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Abstract

This paper provides a theoretical analysis of domain adaptation based on the PAC-
Bayesian theory. We propose an improvement of the previous domain adaptation
bound obtained by Germain et al. [1] in two ways. We first give another general-
ization bound tighter and easier to interpret. Moreover, we provide a new analysis
of the constant term appearing in the bound that can be of high interest for devel-
oping new algorithmic solutions.

1 Introduction

Domain adaptation (DA) arises when the distribution generating the target data differs from the one
from which the source learning has been generated from. Classical theoretical analyses of domain
adaptation propose some generalization bounds over the expected risk of a classifier belonging to a
hypothesis class H over the target domain [2, 3, 4]. Recently, Germain et al. have given a general-
ization bound expressed as an averaging over the classifiers in H using the PAC-Bayesian theory [1].
In this paper, we derive a new PAC-Bayesian domain adaptation bound that improves the previous
result of [1]. Moreover, we provide an analysis of the constant term appearing in the bound opening
the door to design new algorithms able to control this term. The paper is organized as follows. We
introduce the classical PAC-Bayesian theory in Section 2. We present the domain adaptation bound
obtained in [1] in Section 3. Section 4 presents our new results.

2 PAC-Bayesian Setting in Supervised Learning

In the non adaptive setting, the PAC-Bayesian theory [5] offers generalization bounds (and algo-
rithms) for weighted majority votes over a set of functions, called voters. Let X ⊆ R

d be the input
space of dimension d and Y = {−1,+1} be the output space. A domain Ps is an unknown dis-
tribution over X × Y . The marginal distribution of Ps over X is denoted by Ds. Let H be a set
of n voters such that: ∀h ∈ H, h : X → Y , and let π be a prior on H. A prior is a probability
distribution on H that “models” some a priori knowledge on quality of the voters of H.

Then, given a learning sample S = {(xi, yi)}
ms

i=1 , drawn independently and identically distributed
(i.i.d.) according to the distribution Ps, the aim of the PAC-Bayesian learner is to find a posterior
distribution ρ leading to a ρ-weighted majority vote Bρ over H that has the lowest possible expected
risk, i.e., the lowest probability of making an error on future examples drawn from Ds. More
precisely, the vote Bρ and its true and empirical risks are defined as follows.
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Definition 1. Let H be a set of voters. Let ρ be a distribution over H. The ρ-weighted majority
vote Bρ (sometimes called the Bayes classifier) is:

∀x ∈ X, Bρ(x)
def
= sign

[

E
h∼ρ

h(x)

]

.

The true risk of Bρ on a domain Ps and its empirical risk on a ms-sample S are respectively:

RPs
(Bρ)

def
= E

(xi,yi)∼Ps

I [Bρ(xi) 6= yi] , and RS(Bρ)
def
=

1

ms

ms
∑

i=1

I [Bρ(xi) 6= yi] .

where I[a 6= b] is the 0-1 loss function returning 1 if a = b and 0 otherwise. Usual PAC-Bayesian
analyses [5, 6, 7, 8, 9] do not directly focus on the risk of Bρ, but bound the risk of the closely related
stochastic Gibbs classifier Gρ. It predicts the label of an example x by first drawing a classifier h
from H according to ρ, and then it returns h(x). Thus, the true risk and the empirical on a ms-sample
S of Gρ correspond to the expectation of the risks over H according to ρ:

RPs
(Gρ)

def
= E

h∼ρ
RPs

(h) = E
(xi,yi)∼Ps

E
h∼ρ

I [h(xi) 6= yi] ,

and RS(Gρ)
def
= E

h∼ρ
RS(h) =

1

ms

ms
∑

i=1

E
h∼ρ

I [h(xi) 6= yi] .

Note that it is well-known in the PAC-Bayesian literature that the risk of the deterministic classi-
fier Bρ and the risk of the stochastic classifier Gρ are related by RPs

(Bρ) ≤ 2RPs
(Gρ).

3 PAC-Bayesian Domain Adaptation of the Gibbs classifier

Throughout the rest of this paper, we consider the PAC-Bayesian DA setting introduced by Germain
et al. [1]. The main difference between supervised learning and DA is that we have two different
domains over X ×Y : the source domain Ps and the target domain Pt (Ds and Dt are the respective
marginals over X). The aim is then to learn a good model on the target domain Pt knowing that we
only have label information from the source domain Ps. Concretely, in the setting described in [1],
we have a labeled source sample S = {(xi, yi)}

ms

j=1 , drawn i.i.d. from Ps and a target unlabeled

sample T = {xj}
mt

j=1 , drawn i.i.d. from Dt. One thus desires to learn from S and T a weighted

majority vote with the lowest possible expected risk on the target domain RPt
(Bρ), i.e., with good

generalization guarantees on Pt. Recalling that usual PAC-Bayesian generalization bound study the
risk of the Gibbs classifier, Germain et al. [1] have done an analysis of its target risk RPt

(Gρ), which
also relies on the notion of disagreement between the voters:

RD(h, h′)
def
= E

x∼D
I[h(x) 6= h′(x)] . (1)

Their main result is the following theorem.

Theorem 1 (Theorem 4 of [1]). Let H be a set of voters. For every distribution ρ over H, we have:

RPt
(Gρ) ≤ RPs

(Gρ) + disρ(Ds, Dt) + λρ,ρ∗

T
, (2)

where disρ(Ds, Dt) is the domain disagreement between the marginals Ds and Dt,

disρ(Ds, Dt)
def
=

∣

∣

∣

∣

E
(h,h′)∼ρ2

(RDs
(h, h′)−RDt

(h, h′))

∣

∣

∣

∣

, (3)

with ρ2(h, h′) = ρ(h)× ρ(h′) , and λρ,ρ∗

T
= RPt

(Gρ∗

T
) + RDt

(Gρ, Gρ∗

T
) + RDs

(Gρ, Gρ∗

T
) ,

where ρ∗T = argminρ RPt
(Gρ) is the best distribution on the target domain.

Note that this bound reflects the usual philosophy in DA: It is well known that a favorable situation
for DA arrives when the divergence between the domains is small while achieving good source per-
formance [2, 3, 4]. Germain et al. [1] have then derived a first promising algorithm called PBDA for
minimizing this trade-off between source risk and domain disagreement.
Note that Germain et al. [1] also showed that, for a given hypothesis class H, the domain disagree-
ment of Equation (3) is always smaller than the H∆H-distance of Ben-David et al. [2, 3] defined by
1
2 sup(h,h′)∈H2 |RDt

(h, h′)−RDs
(h, h′)|.
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4 New Results

4.1 Improvement of Theorem 1

First, we introduce the notion of expected joint error of a pair of classifiers (h, h′) drawn according
to the distribution ρ, defined as

ePs
(Gρ, Gρ)

def
= E

(h,h′)∼ρ2

E
(x,y)∼Ps

I[h(x) 6= y]× I[h′(x) 6= y] . (4)

Thm 2 below relies on the domain disagreement of Eq. (1), and on expected joint error of Eq. (4).

Theorem 2. Let H be a hypothesis class. We have

∀ρ on H, RPt
(Gρ) ≤ RPs

(Gρ) +
1

2
disρ(Ds, Dt) + λρ , (5)

where λρ is the deviation between the expected joint errors of Gρ on the target and source domains:

λρ
def
=

∣

∣

∣
ePt

(Gρ, Gρ)− ePs
(Gρ, Gρ)

∣

∣

∣
.

Proof. First, note that for any distribution P on X×Y , with marginal distribution D on X , we have

RP (Gρ) =
1

2
RD(Gρ, Gρ) + eP (Gρ, Gρ) ,

as 2RP (Gρ) = E
(h,h′)∼ρ2

E
(x,y)∼P

(

I[h(x) 6= y] + I[h′(x) 6= y]
)

= E
(h,h′)∼ρ2

E
(x,y)∼P

(

1× I[h(x) 6= h′(x)] + 2× I[h(x) 6= y] I[h′(x) 6= y]
)

= RD(Gρ, Gρ) + 2× eP (Gρ, Gρ) .

Therefore,

RPt
(Gρ)−RPs

(Gρ) =
1

2

(

RDt
(Gρ, Gρ)−RDs

(Gρ, Gρ)
)

+
(

ePt
(Gρ, Gρ)− ePs

(Gρ, Gρ)
)

≤
1

2

∣

∣

∣
RDt

(Gρ, Gρ)−RDs
(Gρ, Gρ)

∣

∣

∣
+

∣

∣

∣
ePt

(Gρ, Gρ)− ePs
(Gρ, Gρ)

∣

∣

∣

=
1

2
disρ(Ds, Dt) + λρ .

The improvement of Theorem 2 over Theorem 1 relies on two main points. On the one hand, our
new result contains only the half of disρ(Ds, Dt). On the other hand, contrary to λρ,ρ∗

T
of Eq. (2),

the term λρ of Eq. (5) does not depend anymore on the best ρ∗T on the target domain. This implies
that our new bound is not degenerated when the two distributions Ps and Pt are equal (or very close).
Conversely, when Ps = Pt, the bound of Theorem 1 gives

RPt
(Gρ) ≤ RPt

(Gρ) +RPt
(Gρ∗

T
) + 2RDt

(Gρ, Gρ∗

T
) ,

which is at least 2RPt
(Gρ∗

T
). Moreover, the term 2RDt

(Gρ, Gρ∗

T
) is greater than zero for any ρ

when the support of ρ and ρ∗T in H is constituted of at least two different classifiers.

4.2 A New PAC-Bayesian Bound

Note that the improvements introduced by Theorem 2 do not change the form and the philosophy of
the PAC-Bayesian theorems previously presented by Germain et al. [1]. Indeed, following the same
proof technique, we obtain the following PAC-Bayesian domain adaption bound.

Theorem 3. For any domains Ps and Pt (resp. with marginals Ds and Dt) over X × Y , any set of
hypothesis H, any prior distribution π over H, any δ ∈ (0, 1], any real numbers α > 0 and c > 0,
with a probability at least 1 − δ over the choice of S × T ∼ (Ps × DT )

m, for every posterior
distribution ρ on H, we have

RPt
(Gρ) ≤ c′ RS(Gρ) + α′ 1

2 disρ(S, T ) +

(

c′

c
+

α′

α

)

KL(ρ‖π) + ln 3
δ

m
+ λρ +

1
2 (α

′−1) ,

where λρ is defined by Eq. (6), and where c′
def
=

c

1− e−c
, and α′ def

=
2α

1− e−2α
.
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4.3 On the Estimation of the Unknown Term λρ

The next proposition gives an upper bound on the term λρ of Theorems 2 and 3.

Proposition 4. Let H be the hypothesis space. If we suppose that Ps and Pt share the same support,
then

∀ρ on H, λρ ≤
√

χ2
(

Pt‖Ps

)

ePs
(Gρ, Gρ) ,

where ePs
(Gρ, Gρ) is the expected joint error on the source distribution, as defined by Eq. (4), and

χ2
(

Pt‖Ps

)

is the chi-squared divergence between the target and the source distributions.

Proof. Supposing that Pt and Ps have the same support, then we can upper bound λρ using Cauchy-
Schwarz inequality to obtain line 4 from line 3.

λρ =

∣

∣

∣

∣

E
(h,h′)∼ρ2

[

E
(x,y)∼Pt

I[h(x) 6= y] I[h′(x) 6= y]− E
(x,y)∼Ps

I[h(x) 6= y] I[h′(x) 6= y]

]
∣

∣

∣

∣

=

∣

∣

∣

∣

E
(h,h′)∼ρ2

[

E
(x,y)∼Ps

Pt(x, y)

Ps(x, y)
I[h(x) 6= y] I[h′(x) 6= y]− E

(x,y)∼Ps

I[h(x) 6= y] I[h′(x) 6= y]

]∣

∣

∣

∣

=

∣

∣

∣

∣

E
(h,h′)∼ρ2

E
(x,y)∼Ps

(

Pt(x, y)

Ps(x, y)
− 1

)

I[h(x) 6= y] I[h′(x) 6= y]

∣

∣

∣

∣

≤

√

E
(x,y)∼Ps

(

Pt(x, y)

Ps(x, y)
− 1

)2

×
√

E
(h,h′)∼ρ2

E
(x,y)∼Ps

(I[h(x) 6= y] I[h′(x) 6= y])
2

≤

√

E
(x,y)∼Ps

(

Pt(x, y)

Ps(x, y)
− 1

)2

× E
(h,h′)∼ρ2

E
(x,y)∼Ps

I[h(x) 6= y] I[h′(x) 6= y]

=

√

E
(x,y)∼Ps

(

Pt(x, y)

Ps(x, y)
− 1

)2

× ePs
(Gρ, Gρ) =

√

χ2
(

Pt‖Ps

)

ePs
(Gρ, Gρ) .

This result indicates that λρ can be controlled by the term ePs
, which can be estimated from samples,

and the chi-squared divergence between the two distributions that we could try to estimate in an
unsupervised way or, maybe more appropriately, use as a constant to tune, expressing a tradeoff
between the two distributions. This opens the door to derive new learning algorithms for domain
adaptation with the hope of controlling in part some negative transfer.
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