not in [Perturbationstart +
∆avg

s , P erturbationend + ∆avg
e], True Negative (TN) in the

other cases.

The quality of anomaly detection is evaluated with the well
known metrics of precision = TP/(TP +FP) and recall =
TP/(TP + FN). precision gives the ratio of windows that
are correctly reported as anomalous, the higher its value the
higher the reduction rate of the trace. recall gives the ratio
of actually anomalous windows found by our approach, a low
value means that some potentially buggy parts of the trace
were missed by our approach.

The values of precision and recall according to the LOF
threshold α are given in Figure 1.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 1.5 2 2.5 3

LOF threshold

Precision and recall evaluation according to LOF threshold

Precision
Recall

Fig. 1. Precision and recall of anomaly detection

With α = 1.2, the precision is 78.9% and the recall
is 76.6%: these values indicate that most anomalies were
correctly detected. In this setting, the recorded trace weights
418MB, instead of 5.9GB if recorded completely: this repre-
sents a 14-fold reduction in volume. This confirms the interest
of our approach.

IV. CONCLUSION

We have presented an approach for online monitoring of
multimedia applications in endurance tests, in order to reduce
the volume of trace recorded and ease further debugging.
Experiments show a reduction of one order of magnitude in
the recorded trace size, with a good coverage of the anomalies
happening in execution. We plan to apply our approach on
larger scale endurance tests of actual embedded systems. We
are also interested in further reducing the recorded trace size
by exploiting the periodic behavior of the application.

REFERENCES

[1] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van Deursen,
and J. J. van Wijk, “Execution trace analysis through massive sequence
and circular bundle views,” Journal of Systems and Software, vol. 81,
no. 12, pp. 2252–2268, 2008.

[2] S. Lagraa, A. Termier, and F. Pétrot, “Scalability bottlenecks discovery
in mpsoc platforms using data mining on simulation traces,” in DATE

2014, Dresden, Germany, March 24-28, 2014, 2014, pp. 1–6.

[3] M. M. Breunig, H. peter Kriegel, R. T. Ng, and J. Sander, “Lof:
identifying density-based local outliers,” in Proceedings 2000 ACM

SIGMOD International Conference On Management of Data, vol. 29,
no. 2, 2000, pp. 1–12.

[4] S. Kullback and R. A. Leibler, “On information and sufficiency,” The

Annals of Mathematical Statistics, pp. 79–86, 1951.

