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Abstract

We consider the problem of constructing metamodels for computationally expensive sim-
ulation codes; that is, we construct interpolation/prediction of functions values (responses)
from a finite collection of evaluations (observations). We use Gaussian process modeling and
Kriging, and combine a Bayesian approach, based on a finite set of covariance functions,
with the use of localized models, indexed by the point where the prediction is made. Our
approach does not yield a single generative model for the unknown function, but by let-
ting the weights of the different covariance functions depend on the prediction site, it gives
enough flexibility for predictions to accommodate to non-stationarity. Contrary to Kriging
prediction with plug-in parameter estimates, the resulting Bayesian predictor is constructed
explicitly, without requiring any numerical optimization. It inherits the smoothness prop-
erties of the covariance functions that are used and its superiority over the plug-in Kriging
predictor (sometimes also called empirical-best-linear-unbiased predictor) is illustrated on
various examples, including the reconstruction of an oceanographic field from a small num-
ber of observations.

keywords prediction; interpolation; computer experiments; random field; non-stationary process

1 Introduction and motivation

The usual approach to Gaussian Process (GP) modeling and Kriging prediction raises two major
issues: (i) stationarity is often a too strong assumption but seems hardly avoidable when a
single realization of the random field is observed; (ii) the estimation of the kernel parameters
that specify the correlation between distant observations is problematic, taking the uncertainty
on these estimates into account in the construction of predictions is difficult and requires either
heavy Monte-Carlo calculations or relies on (sometimes crude) approximations based on the
asymptotic behavior of the estimators.

The classical plug-in approach, with which we shall compare, consists in predicting with a
correlation function where unknown parameters are replaced by their estimated values, usually
by Maximum Likelihood (ML). This method is simple but may produce poor results, in partic-
ular (a) when the modeled phenomenon is strongly non-stationary, (b) when an unlucky poor
sampling wrongly suggests that the process is exaggeratedly smooth (this corresponds to the
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notion of deceptive function, see Jones (2001)), or (c) far away from the design points where
the process is observed, because Kriging prediction is then given by the global trend and may
be locally very inaccurate. Such situations will be considered in Section 3.

To address difficulties (i) and (ii) above, we propose a local-Kriging approach that combines
two features.

First, the approach is Bayesian. It relies on a finite set of L GP models {Z`(x)}L`=1, for
x varying in a given set X , Z`(·) having covariance function C`. We then consider that f(·)
is the sample path of a process Zs(·) such that s = ` with some probability w`. Starting
with prior weights w`0 (for instance uniform), we can update them into w`n after n observations
zn = (Z(x1), . . . , Z(xn))> have been collected, and hence construct a Bayesian predictor x ∈
X 7−→ η̂n(x) based on the L models. This prediction and its posterior squared error can be
constructed explicitly when we assume a linear parametric trend g>(x)β, with g(·) a known
vector of functions (the usual framework for universal Kriging), and a hierarchical prior β|σ2 ∼
N (β0, σ

2V0) and σ2 ∼ inverse chi-squared, common to the L models. This is rather standard,
see Santner et al. (2003, Chap. 4). Notice that, due to the dependence of the w`n in zn, this
Bayesian predictor depends non linearly in zn. The method differs from the approach based
on mixture of kernels in (Ginsbourger et al., 2008), which is not Bayesian, and it extends
(Benassi et al., 2011) by allowing the possible assignment of prior weights to different covariance
structures. Several examples (Section 3) will illustrate that a small number L (typically L ≈ 4)
of isotropic covariances is enough to obtain satisfactory results, at least for the two-dimensional
sets X considered.

The second feature of our construction is meant to account for non-stationarity. Instead of
proposing a unique view of the process realization, or in other words, of the phenomenon to be
modeled, we consider that observers at different locations t and t′ may contemplate different
models. We thus condition all process characteristics, in particular the covariances C`, by the
location t where prediction is made. This yields L covariance functions C`|t for each t, and a
Bayesian predictor η̂n(·|t). By construction, the prediction η̂n(x0|t) at x0 is only valid locally,
for x0 close to t, but the predictor t ∈ X 7−→ η̂BLK,n(t) = η̂n(t|t), which we call Bayesian
Local Kriging (BLK), inherits continuity and interpolating properties from the properties of
the covariances C`|t. The method differs from previously proposed local Kriging approaches,
see for instance Lam et al. (2004); Sun et al. (2006); Nguyen-Tuong et al. (2009). It does not
yield a single generative model for the process, but by assigning different posterior weights
w`n(t) to different locations t, it gives enough flexibility for predictions to accommodate to non-
stationarity.

2 Construction

The objective is to reconstruct/predict/interpolate a function f(·): x ∈ X 7−→ f(x) ∈ R from
a collection of observations f(x1), . . . , f(xn) at sites x1, . . . , xn in X , with X a compact subset
of Rd, d ≥ 1. Real-valued GP models will be used to predict f(x0) at some unsampled x0 by
Kriging. Since there is no reason to consider f(·) as the sample path of a stationary GP, we
shall use collections of local models, each of them defining a local prior representation for f(·).
We shall write Z(·) ∼ GP(µ(·), σ2C(·, ·)) when Z(·) is a GP satisfying

E{Z(x)} = µ(x) , ∀x ∈X , and E{[Z(x)− µ(x)][Z(x′)− µ(x′)]} = σ2C(x, x′) , ∀(x, x′) ∈X 2 .

2.1 Local models

For the sake of simplicity, for the moment we consider processes with zero mean; see the Ap-
pendix for the case where a linear parametric trend is present. At any site t ∈X , we shall use
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a set of L local GP models GP(0, σ2C`|t(·, ·)) for f(·). Non stationarity is introduced by letting
C`|t(x, x

′) depend on t, which makes the model local. We shall use covariance functions of the
form

C`|t(x, x
′) =

k0,`(x− x′)
k
1/2
1,` (x− t)k1/21,` (x′ − t)

, (1)

where the ki,`(·), i = 0, 1, ` = 1, . . . , L, are stationary kernel functions, continuous at 0 and such
that ki,`(0) = 1. The covariance C`|t(x, x

′) satisfies C`|t(x, x) = k−11,` (x− t) and C`|t(t, t) = 1. By
taking k1,`(x− t) decreasing in ‖x− t‖, we obtain a prior for f(·) which may become quite vague
for x far enough from t (however, the correlation corresponding to C`|t(x, x

′) is k0,`(x − x′) for
any t and is thus stationary).

2.2 The Bayesian local Kriging predictor

Consider a given site t ∈ X . With each model GP(0, σ2C`|t(·, ·)), ` = 1, . . . , L, with C`|t(·, ·)
given by (1), we associate a prior probability w`0. That is, we consider that, seen from t, f(·) is
the sample path of a stochastic process Z(·) such that

Z(·)|s(t), σ2, t ∼ GP(0, σ2Cs(t)|t(·, ·)) , with Prob{s(t) = `} = w`0 , ` = 1, . . . , L , (2)

with some prior distribution on σ2 (common to all components), having density ϕ0(·) with
respect to the Lebesgue measure on R+. We thus have a finite mixture of GP’s at each t, and
different mixtures at t and t′ 6= t.

Remark 1 (Linear combination of GP) Note the difference between this Bayesian construc-
tion and the more usual consideration of a linear combination of processes, that is, Z(x) =∑L

`=1w
`(x)Z`(x), where Z`(·) ∼ GP(0, σ2C`(·, ·)), see, e.g., Nott and Dunsmuir (2002). In

that case, assuming that E{Z`(x)Z`′(x
′)} = 0 for all (x, x′) ∈ X 2 when ` 6= `′, we obtain

that E{Z(x)Z(x′)} = σ2
∑L

`=1w
`(x)w`(x′)C`(x, x

′), which makes Z(·) non stationary also when
C`(x, x

′) = C`(x− x′) for all (x, x′). This model may seem simpler to handle than the Bayesian
hierarchical one considered above. However, predictions require the estimation of the weight
functions w`(·), which is hardly possible when a single realization of Z(·) is available and no
prior parametric model is available for w`(x). �

After n evaluations of f(·) at sites ξn = (x1, . . . , xn) in X , the likelihood L (zn|`, σ2, t) of
zn = (f(x1), . . . , f(xn))> for the model GP(0, σ2C`|t(·, ·)) is given by

L (zn|`, σ2, t) =
1

σn(2π)n/2 det1/2 Kn(`|t)
exp

[
− 1

2σ2
z>nK−1n (`|t)zn

]
,

where Kn(`|t) is the matrix with elements {Kn(`|t)}i,j = C`|t(xi, xj), i, j = 1, . . . , n. Notice
that Kn(`|t) = Dn(`|t)Kn,0(`)Dn(`|t), where

{Kn,0(`)}i,j = k0,`(xi − xj) and Dn(`|t) = diag{k−1/21,` (xi − t) , i = 1, . . . , n} ,

see (1). Therefore, as we stressed before, for suitable kernels k1,`(·), the information carried by
observation zi = f(xi) decreases with the distance from t to xi.

Using Bayes rule, the marginal likelihood L (zn|`, t) =
∫
R+ L (zn|`, σ2, t)ϕ0(σ

2) dσ2 is used
to compute the posterior weights

w`n(t) =
w`0L (zn|`, t)∑L

`′=1w
`′
0 L (zn|`′, t)

, ` = 1, . . . , L ; (3)

that is, the posterior distribution of s(t).
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Remark 2 The different covariance functions C`|t(·, ·), ` = 1, . . . , L, may correspond to dif-
ferent parameter values θl in a given parameterized kernel C`|t(·, ·|θ), typically different length
scales. The method can then be extended straightforwardly to the infinite mixture case, with a
continuous limit that gives some prior density π0(·) to θ. The posterior is then

πn(θ) =
π0(θ)L (zn|θ, t)∫
π0(θ)L (zn|θ, t) dθ

.

However, in general the integral on the denominator cannot be calculated analytically, and one
must resort to MCMC methods or use the Laplace approximation. Note that, besides being more
easily tractable, the finite mixture model considered here allows one to let the different C`|t(·, ·)
represent different correlation characteristics (isotropy, smoothness, etc.). �

Let η0 denote the prediction of the unobserved value Z(x0) for the local model at site t. Its
posterior squared prediction error is

PSPE(η0) = E{[Z(x0)− η0]2|zn, t} ,

where the expectation is with respect to Z(x0) given zn and t, with Z(x0)|s(t), σ2, zn, t ∼
GP(0, σ2Cs(t)|t(·, ·)|zn), Prob{s(t) = `} = w`0, l = 1, . . . , L (which gives again a finite mixture of
GP), and σ2 ∼ ϕ0(·). Denote

η̂n(x0|t) = E{Z(x0)|zn, t} . (4)

Then, PSPE(η0) = var{Z(x0)|zn, t}+ [η̂n(x0|t)− η0]2, which is minimum for η0 = η̂n(x0|t). The
associated posterior squared prediction error equals the posterior variance

PSPE(η̂n(x0|t)) = var{Z(x0)|zn, t} =

L∑
`=1

w`n(t)E{[Z(x0)− η̂n(x0|t)]2|zn, `, t}

=
L∑
`=1

w`n(t)E{[Z(x0)− η̂n(x0|`, t)]2|zn, `, t}+
L∑
`=1

w`n(t) [η̂n(x0|`, t)− η̂n(x0|t)]2 ,

where we have denoted η̂n(x0|`, t) = E{Z(x0)|zn, `, t} . Since η̂n(x0|t) =
∑L

`=1w
`
n(t)η̂n(x0|`, t),

we obtain

PSPE(η̂n(x0|t)) =

L∑
`=1

w`n(t) var{Z(x0)|zn, `, t}+ var{dn(x0|t)} , (5)

where dn(x0|t) denotes the discrete distribution that allocates weight w`n(t) to η̂n(x0|`, t).
Due to the use of localized covariance functions, see (1), the prediction η̂n(x0|t) only makes

sense for x0 close to t. We call Bayesian Local Kriging (BLK) the predictor

t ∈X 7−→ η̂BLK,n(t) = η̂n(t|t) .

Note that it depends nonlinearly on zn even in situations where each prediction η̂n(t|`, t) is linear
in zn, since the weights w`n depend on zn through the marginal likelihood L (zn|`, t), see (3).
Also note that η̂n(t|t) inherits the smoothness properties of k0,`(·) and k1,`(·). The posterior
squared prediction errors, or posterior variances, PSPE(η̂BLK,n(t)) = var{Z(t)|zn, t}, t ∈ X ,
can be used to measure the precision of predictions made after the collection of observations zn.
The preposterior variances, or mean-squared prediction errors,

MSPE(η̂BLK,n(t)) = E{var{Z(t)|zn, t}|t} , t ∈X , (6)
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can be used for experimental design: one may choose a set of locations ξn = (x1, . . . , xn) ∈X n

that ensures a precise prediction of the behavior of f(·) over X by minimizing

ΦM (ξn) = max
t∈X

MSPE(η̂BLK,n(t)) or ΦI(ξn) =

∫
X

MSPE(η̂BLK,n(t))ζ(dt) , (7)

with ζ(·) some suitable measure on X .
As shown in Section 2.3, the predictor (4) and its prediction error (5) can be expressed

explicitly when the prior density ϕ0(·) on σ2 is suitably chosen (conjugate prior).

2.3 An inverse chi-square prior for the process variance

Suppose that Z(·) satisfies (2) with σ2 having the inverse chi-squared distribution (common to
all components),

ϕ0(σ
2) = ϕσ2

0 ,ν0
(σ2) =

(σ20ν0/2)ν0/2

Γ(ν0/2)

exp[−ν0σ20/(2σ2)]
σ2(1+ν0/2)

, (8)

so that E{1/σ2} = 1/σ20, var{1/σ2} = 2/(ν0σ
4
0), E{σ2} = σ20ν0/(ν0 − 2) (for ν0 > 2) and

var{σ2} = 2σ40ν
2
0/[(ν0 − 2)2(ν0 − 4)] (for ν0 > 4). Direct calculations give∫ ∞

0
L (zn|`, t)ϕ0(σ

2) dσ2 =
1

(2π)n/2 det1/2 Kn(`|t)
(σ20ν0/2)ν0/2

Γ(ν0/2)

Γ(νn/2)

(σ2n|`,tνn/2)νn/2
,

where νn = ν0 + n and

σ2n|`,t =
ν0σ

2
0 + nσ̂2n(`|t)
ν0 + n

(9)

with σ̂2n(`|t) = z>nK−1n (`|t)zn/n, the Maximum-Likelihood (ML) estimator of σ2 given zn, `, t.
Also, given zn, ` and t, σ2 has the inverse chi-squared distribution ϕn|`,t(·) = ϕσ2

n|`,t,νn
(·), see

(8).
The posterior mean η̂n(x0|`, t) corresponds to the ordinary-Kriging predictor, also called

Best Linear Unbiased Predictor (BLUP), c>n (x0|`, t)zn for the model GP(0, σ2C`|t(·, ·)|zn), with,

cn(x0|`, t) = K−1n (`|t)kn(x0, `|t) (10)

and {kn(x0, `|t)}i = C`|t(x0, xi), i = 1, . . . , n. Therefore,

η̂n(x0|t) =
L∑
`=1

w`n(t)c>n (x0|`, t)zn . (11)

The variance var{Z(x0)|zn, `, σ2, t} is the ordinary-Kriging variance for GP(0, σ2C`|t(·, ·)|zn),
var{Z(x0)|zn, `, σ2, t} = σ2 ρ2n(x0|`, t), with

ρ2n(x0|`, t) = C`(x0, x0|t)− k>n (x0, `|t)K−1n (`|t)kn(x0, `|t) (12)

(note that it depends on the design ξn = (x1, . . . , xn) but not on zn). Since E{Z(x0)|zn, `, σ2, t} =
η̂n(x0|`, t) does noes not depend on σ2,

var{Z(x0)|zn, `, t} = E{σ2|zn, `, t} ρ2n(x0|`, t) = σ2n|`,tνn/(νn − 2) ρ2n(x0|`, t) .

From (5) and (11), the posterior squared error of the prediction η̂n(x0|t) at x0 equals

PSPE(η̂n(x0|t)) =
L∑
`=1

w`n(t)σ2n|`,t νn/(νn − 2) ρ2n(x0|`, t) + z>nΩn(x0|t)zn , (13)
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where Ωn(x0|t) is the variance-covariance matrix Var{Dn(x0|t)} with Dn(x0|t) the discrete dis-
tribution that allocates weight w`n(t) to the vector cn(x0|`, t), ` = 1, . . . , L.

The preposterior variance (mean-squared prediction error) of BLK at t is (for ν0 > 2)

MSPE(η̂BLK,n(t)) =
L∑
`=1

E{w`n(t)σ2n|`,tνn/(νn − 2)} ρ2n(t|`, t) + E{z>nΩn(t|t)zn|t}

= σ20 ν0/(ν0 − 2)
L∑
`=1

w`0(t) ρ
2
n(t|`, t) + E{z>nΩn(t|t)zn|t} . (14)

Note that MSPE(η̂BLK,n(t)) = E{σ2} ρ2n(t|t) when L = 1. The term

E{z>nΩn(t|t)zn|t} =
L∑

`′=1

w`
′
0 E{var{dn(x0|t)}|`′, t} ,

see (5), plays a role similar to that of the correcting term added to the Kriging variance in
(Harville and Jeske, 1992; Zimmerman and Cressie, 1992; Abt, 1999; Zhu and Zhang, 2006).
The construction of an experimental design optimal in terms of ΦM (·) or ΦI(·), see (7), would
require the evaluation of E{z>nΩn(t|t)zn|t} and deserves further investigations. A sequential ap-
proach facilitates the construction: suppose that n observations have already been collected,
with η̂BLK,n(t) the prediction at t, see (11), and PSPE(η̂BLK,n(t)) the associated posterior
squared prediction error, see (13); a reasonable choice then places next observation at xn+1

where PSPE(η̂BLK,n(x)) is maximum.
In this section we have considered GP with zero mean. The presence of a linear parametric

trend (universal Kriging) is considered in Section 5: expressions (11), (13) and (14) remain valid,
but with different values for νn, σ2n|`,t, cn(x0|`, t) and ρ2n(x0|`, t).

3 Examples

We shall consider isotropic kernels ki,`(·) of the form ki,`(x−x′) = Kγ,θ(‖x−x′‖), i = 0, 1, where
Kγ,θ(τ) denotes a Matérn covariance function, with

Kγ,θ(τ) =

{
(θτ + 1) exp(−θτ) for γ = 3/2
(θ2τ2/3 + θτ + 1) exp(−θτ) for γ = 5/2

(15)

as special cases, see, e.g., Stein (1999, pp. 31, 48). For fixed γ and θ, Kγ,θ(τ) is a decreasing
function of τ ∈ R+, with a correlation Kγ,θ(τ) = 20% for τ ' 2.9943/θ when γ = 3/2 and
for τ ' 3.9141/θ when γ = 5/2. The design space X is often renormalized to [0, 1]d, so that
prior guesses on reasonable inverse correlation lengths θ can be set depending on the assumed
smoothness of the function f(·). One dimensional processes with covariance Kγ,θ(τ) are m times
mean-square (and almost surely) differentiable if and only if γ > m, see Cramér and Leadbetter
(1967, p. 185), Stein (1999, p. 32), and K3/2,θ(·) (respectively K5/2,θ(·)) yields one-time (resp.

two-times) isotropic differentiable processes on Rd.

Example 1: average performance. We simulate various realizations of stochastic processes
on X = [0, 1]2, stationary or not, using a linear combination of processes as mentioned in
Remark 1,

Z(x) = [1− w(x)]Z1(x) + w(x)Z2(x) , (16)

where Z1(·) and Z2(·) are stationary, with mean, variance and covariance functions β̄i, σ
2
i and

Kγi,θi(·), i = 1, 2, see (15). For the stationary case we shall use w(x) ≡ 1, so that Z(x) = Z2(x)

6



for all x; realizations of a non-stationary process will be generated with w(x) = wn−s(x) given
by the product of two sigmoid functions,

wn−s(x) =
exp[a(x1 − 1/2)]

exp[a(x1 − 1/2)] + exp[−a(x1 − 1/2)]

exp[a(x2 − 1/2)]

exp[a(x2 − 1/2)] + exp[−a(x2 − 1/2)]
,

x = (x1, x2) ∈ X . For a large enough (we take a = 30 in the numerical experiments below),
Z(x) is approximately equal to Z2(x) for x1 and x2 larger than 1/2 and is approximately equal
to Z1(x) otherwise. The experimental design ξn = (x1, . . . , xn) is a random Latin hypercube
with n = 20 points in X , see Figure 1.

Figure 1: Experimental design ξn in Example 1.

Two predictors are compared. The first one is the Empirical BLUP (EBLUP). A stationary
GP model is assumed, with unknown constant mean β, unknown variance σ2 and covariance
function Kγ1,θ(·) with unknown θ. The parameters β, σ and θ are estimated by Restricted ML,
see Section 5.1; these estimated values are then plugged in the ordinary Kriging predictor (the
BLUP) — it corresponds to (21) in the Appendix, with g(x) ≡ 1, ` = 1 and no conditioning on
t. We denote by η̂MV,n(t) this prediction at t.

The second one is the BLK predictor η̂BLK,n(t) of Section 2.2, with L = 4 and covariance
functions given by (1) with k0,`(x−x′) = K3/2,θ0,`(‖x−x

′‖) and k1,`(x−x′) = K3/2,θ1,`(‖x−x
′‖),

` = 1, . . . , 4. We suppose that g(x) ≡ 1 and that β has a uniform prior, see Section 5.1; we take
γ0 = 2, σ0 = 1 which corresponds to a very vague prior on σ2.

We construct predictions on a regular grid of 21 × 21 = 441 points si in X and consider
different values for the parameters of the process (16): θ1 = 1, β̄1 = 0, σ1 = 1, γ1 = 3/2 or 5/2,
γ2 = 3/2, θ2 = 7, σ2 = 2, β̄2 = 0 or 10. Note that the EBLUP assumes that the covariance
is Kγ1,θ(·). BLK uses θ0,` = 1, 5, 10, 20 and either θ1,` = 0 (i.e., it assumes stationarity) or
θ1,` = θ∗ > 0 for all ` = 1, . . . , 4 (non-stationarity). The value θ∗ is chosen according to the
following rule. Assuming that the design ξn is space-filling, we wish to ensure that, for any
x ∈ X , k1,`(x− xi) is large enough (say, larger than 20%) for a significant set of design points
xi ∈ ξn (say, 10d/4 points). For the covariance Matérn 3/2, we obtain that the hypercube with
side length τ∗ = 2.9943/θ∗ should contain 10d/4 points, which yields τ∗ = min{1, [10d/(4n)]1/d}.
For n = 10d and d = 2, this gives τ∗ = 0.5 and θ∗ ' 5.9886. The different configurations
considered are indicated in Table 1. In columns A-C the process Z(x) is stationary: in A and
B the EBLUP uses the correct covariance function, BLK does not assume stationarity in A but
does in B and C; the EBLUP has a wrong covariance function in C. The process Z(x) is non-
stationary in D and E, with Z1(x) and Z2(x) having different covariances in D and also different
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means in E. Figure 2 presents realizations of the process Z(x) for configurations corresponding
to columns D and E of Table 1.
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Figure 2: Realizations of a non-stationary process Z(x) with w(x) = wn−s(x), for configurations D (left)
and E (right) of Table 1.

For each choice of covariance structure for the process Z(·) we repeated 1,000 independent
simulations of the 20-dimensional vector of observations zn. To compare the performances of
the two predictors without simulating realizations of Z(si) for the 21× 21 grid points, one may
notice that, for any predictor ẑn(x0) which is a function of zn, we have

E2[ẑn(x0)] = E{[ẑn(x0)− Z(x0)]
2|zn} = ∆2

n[ẑn(x0)] + Vn(x0) ,

with ∆2
n[ẑn(x0)] = [ẑn(x0)− E{Z(x0)|zn}]2 and Vn(x0) = E{[Z(x0)− E{Z(x0)|zn}]2|zn}, where

E{Z(x0)|zn} and Vn(x0) can easily be calculated using the characteristics of Z(·), see Remark 1.
The values of the integrated squared errors

{IE2[ẑn]}k =
1

441

441∑
i=1

{
E2[ẑn(si|z(k)n )]

}
k

are then calculated for each vector of simulated data z
(k)
n , for both predictors η̂MV,n and η̂BLK,n.

The empirical means

ĨE2[ẑn] =
1

1, 000

1,000∑
k=1

{IE2[ẑn]}k

of the integrated squared errors are indicated in Table 1, together with the results of paired-
comparisons tests Tpc for the differences {IE2[η̂MV,n]}k−{IE2[η̂BLK,n]}k and their corresponding
p-values (see, e.g., Kanji (1993, p. 30)). A box-plot of these differences is presented in Figure 3,
indicating that BLK produces more stable predictions than the EBLUP. We also indicate in

Table 1 the values M̃edE2[ẑn] and M̃axE2[ẑn] of the empirical means, over the 1,000 simulations,

of respectively the median and maximum values of
{
E2[ẑn(si|z(k)n )]

}
k

on the 441 grid points.

The values of the paired-comparisons tests TPC and associated p-values in Table 1 indicate
that conclusions about the best predictor (in terms of integrated squared errors) between η̂MV,n

and η̂BLK,n are highly significant. The EBLUP, that is, ordinary Kriging with ML estimation
of the process parameters, appears to yield more precise predictions (on average) than BLK in
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A B C D E
Z(·) stationary stationary stationary non-stationary non-stationary
w(x) ≡ 1 ≡ 1 ≡ 1 wn−s(x) wn−s(x)
γ1 3/2 3/2 5/2 5/2 5/2
β̄2 10 10 10 0 10
θ1,` θ∗ 0 0 θ∗ θ∗

ĨE2[η̂MV,n] 0.971 0.971 0.975 0.301 2.591

ĨE2[η̂BLK,n] 0.989 0.961 0.961 0.295 2.307
Tpc -6.49 4.96 7.33 6.24 99.7

p-value < 10−10 3.6 10−7 < 10−10 2.2 10−10 < 10−10

M̃edE2[η̂MV,n] 0.787 0.787 0.786 0.0109 0.119

M̃edE2[η̂BLK,n] 0.808 0.787 0.787 0.0025 0.0118

M̃axE2[η̂MV,n] 3.795 3.795 3.797 4.412 53.60

M̃axE2[η̂BLK,n] 4.234 3.578 3.578 4.354 52.40

ÎE2[η̂MV,n] 0.937 0.937 0.893 0.202 1.325

ÎE2[η̂BLK,n] 1.032 1.001 1.001 0.266 1.668

Table 1: Simulation results in Example 1. Best performances (smallest values) among η̂MV,n and η̂BLK,n

are indicated in bold face.
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Figure 3: Box-plot of the differences {IE2[η̂MV,n]}k − {IE2[η̂BLK,n]}k for the 5 cases considered in
Table 1.

one situation only among those considered (column A of Table 1): the process is stationary,
the EBLUP has the correct covariance function and BLK does not assume stationarity. For
the same random process, the situation is reversed when BLK makes use of the stationarity
assumption (column B); the superiority of BLK over the EBLUP increases when η̂MV,n wrongly
assumes a Matérn 5/2 covariance (column C). BLK was always found to be superior to the
EBLUP when Z(·) is non-stationary, as illustrated by columns D and E, where Z1(·) and Z2(·)
differ by their regularity (column D) and also by their mean (column E). Note that predictions
are much more precise in column D than in the others, due to the fact that that the process is
quite smooth (γ1 = 5/2) and has a rather large correlation length (θ1 = 1) on a big part of X ;

see in particular the small values of M̃edE2[η̂MV,n] and M̃edE2[η̂BLK,n] in columns D and E.
We also indicate in the table the values of the empirical errors predicted by the two modeling

approaches. For the EBLUP, the squared prediction error at x0 is given by σ̂2n(x0) ρ
2
n(x0), see

(19) and (23). For BLK with θ1,` > 0, observations that are far away from x0 have negligible
influence on the prediction of Z(x0). We thus construct an “equivalent number of observations”
n′(x0), given by n′(x0) =

∑n
i=1 k1,`(x0 − xi). This value is substituted for n in (18) and (19)
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for the evaluation of the posterior squared prediction error (13) (but not for the evaluation
of the marginal likelihood L (zn|`, t)). We then compute the empirical means (over the 1,000
simulations and 441 grid points) of these posterior squared prediction errors, which we denote

by ÎE2[η̂MV,n] and ÎE2[η̂BLK,n], to be compared respectively with ĨE2[η̂MV,n] and ĨE2[η̂BLK,n].
It is well known that using the plug-in mean-squared prediction error of the BLUP underes-

timates the true prediction error, the reason being that the uncertainty due to the estimation of
the covariance parameters is not accounted for, see Stein (1999, Section 6.8). The table corrobo-
rates this result. On the other hand, the error predicted by BLK slightly overestimates (columns
A and B,C) or slightly underestimates (column D) the true empirical error, with an exception
for column E where the abrupt change in the mean β yields large and hardly predictable errors

(see the values of M̃axE2[η̂BLK,n]).

Example 2: expected improvement and deceptive function. Kriging prediction can be
used for the global optimization of a function f(·) : x ∈ X ⊂ Rd 7−→ f(x) ∈ R, see Mockus
et al. (1978); Mockus (1989), a method which has been popularized under the name of Expected
Improvement (EI), see Jones et al. (1998). The function is considered as the realization of a
GP, whose characteristics (in particular the parameters θ of the chosen covariance function)
are estimated from observations that correspond to evaluations of the function, generally by
ML. However, when the estimated parameters are plugged into the Kriging predictor and its
associated mean-squared prediction error, the performance of the method may be rather disap-
pointing since evaluation results may not contain enough information to estimate the covariance
parameters in a satisfactory manner. This may wrongly provide the sensation that the function
is extremely flat in some areas, that will thus not be explored, or on the opposite extremely
wiggly, so that all X would seem to deserve a close exploration. This phenomenon is well de-
scribed in (Benassi et al., 2011) through the concept of deceptive function, an example of which
is presented below.
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Figure 4: Left: a deceptive function (solid line), with the EBLUP (dashed line) and 95% credible
intervals (dotted lines). Right: the same function with BLK (dashed line) and 95% credible intervals
(dotted lines).

Consider the function in (Benassi et al., 2011, Section 5.1), f(x) = x [sin(10x + 1) +
0.1 sin(15x)], x ∈ X = [−1, 1], plotted in solid line in Figure 4. When the function is eval-
uated at the design ξn = (−0.43, −0.11, 0.515, 0.85) all observations are nearly zero, see the
stars in Figure 4. We assume that f(·) can be represented by a GP with unknown mean β and
Matérn 3/2 covariance function, see (15). The EBLUP (blue solid line) and associated (approx-

10



imate) 95% credible intervals (dashed lines), corresponding to η̂MV,n(x0)± 3.182 σ̂n(x0)ρn(x0),
with 3.182 the critical value of the student t-distribution with n− p = 3 degrees of freedom, see
Santner et al. (2003, p. 95), are plotted in Figure 4-left. The most promising region in terms
of maximization of f(·) is around zero and several additional evaluations of f(·) are required
before the method starts exploring the neighborhood of the maximizer of f(·), at x∗ ' −0.9052,
see Benassi et al. (2011).

Figure 4-right presents the BLK predictor and approximate 95% credible intervals given
by η̂BLK,n(x0) ± 2.571 [PSPE(η̂BLK,n(x0))]

1/2 (with 2.571 the critical value of the student t-
distribution with n − p + ν0 = 5 degrees of freedom), under the same setting as in Example
1 and θ0,` = 1, 5, 10, 20, θ1,` = 5 for ` = 1, . . . , L = 4. The large uncertainty on the behavior
of f(·) in the left-hand side of the domain is an incitation to put observations there. The EI
algorithm can be expected to perform much more efficiently when based on BLK, even with a
small L, than when based on the EBLUP.

Example 3: behaviour of BLK far from design points. This example illustrates the
behavior of the BLK predictor η̂BLK,n(t) when t is far enough from design points so that the
influence of the closest point xi dominates all others through k1,`(t− xi), see (1).

We consider a process Z(x) with zero mean and covariance K3/2,2(·), see (15), which is ob-
served at the 7 design points (−1, −0.9, −0.8, −0.5, −0.2, 0, 1), indicated by stars. Figure 5
shows the predictions obtained by ordinary Kriging (with covariance K3/2,15(·)) and BLK (with
L = 4, k0,`(δ) = K3/2,θ0,`(|δ|) and θ0,` = 1, 5, 10, 20, k1,`(δ) = K3/2,5(|δ|) for all `), both assum-
ing that g(x) ≡ 1. The prediction by limit-Kriging (Joseph, 2006), with covariance K3/2,15(·),
is also presented on the figure.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

Z
(x

)

Figure 5: Predictions for BLK (dashed line with triangles), ordinary Kriging (dash-dotted line with
squares) and limit Kriging (dotted line with circles) with underestimated correlation length; Z(x) is in
solid line, observations are indicated by stars.

The correlation length θ being underestimated (1/15 instead of 1/2), the ordinary-Kriging
prediction η̂n(t) is close to the estimated mean β̂n given by (20) for t far enough from de-
sign points, see the right part of the figure. On the other hand, in the same region the BLK
predictor is mainly influenced by the closest design point xi, so that η̂n(t) is close to Z(xi),
a reasonable behavior that resembles that of limit-Kriging with underestimated θ, see Joseph
(2006, Section 3).

Example 4: prediction of an oceanographic field, using outputs of a formal (numer-
ical) model. The data used in this study were made available through a collaboration with
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the institute MUMM, a department of the Royal Belgian Institute of Natural Sciences. It con-
sists of snapshots of the output of the biogeochemical oceanographic model MIRO&CO (Lacroix
et al., 2007), run to simulate the evolution of inorganic and organic carbon and nutrients, phy-
toplankton, bacteria and zooplankton with realistic forcing conditions. The model covers the
entire water column of the Southern Bight of the North Sea. In the study presented here we
concentrate on a surface grid G of 49× 21 points, 879 of which corresponding to sea surface and
form our design space X . The objective is to assess the possibility of predicting chlorophyll
concentration over X from observations at a small number of sites. The simulation model is
used as a substitute for the real phenomenon; it provides pseudo-observations at n design points
ξn = {x1, . . . , xn} in X (n = 25) and allows the computation of empirical prediction squared
errors.

Experimental design. Figure 6-Left presents the model response f(x), x ∈ X . It is
manifest that variability is stronger along the French coast, so that obtaining precise predictions
there would require a denser concentration of observation sites than in other areas where the
response is more flat. However, in a realistic situation the true response is not available, and
this information cannot be used to choose ξn.

Figure 6: Left: model response over X and design points (stars). Right: shortest maritime distance
∆(x, x21) between x ∈X and the 21st design point x21.

The design ξn is thus constructed as follows. First, G is renormalized to [0, 1]2 and X is
renormalized accordingly. Then, we generate a low-discrepancy (Sobol’) sequence in G ; the
design points x1, . . . , x10 are given by the first 10 points of the sequence that fall in X . Finally,
the next 15 points are generated sequentially, according to

xk+1 = arg max
x∈X

ρk(x) , (17)

with ρk(x) the universal Kriging variance (the mean-squared error of the BLUP) for a process
with unknown constant mean β and covariance function K3/2,θ(∆(x, x′)), see (15), and observa-
tions f(x1), . . . , f(xk). We take θ = 10 to ensure that ξn will be well dispersed over X . In order
to take the non-convexity of the design region into account, the “distance” ∆(x, x′) corresponds
to the shortest maritime route between x and x′, computed by Dijkstra’s algorithm (Dijkstra,
1959). The 25 design points xi of ξn are indicated by stars in Figure 6-Left. Figure 6-Right
presents the distance ∆(x, x21) from x ∈ X to the 21st design point x21 (with indices (15, 47),
corresponding to coordinates (0.2593, 0.9583) in the renormalized space), showing a neat dif-
ference with respect to the Euclidean distance ‖x − x21‖. Notice that in order to compute
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predictions and prediction errors over X we only need to compute distances ∆(xi, x) from the
design points xi to the x ∈X (and not all pairwise distances ∆(x, x′), (x, x′) ∈X 2).

Comparison between BLUP and BLK For this same design ξn, we compare the
predictive performance of the EBLUP and BLK. The EBLUP uses the covariance function
K3/2,θ̂n(∆(x, x′)), with θ̂n ' 19.2058 estimated by ML from the observations f(x1), . . . , f(xn);

BLK uses K3/2,θ(∆(x, x′)) both for k0,` and k1,`, with L = 4 and θ0,` = 5, 10, 20, 30 in k0,`,
θ1,` = θ∗ > 0 for all ` = 1, . . . , 4 in k1,`. The choice of θ∗ should make a compromise between
stepping the influence of distant points down (which means taking θ∗ large enough to obtain
local predictions) and maintaining a reasonable correlation with sufficient design points (which
means taking θ∗ not too large). Let φmM (ξn) = maxx∈X minxi∈ξn ‖x− xi‖ denote the value of
the minimax distance criterion for ξn, and denote φkNN (ξn) = maxxi∈ξn ‖xi− xj∗(i)‖ with xj∗(i)
the k-th nearest-neighbor of xi in ξn. For all x ∈X , we can then guarantee that

‖x− xi‖ ≤ δk(ξn) = φmM (ξn) + φkNN (ξn)

for k + 1 points xi of ξn. We take k = 19 and θ∗ = 2.99431/δk(ξn), which ensures that, for each
x ∈ X , k1,`(‖x − xi‖) ≥ 20% for at least 20 design points in ξn. For the design ξn plotted in
Figure 6-Left, this gives θ∗ ' 2.4202, the value we use here for BLK.

Figure 7-Left shows the BLK predictions over X , to be compared with the true responses
on Figure 6-Left. Figure 7-Right shows the squared prediction errors E2[η̂BLK,n(x)], where for a
predictor ẑn(·) we denote E2[ẑn(x)] = [ẑn(x)− f(x)]2. Taking into account that only 25 designs
points have been used, predictions are fairly accurate, excepted at some areas along the French
coast where the correlation structure strongly departs from the smoother variation in the open
sea region.

Figure 7: Left: BLK predictions η̂BLK,n(x) over X . Right: squared errors E2[η̂BLK,n(x)] for BLK.

Figure 8 presents the difference in squared prediction errors between the EBLUP and BLK,
E2[η̂MV,n(x)]− E2[η̂BLK,n(x)] for x ∈ X . The accuracies of the BLK predictor and the BLUP
are similar in most of the domain X , but BLK is more accurate in a large portion of the French
coast, precisely where good predictions are difficult to obtain. The mean, median and maximum
values of E2[η̂MV,n(x)] over X are respectively 0.0144, 0.0035 and 0.6447; these values equal
0.0122, 0.0035 and 0.5070 for BLK; a paired-comparisons test for these squared errors gives
approximately 5.52, with an associated p-value ' 1.7 10−8 indicating that BLK is significantly
more accurate than the EBLUP. Limit-Kriging (Joseph, 2006) with θ estimated by ML yields
mean, median and maximum values of squared prediction errors respectively equal to 0.0140,
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0.0035, 0.6527, and thus performs similarly to the EBLUP. The behavior of the EBLUP is
marginally improved when the ML estimation of θ in K3/2,θ(∆(x, x′)) is replaced by leave-one-

out cross validation, see Dubrule (1983): the estimated θ is then θ̂n ' 17.64, the mean, median
and maximum values of squared prediction errors over X become respectively 0.0142, 0.0036
and 0.6312; the paired-comparisons test with BLK gives ' 5.82, with a p-value ' 3.0 10−9.

Figure 8: Difference in squared errors between the EBLUP and BLK, E2[η̂MV,n(x)]− E2[η̂BLK,n(x)].

Choice of θ∗. The influence of the choice of θ∗ on the performance of BLK (with L = 4
and θ0,` = 5, 10, 10, 30 in k0,`) is illustrated in Figure 9, where the solid line (respectively dashed
line) gives the mean (respectively 1/40× the maximum) value of E2[η̂BLK,n(x)] over X as a
function of θ∗ varying between 0 (stationary model) and 10 (strong non-stationarity). The choice
θ∗ = 2.99431/δ19(ξn) ' 2.4202 is not optimal but seems reasonable. Imposing that each x ∈X
has only at least 10 neighboring design points xi such that k1,`(‖x − xi‖) ≥ 20% would have
been a better choice, since 2.99431/δ9(ξn) ' 4.2531, closer to the optimum θ∗ in Figure 9. Note
that the errors E2[η̂BLK,n(x)] are normally not available, and therefore cannot be used to select
θ∗. This indicates, however, that the choice of k in the construction θ∗ = 2.99431/δk(ξn) is not
critical.

Influence of L. Increasing L does not necessarily improve the performance of BLK. For
instance, taking θ0,` = 5, 6, 7, . . . , 30 in k0,` (L = 26) and θ1,` = 2.4202 for all ` = 1, . . . , 26 in
k1,`, we obtain 0.0127, 0.0035, 0.5388, respectively for the mean, median and maximum values
of E2[η̂BLK,n(x)] over X . Figure 10-Left shows the posterior weights w`n(x) associated with
the correlations lengths 1/θ1,`, ` = 1, . . . , L = 4, when θ0,` = 5, 10, 20, 30, pointing out areas
where the response exhibits strong variability and those where it is fairly smooth. It should be
stressed that the calculation of the w`n(x) only uses the 25 response values f(xi) for xi ∈ ξn.
The similarity between the maps of w3

n(x) and w4
n(x) is an incitation to try reducing L to 3:

when θ0,` = 5, 10, 30 in k0,` (L = 3), we obtain 0.0122, 0.0035 and 0.5040 for the mean, median
and maximum values of E2[η̂BLK,n(x)]; i.e., values that are marginally better than those with
L = 4.

Influence of the distance function. Finally, the interest of using the distance ∆(x, x′)
corresponding to the shortest maritime route between x and x′ instead of the Euclidean distance
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Figure 9: Mean value (solid line) and 1/40× maximum value (dashed line) of E2[η̂BLK,n(x)] over X as
functions of θ∗.

‖x−x′‖ (in the renormalized space [0, 1]2) is illustrated for BLK in Figure 10-Right, which shows
the differences between corresponding prediction squared errors. The distance ∆(x, x′) yields
more accurate predictions along the major part of the French coast; the mean, median and
maximum values of E2[η̂BLK,n(x)] over X are respectively 0.0129, 0.0030 and 0.5257 when
using Euclidean distance to compute correlations. The decrease of performance compared to
the situation where ∆(x, x′) is used is not caused to the fact that the sequential construction of
design points x11 to x25 through (17) is based on ∆(x, x′): replacing the design ξn by ξ′n where
x11 to x25 are constructed via (17) with Euclidean distance based covariances, we obtain mean,
median and maximum squared prediction errors equal to 0.0142, 0.0034, 0.5175 when BLK uses
Euclidean distance.

Figure 10: Left: posterior weights w`
n(x) for correlations lengths 1/θ1,`. Right: differences between

squared errors for BLK with Euclidean distance ‖x− x′‖ and BLK with ∆(x, x′).

15



4 Conclusions and further developments

We have presented a Bayesian local Kriging approach for the interpolation or prediction of
random fields. The method uses localized covariance functions which allow us to account for
non-stationarity. A finite set of L candidate covariance functions is used for each prediction
point, that receive equal prior weights. Using a common hierarchical prior for the trend and
variance of the process, posterior weights can easily be calculated to obtain posterior means
and prediction squared errors. Numerical simulations indicate that, on average, the method
performs slightly worse than universal Kriging with plug-in maximum-likelihood estimates for
the covariance parameters when the true characteristics of the process satisfy the assumptions
(stationarity, correct parametric trend, correct covariance functions), but performs significantly
better when these assumptions are violated, even if the number L of concurrent covariance
functions is very small (L = 4 in the examples considered). Also, BLK, which does not use
any numerical optimization, is much faster and numerically stable than universal Kriging with
plug-in estimates, which requires the estimation of covariance parameters.

To summarize, our feeling is that it seems illusory in many applications to try estimate
covariance parameters from a few observations only, especially with a covariance structure not
necessarily well-adapted to the variability of the modeled phenomenon. Using a small number of
candidate processes able to reproduce a reasonable range of possible behaviors may be preferable:
it is simpler to implement, numerically more stable, and seems to often yield better predictions.

Although these results are encouraging, further numerical experimentations (in particular for
higher dimensional processes and different types and sizes of experimental designs) are needed to
confirm these preliminary observations. We have restricted our attention to the situation where
the regressor g(·) in the parametric trend g>(x)β was identical for all L models (and, moreover,
we only considered the case g(x) ≡ 1 in all examples). The same approach could be used when
different trends g`(·) are associated with different covariances C`|t(·, ·), possibly allowing for a
better consideration of uncertainty in the process trend.

The choice of the particular form of the kernels k0,`(·) and k1,`(·) seems to be less crucial
than that of the correlation length for k1,`(·), which depends on the assumed amount of non-
stationarity. Using different correlations lengths for some of the L concurrent covariances is a
possible option to investigate. Another one is to simply ensure that k1,`(x−xi) be large enough
for all points in x in X and enough design points xi, with the motivation that the more dense
the design ξn in X , the more local the models can be and the stronger the non-stationarity that
BLK can take into account. Two proposals have been made in this direction, see Examples 1 and
4. Further investigations are required to validate them, in particular concerning their asymptotic
behavior, when the number n of design points tends to infinity and ξn is space-filling.

Finally, as mentioned in Section 2.3, designing experiments adapted to BLK requires the
evaluation (approximation) of the second term in (14). This rather challenging problem is
under current investigation.

5 Appendix: Universal BLK in presence of a parametric trend

Here we consider that, seen from t, f(·) is the sample path of a stochastic process Z(·) such that
Z(·)|s(t), β, σ2, t ∼ GP(g>(·)β, σ2Cs(t)|t(·, ·)), with Prob{s(t) = `} = w`0, ` = 1, . . . , L, β|σ2 ∼
ψ0(β|σ2), σ2 ∼ ϕ0(σ

2), see (8), and g(·) a known p-dimensional vector of functions defined on
X . The likelihood of zn = (f(x1), . . . , f(xn))> for the model GP(g>(·)β, σ2Cs(t)|t(·, ·)) is

L (zn|β, σ2, `, t) =
1

σn(2π)n/2 det1/2 Kn(`|t)
exp

[
− 1

2σ2
(zn −Gnβ)>K−1n (`|t)(zn −Gnβ)

]
,
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where the i-th row of the n×pmatrix Gn equals g>(xi), i = 1, . . . , n. The weights wl0 are updated
according to (3), with now L (zn|`, t) =

∫
Rp

∫∞
0 L (zn|β, σ2, `, t)ψ0(β|σ2)ϕ0(σ

2) dβ dσ2.

5.1 Uniform prior for β

Suppose first that β has a uniform (improper) prior on Rp. We obtain

L (zn|`, t) =
1

(2π)(n−p)/2 det1/2 Kn(`|t) det1/2(G>nK−1n Gn)

(σ20ν0/2)ν0/2

Γ(ν0/2)

Γ(νn/2)

(σ2n|`,tνn/2)νn/2
,

with νn = ν0 + n− p and

σ2n|`,t =
ν0σ

2
0 + (n− p)σ̂2n(`|t)
ν0 + n− p

, (18)

where

σ̂2n(`|t) =
1

n− p
(zn −Gnβ̂n(`|t))>K−1n (`|t)(zn −Gnβ̂n(`|t)) (19)

is the Restricted Maximum-Likelihood (REML) estimator of σ2, and

β̂n(`|t) = (G>nK−1n (`|t)Gn)−1G>nK−1n (`|t)zn (20)

is the ML estimator of β, given zn, ` and t, see, e.g., Santner et al. (2003, p. 67, 95). Moreover,
given zn, ` and t, σ2 has the inverse chi-square distribution ϕn|`,t(·) = ϕσ2

n|`,t,νn
(·), see (8).

Z(x0)|`, zn, t has a non-central t-distribution, see Santner et al. (2003, p. 95), with

η̂n(x0|`, t) = E{Z(x0)|`, zn, t} = g>(x0)β̂n(`|t) + k>n (x0, `|t)K−1n (`|t)(zn −Gnβ̂n(`|t)) (21)

and β̂n(`|t) given by (20). Therefore, η̂n(x0|t) = c>n (x0|`, t)zn and η̂n(x0|t) is still given by (11),
but with

cn(x0|`, t) = K−1n (`|t)Gn(G>nK−1n (`|t)Gn)−1g(x0)

+
[
In −K−1n (`|t)Gn(G>nK−1n (`|t)Gn)−1G>n

]
K−1n (`|t)kn(x0, `|t) , (22)

with In the n-dimensional identity matrix. Also,

var{Z(x0)|`, zn, t} =
n− p+ ν0

n− p+ ν0 − 2
σ2n|`,t ρ

2
n(x0|`, t)

see (18), with ρ2n(x0|`, t) the universal-Kriging variance

ρ2n(x0|`, t) = C`(x0, x0|t)− [g>(x0) k>n (x0, `|t)]
[

O G>n
Gn Kn(`|t)

]−1 [
g(x0)

kn(x0, `|t)

]
,

or equivalently,

ρ2n(x0|`, t) = C`(x0, x0|t)− k>n (x0, `|t)K−1n (`|t)kn(x0, `|t)
+[G>nK−1n (`|t)kn(x0, `|t)− g(x0)]

>(G>nK−1n (`|t)Gn)−1[G>nK−1n (`|t)kn(x0, `|t)− g(x0)] . (23)

Therefore, the posterior squared prediction error is still given by (13), but with νn = ν0 +n− p,
σ2n|`,t given by (18), ρ2n(x0|`, t) by (23) and cn(x0|`, t) by (22) in Ωn(x0|t). Similarly to Sect. 2.3,

the preposterior variance at t is (for ν0 > 2) is given by (14).
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5.2 Normal prior for β

Suppose now that ψ0(β|σ2) is the density of the p-dimensional normal distribution with mean
β0 and variance-covariance matrix σ2V0. Since zn|`, σ2, t ∼ N (Gnβ0,Kn(`|t) + GnV0G

>
n ), we

have

L (zn|σ2, `, t) =
1

(2π)n/2σn det1/2[Kn(`|t) + GnV0G>n ]

× exp

{
− 1

2σ2
(zn −Gnβ0)

>[Kn(`|t) + GnV0G
>
n ]−1(zn −Gnβ0)

}
,

so that, similarly to Sect. 2.3,

L (zn|`, t) =
1

(2π)n/2 det1/2[Kn(`|t) + GnV0G>n ]

(σ20ν0/2)ν0/2

Γ(ν0/2)

Γ(νn/2)

(σ2n|`,tνn/2)νn/2
,

where νn = ν0 + n and

σ2n|`,t =
ν0σ

2
0 + nσ̂2n(`|t)
ν0 + n

(24)

with σ̂2n(`|t) = (1/n) (zn −Gnβ0)
>[Kn(`|t) + GnV0G

>
n ]−1(zn −Gnβ0). Z(x0)|`, zn, t has again

a non-central t-distribution, with

η̂n(x0|`, t) = E{Z(x0)|`, zn, t} = g>(x0)β̂n(`|t) + k>n (x0, `|t)K−1n (`|t)(zn −Gnβ̂n(`|t))

and
β̂n(`|t) = (G>nK−1n (`|t)Gn + V−10 )−1[G>nK−1n (`|t)zn + V−10 β0] .

The predictor η̂n(x0|t) is again
∑L

`=1w
`
nη̂n(x0|`, t). Also,

var{Z(x0)|`, zn, t} = νn/(νn − 2)σ2n|`,t ρ
2
n(x0|`, t)

see (24), with now

ρ2n(x0|`, t) = C`(x0, x0|t)− [g>(x0) k>n (x0, `|t)]
[
−V−10 G>n

Gn Kn

]−1 [
g(x0)

kn(x0, `|t)

]
,

or equivalently,

ρ2n(x0|`, t) = C`(x0, x0|t) + g>(x0)V0g(x0)

−[kn(x0, `|t) + GnV0g(x0)]
>(Kn(`|t) + GnV0G

>
n )−1[kn(x0, `|t) + GnV0g(x0)] .
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