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Abstract:  

 

Although narrow bipolar jets of matter have been observed to emerge from a wide variety of 

astrophysical systems, the question of their formation and morphology, past their launching by 

magneto-centrifugal forces, is still open. Our scaled laboratory experiments, representative of 

outflows from young stellar objects (YSOs), reveal that stable collimation of the entire flow into 

a narrow jet can result from the presence of a large-scale poloidal magnetic field that is 

consistent with observations. The observed plasma flow focuses and creates an interior cavity, 

giving rise, close to the source, to a standing conical shock from which the jet emerges. Together 

with astrophysical full-scale simulations, we conclude that this can also explain recently 

discovered X-ray emission features observed from low-density regions at the base of protostellar 

jets, such as the well-studied jet HH 154. 
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One Sentence Summary:  

 

Laboratory experiments reveal that the shaping of narrow jets emerging from young stars can be 

explained by axial magnetic fields in which the stars are embedded. 

 

Main Text:  
 

Bipolar narrow jets are not only spectacular matter ejecta commonly observed in the 

universe to stream along the axis of rotation of varied objects, such as young stellar objects 

(YSOs) surrounded by an accretion disk, but are also thought to play a key role in their 

evolution. Hence, understanding their formation is key to understand mass, energy and angular 

momentum redistribution between the dense core and the parent cloud. Once formed, it is 

understood that these jets can continue ballistically over large distances. However, how does the 

narrow jet form and what are its characteristics? The accepted standard model (1,2) of matter 

extraction and launching involves poloidal magnetic field anchored in the disk. Here, poloidal is 

referred to as broadly speaking axial with respect to the jet flow, in opposition to the toroidal 

component in cylindrical geometry that winds around the jet. In the model, matter is magneto-

centrifugally accelerated into wide-angle conical winds (3). As the magnetic field lines become 

twisted by the inertia of the initially co-rotating plasma, the toroidal component of the magnetic 

field leads to self-collimation of the wind. Nonetheless, this process cannot solely and 

satisfactorily explain collimation of the flow into narrow jet-like form. First, self-collimation 

cannot account for the confinement of the whole outflow structure. Indeed, the winds in these 

models formally extend to infinity and have difficulties accounting for the observed jet widths 

(4). Furthermore, jets dominated by a toroidal magnetic field are prone to current and pressure-

driven instabilities which can disrupt the jet (5). Efforts to improve the model have led to studies 

of truncated disk winds where, in order to collimate the flow, the whole outflow structure has to 

rely on the thermal pressure of a surrounding medium (6), the presence of which has of yet to be 

established.  

Alternatively, outflow confinement by a large-scale ordered poloidal magnetic field (7) 

has been explored in numerical simulations (8). Although evidence for such fields near the jet 

source is mostly indirect so far, it should be noted that they are well established on larger scales 

(9), and observed to be aligned (within ~35 degrees) with the bipolar outflow axes of young star 

objects (YSO). These earlier numerical studies showed that such poloidal field could convert 

ejected matter from weakly collimated to parallel streamlined, although the simulations lacked a 

proper treatment of plasma cooling and were constrained by computing limitations to simulate 

the flow over only small distances from the source. More recently, we revisited the poloidal 

confinement scenario using large-scale, high resolution 3D MHD simulations (10), which 

included cooling, and showed that the whole outflow could be constrained. Notably, we 

predicted a particular morphology for the outflow with a shock-bounded cavity followed by a 

narrow jet. We note here that such mechanism does not exclude magneto-centrifugal self-

collimation: even if poloidal collimation can act on its own, it can also be complementary to self-

collimation by stabilizing and collimating further the jets produced by the latter. 
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We report here on scaled laboratory experiments exploiting unprecedented coupling of 

high-amplitude and large-scale magnetic field to high-velocity plasma flows so as to create 

conditions representative of a YSO. Our measurements conclusively demonstrate that stable jets 

can indeed be collimated from a wide-angle star/disk wind embedded in co-aligned, large-scale 

poloidal magnetic field. This is notably obtained without having to rely on the collimation by an 

external medium. We also show that stable collimation of the whole flow into a narrow jet can be 

obtained even in the case of an angular offset (up to 40°) between the magnetic field and the 

outflow axis. The transition from a divergent to a narrowly collimated flow results from the 

plasma being redirected toward the axis by a shock structure induced by the compression of the 

magnetic field lines under the action of the expanding plasma. As a consequence, this results in a 

standing conical shock feature at the converging point where the plasma becomes reheated. Full 

scale astrophysical simulations of an isotropic wind embedded in a large scale magnetic field 

performed under conditions typical of YSOs are consistent with the laboratory observations. By 

post processing the astrophysical simulations, we determine that the shock focused region 

generates an X-ray source with luminosity and location in agreement with the Chandra 

observations of puzzling X-ray emitting standing shock in HH 154, one of the best studied 

astrophysical jet emerging from a YSO (11). 

The laboratory plasma, mimicking a YSO flow, is produced by short (0.5 ns), high-power 

laser irradiation of massive solid (plastic) targets. The plasma is a highly conductive and super-

fast-magnetosonic flow. It expands into a steady (>5 µs) and homogeneous axial magnetic field 

extending over a large volume (3 cm longitudinally by 1cm diameter radially) with strength of 

up to 0.4 MG (see Ref. 12 and references therein). The plasma is thermally launched from a 

region on the target on the order of the laser spot diameter (0.75 mm) and this wide-angle flow 

is, as in a YSO, initially dominated by its kinetic energy. It is well approximated by ideal 

magnetohydrodynamics (13) ensuring its relevance as a scaled astrophysical plasma. Indeed, the 

dimensionless Reynolds (Re), magnetic Reynolds (ReM), and Peclet (Pe) numbers are much 

larger than unity (Re ~10
4
 - 10

5
; ReM ~50; Pe ~3-5). This implies that the advective transport of 

momentum, magnetic field, and thermal energy dominates over diffusive transport as expected in 

a YSO outflow. The scaling between the laboratory plasma and a YSO outflow allows also us to 

scale a time span of 20 ns in the laboratory to an equivalent ~6 yrs in the natural environment, 

during which it propagates over ~600 AU. Hence, even over short time scales (<100 ns), the 

experiment has the ability to sample the stationary morphology of an astrophysical outflow. The 

strength of the magnetic field in which the plasma is embedded is much larger than in the 

astrophysical environment (mG, see Ref. 14) in order to compensate the shortness of the space 

and time scales of the experiment. This means that the ratio of the plasma kinetic ram pressure 

versus the magnetic pressure will transit from >>1 to <<1 over a few mm, while it does the same 

over a few tens of AU in a YSO. Finally, we note that toroidal magnetic fields, which are self-

generated in the plasma outflow due to crossed density and temperature gradients (15), are in our 

case of low amplitude due to the low laser intensity employed here (see Methods) and at the 

same time limited to zones close (< 0.5 mm) to the target surface and hence are not able to 

confine the flow past this point, as can be observed from Fig 1C where, without external field, 

the plasma is seen to expand at wide angle. In short, this experimental configuration mimics well 

the propagation into a poloidal magnetic field of one hemisphere of a naturally occurring YSO 

spherical wind; the latter emerging at large distances from the disk, where acceleration is 

complete and gravitational effects are unimportant. 
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(A)

(B) (C)
(D)

(E)

 

Fig. 1. Laboratory demonstration of jet formation by axial magnetic field. (A) Plasma 

integrated density measured 20 ns after the laser irradiation (coming from the right) of a CH 

target (left) immersed in the z-oriented 0.2 MG magnetic field. Four spatially patched images are 

used (see E). Shaded areas are linear interpolation in between observed sections of the jet. (B-C) 

Abel inverted density maps in the case with (B) and without (C) magnetic field, and (D) lineouts 

(along the dashed lines shown in B and C), show the cavity region, and plasma convergence on 

axis, induced by the magnetic field. The error bars on (D) represent the difference in the plasma 

density retrieved from the upper and lower measured phase maps (see Methods). 

 

 The typical morphology of such laboratory plasma measured at 20 ns after the initiation 

of the plasma expansion in the presence of a 0.2 MG axial magnetic field, is shown in Fig 1A. A 

measurement of the electron areal density of the expanding plasma obtained through transverse 

optical laser probing is presented. The axial magnetic field is seen to have a profound effect on 

the collimation of the laser-produced plasma flow, thus leading to the appearance of a narrow jet 

with an aspect ratio of > 10 that is maintained over the entire homogeneous magnetic field region 

with little variation in density. Such tight collimation is also observed when imaging the x-ray 

emission in keV range originating from the plasma, and is in excellent agreement with our earlier 

MHD numerical investigations (10). We emphasize that even laser experiments specifically 

designed to produce jets from radiatively cooled, unmagnetized, plasmas do not exhibit such 

morphology, and have in fact much lower aspect ratios (16,17,18). The mechanism leading to the 

tight magnetic collimation of the plasma plume is illustrated in Fig 1B and 1C, which show Abel 

inverted interferometric images of the base of the flow with and without the magnetic field. It is 

further illustrated in Fig 2 by three-dimensional resistive MHD numerical simulations using the 

parameters of the experiment (see Methods). When the plasma expands in the presence of a 

magnetic field (Fig 1B), one clearly observes in the experiment the formation of a converging 

cavity having an outer shell of higher electron density. We stress that neither the cavity, nor the 

jet are observed in the case when no magnetic field is applied (see Fig 1C). The formation of this 

shell is the consequence of the piling up and heating of plasma in a fast-mode oblique shock 

generated by the external magnetic field halting the radial expansion of the flow. Since the 
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plasma is of high temperature and has a super-fast-magnetosonic expansion speed (v~200-500 

km/s, similar to the outflow velocity measured in YSO), the magnetic field lines are bent and 

compressed past this shocked envelope, as shown in Fig 2.  

 

 

 

Fig. 2. 3D MHD modelling of the experiment, illustrating the formation of a heated steady 

shock region at the tip of the cavity and subsequent jet collimation. The maps show two 

snapshots ((A) 10 ns and (B) 20 ns from the end of the laser pulse) of the density (log10  in 

g.cm
-3

) along x-z. The arrows represent velocity vectors and the lines magnetic field. At 10 ns, 

the plasma can be seen sliding along the compressed magnetic field and converging on axis, 

forming a shock (z ~ 4 mm). The black contour line shows plasma heating above 70 eV. 

        

 The expanding plasma from the target is refracted across this oblique shock and slides 

along the walls of the cavity which have been curved toward the axis by the magnetic forces. 

When the flow reaches a convergence point it stagnates, forming a conical shock. It is this shock 

that focuses the flow in the axial direction and generates a narrow jet ahead the convergence 

point. This convergence of plasma towards the axis (z~3 mm) is visible in the experimental 

images (Fig 1A and 1B), and simulation reveals that the plasma becomes heated to ~70 eV by 

this shock. When applying the external magnetic field, significant plasma heating, compared to 

what is observed in the freely expanding plasma, is also seen by our spectrally-resolved x-ray 

emissivity diagnostic, consistently with earlier experiments (19). Interestingly, this mechanism 

of jet formation is similar to astrophysical models of hydrodynamic collimation of a wind by the 

inertia of a dense, torus-like circumstellar envelope (20). However, it is demonstrated here that it 

can clearly work even in the absence of a surrounding medium. 
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 The overall jet formation process illustrated here for a particular set of laser and target 

conditions was observed to be very repeatable and effective over a wide variety of different 

experimental conditions, and was always found in agreement with MHD modeling, hence 

validating the physical mechanism described above. Notably, when the laser intensity on target 

was increased, we could increase the kinetic pressure at the target surface. This produced a wider 

cavity and moved the shock convergence region further away along the jet axis. Similarly, we 

could also move the distance of the shock with respect to the plasma source by varying the 

magnetic field strength. We note that, contrary to what takes place in the experiment, if the 

deposition of energy would be continuous, the location of the shock convergence region of the 

jet would be stationary. Finally, when we tilted the target and so the axis of the plasma expansion 

with respect to the magnetic field axis, we could still observe the cavity formation and plasma 

focusing on axis, even for angular offset up to 40°, showing that the mechanism is robust.  

 

(A)

70 AU

(C)

(B)

 
 

Fig. 3. 3D simulation of jet formation and collimation in a young star system embedded in a 

5 mG axial magnetic field. An isotropic star/disk wind with a mass ejection rate of 10
-8

 M


/year 

and velocity 200 km/s is embedded in an initially axial (z) magnetic field. (A) (x-z) mass density 

(log10  in g.cm
-3

) at time 20 years. Black lines: magnetic field lines; dashed contour: plasma of 

temperature ≥ 70 eV. (B) post-processed (21) X-ray emission of (A) (counts/s in each pixel with 

size of 1 AU). (C) X-ray image of HH154 measured by the Chandra telescope. The green arrow 

points to the star. 

 

As shown in Fig 3A, the same morphology is observed in full-scale astrophysical 

simulations of an isotropic star/disk wind embedded in a large scale magnetic field (see 

Methods), performed with mass-ejection rates (22) and magnetic field strengths (14) typical of 

YSO. Supporting the scalability of laboratory experiment, we observe in the simulation the 

essential dynamics and features observed in the laboratory flows. We performed extensive 

variations of wind and field parameters, and verified with detailed numerical simulations that the 

poloidal field induced jet collimation mechanism was a very robust process.  
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 An interesting outcome of our study is that typical YSO should then have a stationary 

region of shock heated plasma that forms within a few tens to one hundred AU from the wind 

source (see Fig 3A). This numerical prediction can be directly compared to the analysis 

(23,24,25) of observations made over more than one decade using X-ray satellites that have 

revealed (see Fig 3C) bright sources of stationary x-ray emission zones located at the base of jets 

(~100 AU from the source) emerging from YSO. They have been, hitherto, unexplained using 

self-collimation models of jet formation, but are however well consistent with the process 

revealed here. Indeed, post-processing (see Fig 3B) of astrophysical simulation shows that the 

shock-focused region at the tip of the cavity has a luminosity and a distance to the source that is 

consistent with the stationary X-ray emission feature located close (~60-80 AU) to the base of 

one of the nearest and most luminous jet observed in the X-ray band, namely HH154. 

 Beyond proposing a new, simple and plausible scenario for the collimation of narrow 

stable jet past its launching phase (1,2), consistent with recent astrophysical observations 

(9,24,25), and helping to advance the understanding of jet/core interaction in YSO, our work 

opens the possibility to study and/or model important aspects of jet physics in the laboratory. 

These include, e.g., transverse instabilities that can affect the jet structure, or episodic ejections, 

i.e. multi-component and time-dependent interacting winds, which can be easily simulated in the 

laboratory by using multiple laser pulses separated by a few ns. Producing such magnetized 

narrow plasma columns and letting them impact a solid will also uniquely allow to study plasma 

dynamics in accretion columns in young stars, i.e. model magnetic arches that are loaded with 

disk material which free-falls towards the star. Beyond these aspects, adapting the present 

experimental work to other configurations will permit advances in resolving pending questions 

regarding a wide range of astrophysical and plasma physics systems where magnetic fields are 

thought to play a significant role. 
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Supplementary Materials: 

Materials and Methods:  

 

Magnetic field generation. The generation of the external magnetic field of up to 0.4 MG 

amplitude, in a non-destructive and repeatable manner compatible with a high-energy laser 

environment, is done by coupling a 16 kV pulsed energy supply to a split coil (12). The generator 
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is composed of five capacitors of 16 kV, 50 µF with a total capacitance of 250 µF and a 

maximum stored energy of 32 kJ. The energy can be released over at 25 kV / 250 kA ignitron 

switch to a downstream circuit. It is then connected through a coaxial cable to a resistive split-

pair magnet, with each magnet being of 6 mm inner and 50 to 60 mm outer diameter. The two 

coils composing the split assembly are connected in parallel and are separated by a midplane 

plate in stainless steel, insulated with glass fiber-epoxy sheets that are designed to contain the 

magnetic pressure. The distance between the two coils is 8 mm, which is a compromise between 

electrical insulation, mechanical strength of the midplane plate and the possibility to produce 

safely up to 40 T (20 T was used in Fig 1) in a volume of 2250 mm
3
. The number of turns for 

each coil is 80. Two tubes of 5 mm diameter were inserted in the coil, one along the field axis, 

for the laser beam to enter the interaction region, and the other perpendicular, for diagnosing the 

plasma plume. While there is vacuum inside the tubes, the split coils remain at air to avoid 

problems of heat dissipation management and concerns of electrical arcing in moderate vacuum. 

 

Laser experiment. The experiment was performed using the LULI ELFIE laser facility at École 

Polytechnique, using the non compressed part of the Nd:glass laser beam to create the plasma 

plume. The laser can deliver up to 50 J in approximately 500 ps FWHM at the fundamental 

wavelength of 1.053 µm. A long focal lens of 2.2 m served to focus the laser beam at the centre 

of the split coil in order to immerse the plasma in the zone of highest amplitude and spatially 

homogeneous magnetic field. In order to vary the kinetic pressure of the plasma at the target 

surface (composed of CH2, mostly, or CF2, see below), we varied the laser power density from 

10
12

 W.cm
-2

 (as used in Fig 1) to 10
14

 W.cm
-2

. The expanding plasma was probed through the 

use of an optical beam of few hundred mJ, 400 fs duration, frequency-doubled to 527 nm, 

coupled to a Mach-Zehnder interferometer to quantitatively retrieve the plasma electron density 

of the expanding plume. The delay between the main laser beam and the probe beam was varied 

to follow the evolution in time of the plasma plume. To reconstruct the overall jet longitudinal 

profile, we spatially patched (as in Fig 1A) images since our transverse diagnostic has a limited 

field of view (see Fig 1E), with the target being moved back for each shot in order to keep the 

plasma outflow in the homogeneous magnetic field region. To produce the density maps of Fig 

1B and 1C, Abel inversion was applied to the phase map measured by interferometry. Since Abel 

inversion relies on the hypothesis of the plasma being cylindrically symmetric around its 

expansion axis, we inverted separately the upper and lower phase maps of Fig 1A, and then 

computed the maximum difference of densities obtained from each panel. The measured 

difference at each location results in the error bars displayed in Fig 1D (which shows lineouts of 

Fig 1B and 1C along the dashed lines displayed in each figure). X-ray emission of the jets 

produced from CF2 targets was also measured by means of focusing spectrometers with 2D 

spatial resolution. Besides the mapping of the x-ray source geometry, the relative intensities of 

spectral lines (He, He, He) radiated by He-like F ions were analyzed. As the laser-produced 

plasma expands beyond z > 0.5 mm from the target surface, the spectral line intensities are 

defined mainly by the recombination processes. In this case the relative intensities of the lines 

depend only on the electron plasma density ne and temperature Te. Comparing the experimental 

spectra with the results of quasi-steady radiative-collisional kinetic calculations, the profiles of 

Te along the jet axis could be inferred in the region z= 0.5 – 5 mm from the target surface.  

 

Laboratory Simulations. 
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The initial laser target interaction is modeled with the two-dimensional (2D), three-temperature, 

Lagrangian, radiation hydrodynamic code DUED (26), coupled with SESAME EOS tables (27). 

The propagation of the plasma in the magnetic field is modeled with the three-dimensional (3D), 

Eulerian, resistive magnetohydrodynamic code GORGON (28). The regular, cubic-cells grid was 

initialized with the interpolated profiles of density, temperature (electronic and ionic), and 

momentum taken from the DUED simulations at the end of the laser pulse (1.2 ns). Simulations 

were run at different resolutions (x = 35 - 65 microns), showing no significant differences in 

the results. In addition, to remove the cylindrical symmetry imposed by remapping 2D 

axisymmetric simulations onto a 3D grid, a series of simulations were initialized with a random 

velocity perturbation superimposed on the local initial velocity (5 - 15 %). The results are 

qualitatively similar to the unperturbed cases, with small differences in the azimuthal structure of 

the flow.  

 

Astrophysical Simulations. 
The simulations were performed with the adaptive mesh, 3D ideal MHD code RAMSES (29), 

including cooling processes (30). The magnetic field is evolved using the constrained transport 

method, preserving the nullity of the divergence of the magnetic field. The simulations were 

performed using the HLLD solver. The computational domain is initiated with a uniform 

magnetic field along the z-direction and an isotropic wind injected within a spherical shell with 

inner and outer radii of 8 and 10 AU respectively. More realistic winds with finite opening 

angles are more easily recollimated by the magnetic field, thus the simulations with an isotropic 

wind case represent an extreme (idealized) scenario for testing the effectiveness of the poloidal 

collimation mechanism. We note that we also explored more realistic field configurations where 

the field lines diverge with distance above the disk. In this case, the same outflow structure and 

collimation is achieved compared to the case where the magnetic field is perfectly vertical. The 

central region of the grid, within a radius of 8 AU is initialized with a constant density and zero 

velocity, providing the internal boundary for an isotropic wind and fixing the magnetic field lines 

to vertical. The wind is injected over a small radial extent (8-10 AU) to provide a well resolved 

flow. In this spherical shell the gas is fixed to constant velocity and a density profile decreasing 

with radius. These are fixed at each time step. The rest of the volume is filled with a uniform 

density background gas with a density 25 times smaller than the initial wind density. The grid 

resolution is adaptively refined to capture steep density gradients. Up to 5 levels of refinement 

are used providing a resolution as low as 0.25 AU. The domain size is 512
3
 AU. Regarding the 

post-processing (21) of the simulation shown in Fig 3A, we derive the distribution of emission 

measure, EM(T), where EM is the volume integral of the square of the plasma density and T is 

the temperature of the emitting plasma, integrating along the line of sight under the assumption 

of optically thin plasma, to compute the emissivity image shown in Fig 3B. Assuming proper 

radiative losses and using available spectral emission codes, we obtain the intrinsic luminosity of 

the X-ray source and we also synthesize the emission map in the X-ray band taking into account 

the instrumental response of the X-ray telescopes and typical values of distance and interstellar 

absorption derived from the observations of X-ray emitting protostellar jets.  
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