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Abstract

The C-bound, introduced in Lacasse et al. [1], gives a tight upper bound on the risk
of a binary majority vote classifier. In this work, we present a first step towards
extending this work to more complex outputs, by providing generalizations of the
C-bound to the multiclass and multi-label settings.

1 Introduction

In binary classification, many state-of-the-art algorithms output prediction functions that can be seen
as a majority vote of “simple” classifiers. Ensemble methods such as Bagging [2], Boosting [3] and
Random Forests [4] are well-known examples of learning algorithms that output majority votes.
Majority votes are also central in the Bayesian approach (see Gelman et al. [5] for an introductory
text); in this setting, the majority vote is generally called the Bayes Classifier. It is also -interesting
to point out that classifiers produced by kernel methods, such as the Support Vector Machine [6],
can also be viewed as majority votes. Indeed, to classify an example x, the SVM classifier computes

sign
(

∑|S|
i=1 αi yi k(xi, x)

)

. Hence, as for standard binary majority votes, if the total weight of each

αi yi k(xi, x) that votes positive is larger than the total weight for the negative choice, the classifier
will output a +1 label (and a −1 label in the opposite case).

Most bounds on majority votes take into account the margin of the majority vote on an example
(x, y), that is the difference between the total vote weight that has been given to the winning class
minus the weight given to the alternative class. As an example, PAC-Bayesian bounds give bounds
on majority votes classifiers by relating it to a stochastic classifier, called the Gibbs classifier which
is, up to a linear transformation equivalent to the first statistical moment of the margin when (x, y)
is drawn i.i.d. from a distribution [7]. Unfortunately, in most ensemble methods, the voters are weak
and no majority vote can obtain high margins. Lacasse et al. [1] proposed a tighter relation between
the risk of the majority vote that take into account both the first and the second moments of the
margin: the C-bound. This sheds a new light on the behavior of majority votes: it is not only how
good are the voters but also how they are correlated in their voting. Namely, this has inspired a
new learning algorithm named MinCq [7], whose performance is state-of-the-art. In this work, we
generalize the C-bound for multiclass and multi-label weighted majority votes as a first step towards
the goal of designing learning algorithms for more complex outputs.

This paper is organized as follows. Section 2 recalls the C-bound in binary classification. We
generalize it to the multiclass and multi-label settings in Sections 3 and 4. We conclude in Section 5.
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2 The C-bound for Binary Classification

In this section, we recall the C-bound [1, 7] in the binary classification setting.

Let X ⊆ R
d be the input space of dimension d, and let Y = {−1,+1} be the output space. The

learning sample S = {(xi, yi)}
m
i=1 is constituted by m examples drawn i.i.d. from a fixed but un-

known distribution D over X×Y . Let H be a set of real-valued voters from X to Y . Given a prior
distribution π on H and given S, the goal of the PAC-Bayesian approach is to find the posterior
distribution ρ on H which minimizes the true risk of the ρ-weighted majority vote Bρ(·) given by

RD(Bρ) = E
(x,y)∼D

I (Bρ(x) 6= y) , where Bρ(x) = sign

[

E
h∼ρ

h(x)

]

,

and where I(a) = 1 if predicate a is true and 0 otherwise.

It is well-know that minimizing RD(Bρ) is NP-hard. To get around this problem, one solution is to
make use of the C-bound which is a tight bound over RD(Bρ). This bound is based on the notion
of margin of Bρ(·) defined as follows.

Definition 1 (the margin). Let MD
ρ be the random variable that, given an example (x, y) drawn

according to D, outputs the margin of Bρ(·) on that example, defined by Mρ(x, y) = yEh∼ρ h(x).

We then consider the first and second statistical moments of the random variable MD
ρ , respectively

given by µ1(M
D
ρ ) = E(x,y)∼D Mρ(x, y) and µ2(M

D
ρ ) = E(x,y)∼D (Mρ(x, y))

2
.

According to the definition of the margin, Bρ(·) correctly classifies an example (x, y) when its
margin is strictly positive, i.e. RD(Bρ) = Pr(x,y)∼D (Mρ(x, y) ≤ 0). This equality makes it
possible to prove the following theorem.

Theorem 1 (The C-bound of Laviolette et al. [7]). For every distribution ρ on a set of real-valued
functions H, and for every distribution D on X × Y , if µ1(M

D
ρ ) > 0, then we have

RD(Bρ) ≤ 1−

(

µ1(M
D
ρ )

)2

µ2(MD
ρ )

.

Proof. The Cantelli-Chebyshev inequality states that any random variable Z and any a > 0, we
have that Pr (Z ≤ E [Z]− a) ≤ VarZ

VarZ+a2 . We obtain the result by applying this inequality with

Z = Mρ(x, y), and with a = µ1(M
D
ρ ), and by using the definition of the variance.

Note that the minimization of the empirical counterpart of the C-bound is a natural solution for
learning a distribution ρ that leads to a ρ-weighted majority vote Bρ(·) with low error. This strategy
is justified thanks to an elegant PAC-Bayesian generalization bound over the C-bound, and have led
to a simple learning algorithm called MinCq [7].

In the following, we generalize this important theoretical result in the PAC-Bayesian literature to the
multiclass setting.

3 Generalizations of the C-bound for Multiclass Classification

In this section, we stand in the multiclass classification setting where the input space is still X⊆R
d,

but the output space is Y = {1, . . . , Q}, with a finite number of classes Q≥ 2. Let H be a set of
multiclass voters from X to Y . We recall that given a prior distribution π over H and given a sample
S, i.i.d. from D, the PAC-Bayesian approach looks for the ρ distribution which minimizes the true
risk of the majority vote Bρ(·). In the multiclass classification setting, Bρ(·) is defined by

Bρ(x) = argmax
c∈Y

[

E
h∼ρ

I(h(x) = c)

]

. (1)

As in binary classification, the risk RD(Bρ) of a ρ-weighted majority vote can be related to the
notion of margin realized on an example (x, y). However, in multiclass classification, such a notion
can be expressed in a variety of manners. In the next section, we present three versions of multiclass
margins that are equivalent in binary classification.
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3.1 Margins in Multiclass Classification

We first make use of the multiclass margin proposed by Breiman [4] for the random forests, which
can be seen as the usual notion of margin. Note that when Y = {−1,+1}, we recover the usual
notion of binary margin of Definition 1.

Definition 2 (the multiclass margin). Let D be a distribution over X×Y , let H be a set of multiclass
voters. Given a distribution ρ on H, the margin of the majority vote Bρ(·) realized on (x, y)∼P is

Mρ(x, y) = E
h∼ρ

I(h(x) = y)− max
c∈Y,c 6=y

(

E
h∼ρ

I(h(x) = c)

)

.

Like in the binary classification framework presented in Section 2, the majority vote Bρ(·) correctly
classifies an example if its ρ-margin is strictly positive, i.e., RD(Bρ) = Pr(x,y)∼D (Mρ(x, y) ≤ 0).

We then consider the relaxation proposed by Breiman [4] that is based on a notion of strength of the
majority vote in regard to a class c.

Definition 3 (the strength). Let H be a set of multiclass voters from X to Y and let ρ be a dis-
tribution on H. Let SD

ρ,c be the random variable that, given an example (x, y) drawn according

to a distribution D over X × Y , outputs the strength of the majority vote Bρ(·) on that example
according to a class c ∈ Y , defined by Sρ,c(x, y) = Eh∼ρ I(h(x) = y)−Eh∼ρ I(h(x) = c).

From this definition, one can show that

RD(Bρ) = Pr
(x,y)∼D

(Mρ(x, y) ≤ 0) ≤

Q
∑

c=1

Pr
(x,y)∼D

(Sρ,c(x, y) ≤ 0)− 1 , (2)

where we have the equality in the binary classification setting. Lastly, we consider a relaxation of
the notion of margin, that we call the ω-margin.

Definition 4 (the ω-margin). Let H be a set of multiclass voters from X to Y , let ρ be a distribution
on H and let ω ≤ 1. Let MD

ρ,ω be the random variable that, given an example (x, y) ∼ D over

X × Y , outputs the ω-margin of the majority vote Bρ(·) on that example, defined by

Mρ,ω(x, y) = E
h∼ρ

I(h(x) = y)− 1/ω . (3)

This notion of margin can be seen as the difference between the weight given by the majority vote to
the correct class y and a certain threshold 1/ω. In the case of the binary classification, we have that
the sign of the ω-margin with ω = 2 is the same than the sign of the binary margin. This observation
comes from the fact that Eh∼ρ I(h(x) = y) is the proportion of voters that vote y. In the binary case,

this proportion is ≤ 1
2 when the majority vote makes a mistake, and > 1

2 otherwise. The following
theorem relates the risk of Bρ(·) and the ω-margin associated to ρ.

Theorem 2. Let Q ≥ 2 be the number of classes. For every distribution D over X × Y and for
every distribution ρ over a set of multiclass voters H, we have

Pr
(x,y)∼D

(Mρ,Q(x, y) ≤ 0) ≤ RD(Bρ) ≤ Pr
(x,y)∼D

(Mρ,2(x, y) ≤ 0) . (4)

Proof. First, let us prove the left-hand side inequality. We have

RD(Bρ) = Pr
(x,y)∼D

(Mρ(x, y) ≤ 0) = Pr
(x,y)∼D

(

E
h∼ρ

I(h(x) = y) ≤ max
c∈Y,c6=y

E
h∼ρ

I(h(x) = c)

)

≥ Pr
(x,y)∼D

(

E
h∼ρ

I(h(x) = y) ≤ E
c∈Y,c6=y

E
h∼ρ

I(h(x) = c)

)

= Pr
(x,y)∼D

(

E
h∼ρ

I(h(x) = y) ≤
1

Q− 1

[

1− E
h∼ρ

I(h(x) = y)

])

= Pr
(x,y)∼D

(Mρ,Q(x, y) ≤ 0) .

The right-hand side inequality is easily verified by observing that the majority vote necessarily
makes a correct prediction if the weight given to the correct class y is higher than 1

2 .

All the above-mentioned notions of margin are equivalent if we stand in the binary classification
setting. However, they differ in the multiclass setting. The multiclass margin of Definition 2 is
associated to the true decision function in multiclass classification, and is calculated considering
all other classes. The strength of Definition 3 depends on the true class y of x and corresponds
to a combination of binary margins (one class versus another class) for c 6= y. The ω-margin of
Definition 4 also depends on the true class y of x, but does not consider the other classes. This
measure is easier to manipulate, but implies a higher indecision region (see Theorem 2).
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3.2 Generalizations of the C-bound in the Multiclass Setting

The following bound is based on the definition of the multiclass margin in multiclass (Definition 2).

Theorem 3 (the multiclass C-bound). For every distribution ρ on a set of multiclass voters H, and
for every distribution D on X × Y , such that µ1(M

D
ρ ) > 0, we have

RD(Bρ) ≤ 1−

(

µ1(M
D
ρ )

)2

µ2(MD
ρ )

.

Proof. The proof is the same than the one of the binary C-bound (see Theorem 1), by considering
the multiclass majority-vote of Equation (1) and the multiclass margin of Definition 2.

This bound offers an accurate relation between the risk of the majority vote and the margin. How-
ever, the max term in the definition of the multiclass margin makes the derivation of an algorithm to
minimize this bound much harder than in binary classification.

Thanks to the definition of the strength of Definition 3 and according to the proof process of the
C-bound, we obtain the following relation.

Theorem 4. For every distribution ρ on a set of multiclass voters H, and for every distribution D
over X × Y , such that ∀c ∈ Y, µ1(S

D
ρ,c) > 0, we have

RD(Bρ) ≤

Q
∑

c=1

Pr
(x,y)∼D

(Sρ,c(x, y) ≤ 0)− 1 = (Q− 1)−

Q
∑

c=1

(

µ1(S
D
ρ,c)

)2

µ2(SD
ρ,c)

,

Proof. The result is obtained by using Inequality (2) in the proof of the C-bound.

This result can be seen as a sum of C-bounds for every class. A practical drawbacks of this bound
in order to construct a minimization algorithm is that we have to minimize a sum of ratios. Finally,
the C-bound obtained by using the ω-margin is given by the following theorem.

Theorem 5. For every distribution ρ on a set of multiclass voters H, for every ω ≥ 1, and for every
distribution D on X × Y , if µ1(M

D
ρ,ω) > 0, we have

E
(x,y)∼D

I

(

Mρ,ω(x, y) ≤ 0
)

≤ 1−

(

µ1(M
D
ρ,ω)

)2

µ2(MD
ρ,ω)

.

Proof. The result is obtained with the same proof process than the C-bound, by replacing the use of
the random variable MD

ρ by MD
ρ,ω .

The ω-margin being linear, we are now able to build a bound minimization algorithm as in Laviolette
et al. [7] for the multiclass classification setting.

4 Extending the ω-margin to the Multi-label Setting

In this section, we will extend the ω-margin with ω = 2 to the more general multi-label classification
setting. Doing so, we will be able to upper bound the risk of the multi-label majority vote classifier.
We stand in the multi-label classification setting where the input space is still X ⊆ R

d, the space
of possible labels is Y = {1, . . . , Q} with a finite number of classes Q ≥ 2, but we consider the

output space Y = {0, 1}Q that contains vectors y of length Q where the ith element is 1 if example i
is among the labels associated to the example x, and 0 otherwise. We consider a set H of multi-

label voters h : X 7→ Y . As usual in structured output prediction, given a distribution ρ over H, the
multi-label majority vote classifier Bρ chooses the label c ∈ Y that has the lowest squared Euclidean
distance with the ρ-weighted cumulative confidence,

Bρ(x) = argmin
c∈Y

∥

∥

∥

∥

c− E
h∼ρ

h(x)

∥

∥

∥

∥

2

= argmax
c∈Y

[

c ·

(

E
h∼ρ

h(x)−
1

2
1

)]

,

where 1 is a vector of length Q containing ones. The multi-label margin is given by Definition 5.
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Figure 1: Graphical representation of label y, hyperplane Py and vector Eh∼ρ h(x).

Definition 5 (the multi-label margin). Let D be a distribution over X × Y , let H be a set of multi-
label voters. Given a distribution ρ on H, the margin of the majority vote Bρ(·) on (x, y) is

Mρ(x, y) =

(

E
h∼ρ

h(x)−
1

2
1

)

·

(

y −
1

2
1

)

− max
c∈Y ,c 6=y

(

E
h∼ρ

h(x)−
1

2
1

)

·

(

c−
1

2
1

)

.

As we did in the multiclass setting with the margin of Definition 2, we can upper bound the risk of
the multi-label majority vote classifier by developing a C-bound using the margin of Definition 5.
However, as this margin also depends on a max term, the derivation of a learning algorithm min-
imizing the resulting C-bound remains hard. To overcome this, we generalize Mρ,2, the ω-margin
with ω = 2 of Definition 4, to the multi-label setting, as follows.

Definition 6. Let D be a distribution over X × Y , let H be a set of multi-label voters. Given a
distribution ρ on H, the 2-margin of the majority vote Bρ(·) on (x, y) is

Mρ,2(x, y) =

(

(

E
h∼ρ

h(x)−
1

2
1
)

−
(

yi→1/2 −
1

2
1
)

)

·
(

y −
1

2
1
)

= y ·

(

E
h∼ρ

h(x)−
1

2
1

)

− E
h∼ρ

h(x) ·
1

2
1 −

1

4
,

where i ∈ {1, .., Q} and yi→1/2 is obtained from y by replacing its ith coordinate by 1/2.

The second equality of the definition is obtained by straightforward calculation. Now, let Py , be
the only hyperplane on which lies all the points of the form yi→1/2 for i = 1, . . . , Q. Since this

hyperplane has normal
(

y − 1
2 1

)

, it follows from basic linear algebra that if Mρ,2 > 0, then

vectors Eh∼ρ h(x) and y will be on the same side of Py . It is also easy to see that in this case,

we have Bρ(x) = y. Figure 1 shows an example in the case where Q = 2. Thus, we have that

RD(Bρ) ≤ Pr(x,y)∼D

(

Mρ,2(x, y) ≤ 0
)

, and following the same arguments as in Theorem 5, one
can derive the following multi-label C-bound.

Theorem 6. For every distribution ρ on a set of multi-label voters H and for every distribution D
on X × Y , if µ1(Mρ,2(x, y)) > 0, we have

RD(Bρ) ≤ E
(x,y)∼D

I

(

Mρ,2(x, y) ≤ 0
)

≤ 1−

(

µ1(MD
ρ,2)

)2

µ2(MD
ρ,2)

.

5 Conclusion and Outlooks

In this paper, we extend an important theoretical result in the PAC-Bayesian literature to the mul-
ticlass and multi-label settings. Concretely, we prove three multiclass versions and one multi-label
version of the C-bound, a bound over the risk of the majority vote, based on generalizations of
the notion of margin for multiclass and multi-label classification. These results open the way to
extending the theory to more complex outputs and developing new algorithms for multiclass and
multi-label classification with PAC-Bayesian generalization guarantees.
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