
HAL Id: hal-01093276
https://hal.science/hal-01093276

Submitted on 10 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Probabilistic Framework for Security Scenarios with
Dependent Actions

Barbara Kordy, Marc Pouly, Patrick Schweitzer

To cite this version:
Barbara Kordy, Marc Pouly, Patrick Schweitzer. A Probabilistic Framework for Security Scenarios
with Dependent Actions. Integrated Formal Methods, Sep 2014, Bertinoro, Italy. pp.256 - 271,
�10.1007/978-3-319-10181-1_16�. �hal-01093276�

https://hal.science/hal-01093276
https://hal.archives-ouvertes.fr

A Probabilistic Framework for Security Scenarios
with Dependent Actions?

Barbara Kordy1,2, Marc Pouly3, Patrick Schweitzer1

1University of Luxembourg, SnT, Luxembourg
2INSA/IRISA, Rennes, France

barbara.kordy,patrick.schweitzer@uni.lu
3Lucerne University for Applied Sciences and Arts, Switzerland

marc.pouly@hslu.ch

Abstract. This work addresses the growing need of performing mean-
ingful probabilistic analysis of security. We propose a framework that
integrates the graphical security modeling technique of attack–defense
trees with probabilistic information expressed in terms of Bayesian net-
works. This allows us to perform probabilistic evaluation of attack–
defense scenarios involving dependent actions. To improve the efficiency
of our computations, we make use of inference algorithms from Bayesian
networks and encoding techniques from constraint reasoning. We discuss
the algebraic theory underlying our framework and point out several
generalizations which are possible thanks to the use of semiring theory.

1 Introduction

Attack–defense trees [12] extend the well-known model of attack trees [26], by
considering not only actions of an attacker, but also possible countermeasures
of a defender. Since the augmented formalism models interactions between an
attacker and a defender explicitly and is able to capture evolutionary aspects
of attack–defense scenarios, it allows for a more accurate security assessment
process compared to attack trees. In [16], we have proven that the analysis of
attack–defense trees is computationally not more expensive than the analysis of
attack trees. Furthermore, the usefulness of attack–defense trees for the analysis
of real-world security problems has been validated in a large industrial case
study [2]. These results show that attack–defense trees have the potential to
become an efficient and practical security modeling and risk assessment tool.

Quantifying probabilistic aspects of attacks is one of the most important
issues in security evaluation. Decisions concerning which defensive mechanisms
should be implemented are based on the success probability of potential at-
tacks. Furthermore, estimation of probability is necessary in order to evaluate
risk related measures. Hence, a fully fledged methodology for security analysis
needs to contain a mature framework for probabilistic computations. Unfor-
tunately, the standard bottom-up approach for quantitative analysis of attack
? The original publication is available at: http://www.springer.com/

http://www.springer.com/computer/swe/book/978-3-319-10180-4

tree-based formalisms [18,13] can only be used for computing probabilities under
the assumption that all considered actions are independent. This is a very strong
assumption which is unrealistic for real-life situations.

In this paper, we develop a complete framework for probability computations
on attack–defense trees. Our approach combines the security methodology of
attack–defense trees with the probabilistic framework of Bayesian networks. This
allows us to overcome the mentioned limitation of the bottom-up approach and
perform probabilistic computations in the presence of dependent actions. Since at-
tack trees are formally a subclass of attack–defense trees, our framework applies
directly for the analysis of the former model. Thus, the paper also contributes
to the development of full-fledged analysis technique for attack trees which are
widely accepted and commonly used by industry [15].

We give a brief overview of the attack–defense tree methodology in Section 2.
After recalling basic concepts for Bayesian networks, we present our framework
for dependent probability computations on attack–defense trees, in Section 3.
Sections 4 and 5 are concerned with methods for improving the efficiency of the
framework. We describe related work in Section 6 and conclude in Section 7.

2 Modeling of Security Scenarios

This section provides background knowledge about attack–defense trees, which
is necessary to understand the framework developed in this paper. For a more
detailed description of the formalism, we refer to [13] and [16].

2.1 Attack–Defense Trees

Attack–defense trees (ADTrees) allow to illustrate and quantify security scenar-
ios that involve two opposing players: an attacker and a defender. The root of
an ADTree represents the main goal of one of the players. When the root is an
attack node, the tree represents how to attack a considered system. Conversely,
when the root is a defense node, the tree is concerned with defending the sys-
tem. In ADTrees, both types of nodes, attacks and defenses, can be conjunctively
or disjunctively refined. A goal represented by a conjunctively refined node is
reached when all the subgoals depicted by its child nodes are reached. A goal
represented by a disjunctively refined node is reached when at least one of the
subgoals depicted by its child nodes is reached. The refinement operation is ap-
plied until basic actions are obtained. Actions are considered to be basic if they
can be easily understood and quantified. Basic actions are represented by the
nodes which do not have any children of the same type. Each node of an ADTree
can also have one child of the opposite type. Children of the opposite type rep-
resent countermeasures. These countermeasures can be refined and countered
again. In ADTrees, attack nodes are modeled by circles, defense nodes by rect-
angles. A conjunctive refinement is depicted with an arc. Countermeasures are
connected to the actions they counteract by a dotted line.

Infect
Computer

Put Virus
on System

Send E-mail
with Attachment

Distribute
USB Stick

Have
Anti-virus

Install
Anti-virus

Run
Anti-virus

Spoof
Anti-virus

Execute
Virus

Fig. 1. ADTree for infecting a computer.

Example 1. Consider a scenario in which an attacker wants to infect a computer
with a virus. In order to do this, the attacker needs to ensure that the virus
file is accessible from the targeted computer and that it is executed. There are
two possibilities to make the file accessible: an attacker can send the virus in an
e-mail attachment or distribute an infected USB stick to the computer user. The
computer user, on his part, can protect himself against a virus with an anti-virus
program. For the anti-virus to be effective, it needs to be installed and it needs to
be running. A resourceful attacker, in turn, could attack the anti-virus by using
a fake version of an anti-virus, that disables the real anti-virus from running
and only pretends that it is running. Fig. 1 depicts the described attack–defense
scenario using an ADTree. In this tree, the basic actions are:

For the attacker For the defender
SE – “Send E-mail with Attachment” IA – “Install Anti-virus”
DU – “Distribute USB Stick” RA – “Run Anti-virus”
SA – “Spoof Anti-virus”
EV – “Execute Virus”

The attack–defense scenario described above is used as the running example
in this paper. Its main role is to illustrate how the introduced methodology

works. We purposely keep the example simple (and incomplete) in order not to
overwhelm the reader with too complex models.

Remark 1. Since the root of the ADTree in Fig. 1 represents an attack goal, the
paper is concerned with the probability of attacking a system. In the case of an
ADTree having a defensive root node, we would talk about the probability of
defending a system.

2.2 The Propositional Semantics for ADTrees

In order to provide a broad spectrum of analysis methods, several formal se-
mantics for ADTees have been defined in [13]. In this paper, we employ the
propositional semantics which makes use of Boolean functions.

By r, we denote a countable set of propositional variables. A configuration
with finite domain u ⊆ r is a function x : u → {0, 1} that associates a value
x(X) ∈ {0, 1} with every variable X ∈ u. Thus, a configuration x ∈ {0, 1}u
represents an assignment of Boolean values to the variables in u.

Definition 1. A Boolean function f with domain u is a function f : {0, 1}u→
{0, 1} that assigns a value f(x) ∈ {0, 1} to each configuration x ∈ {0, 1}u.

Given a configuration x with domain u ⊆ r, we denote by x↓w the projection of
x to a subset w ⊆ u. Let f and g be two Boolean functions with domains u and
w, respectively. The disjunction (f ∨ g) and the conjunction (f ∧ g) of f and g
are Boolean functions with domain u ∪ w, defined for every x ∈ {0, 1}u∪w by:

(f ∨ g)(x) = max{f(x↓u), g(x↓w)}, (f ∧ g)(x) = f(x↓u)× g(x↓w).

The negation of f (denoted by ¬f) is a Boolean function with domain u, defined
for every x ∈ {0, 1}u by: (¬f)(x) = 1− f(x).

Now, we explain how the propositional semantics associates ADTrees with
Boolean functions. Let B denote the set of all basic actions. First, for every
B ∈ B, a propositional variable XB ∈ r is constructed. We assume that for
B,B′ ∈ B, B 6= B′ =⇒ XB 6= XB′ . Next, a Boolean function ft is associated
with every ADTree t, as follows.

– If t = B ∈ B, then fB : {0, 1}{XB} → {0, 1} is defined as fB(XB) = XB . In
other words, the Boolean function associated with B is an identity function.
Thus, we often abuse notation and use XB instead of fB .

– If t is disjunctively refined into t1, . . . tk, then1 ft =
k∨
i=1

fti ,

– If t is conjunctively refined into t1, . . . tk, then ft =
k∧
i=1

fti ,

1 Here,
∧

and
∨

stand for extensions of conjunction and disjunction of two Boolean
functions to any finite number of Boolean functions. They are well-defined by asso-
ciativity of × and max.

– If t is countered, then ft = ft1 ∧ ¬ft2 , where t1 corresponds to the refining
subtree and t2 represents the countering subtree.

Example 2. Applying the introduced recursive construction results in the follow-
ing Boolean function for the ADTree t from Figure 1:

ft =
(
(XSE ∨XDU) ∧ ¬(XIA ∧ (XRA ∧ ¬XSA))

)
∧XEV. (1)

Given an ADTree t, we denote by vart the domain of the Boolean function
ft. In other words, vart is the set of propositional variables corresponding to
the basic actions involved in t. A configuration x ∈ {0, 1}vart represents which
actions succeed (the corresponding variables are set to 1) and which do not (the
corresponding variables are set to 0). Following our terminology convention from
Remark 1, if ft(x) = 1, then we say that x is an attack with respect to t.

3 Probabilistic Evaluation of ADTrees

The most often used computational procedure for quantitative assessment of
ADTrees relies on a bottom-up procedure [26,18,13,14]. In this approach, val-
ues are assigned to the basic actions and the bottom-up algorithm is used to
determine the values of the remaining nodes as a function of the values of their
children. The computation stops when the value for the root node has been
found. Since the value of a node only depends on the values of its children,
and not on their meaning, the bottom-up procedure cannot take dependencies
between actions into account. Thus, this technique implicitly assumes that all
actions of an ADTree are independent. In the case of the probability parameter,
such an assumption is unrealistic. For instance, the probability that the defender
runs an anti-virus program depends on whether the anti-virus is installed or not.

In order to compute the probability of attacking a system, while taking de-
pendencies between involved actions into account, we propose a framework which
combines attack–defense trees with Bayesian networks.

3.1 Bayesian Network Associated with an ADTree

A Bayesian network [20] is a graphical representation of a joint probability dis-
tribution over a finite set of variables with finite domains. The network itself is
a directed, acyclic graph that reflects the conditional interdependencies between
the variables associated with the nodes of the network. A directed edge from
the node associated with variable X1 to the node associated with variable X2

means that X2 stochastically depends on X1. Each node contains a conditional
probability table that quantifies the influence between the variables. The joint
probability distribution p of a Bayesian network over {X1, . . . , Xn} is given by

p(X1, . . . , Xn) =

n∏
i=1

p(Xi|par(Xi)), (2)

where, par(Xi) denotes the set of nodes that have an outgoing edge that points
into Xi. If the set par(Xi) is empty, the conditional probability becomes an
ordinary probability distribution. Nodes (or subgraphs) of the Bayesian network
that are unconnected represent stochastically independent (sets of) variables.

Our goal is to create a Bayesian network depicting stochastic dependencies
between the actions involved in a security scenario given as an ADTree. In the
ADTree methodology, refined nodes do not contain any additional information,
other than how their children are connected (conjunctively or disjunctively).
This means that refined nodes do not depict any additional actions. This is why,
when constructing a Bayesian network for an ADTree, we take only basic actions
into account.

A Bayesian network associated with an ADTree t, denoted by BNt, is a
Bayesian network over the set of propositional variables vart, such that there ex-
ists a directed edge from XA to XB if and only if action B stochastically depends
on action A. Bayesian network BNt complements ADTree t with additional in-
formation which is not contained in t. The structure of the Bayesian network
BNt is usually constructed manually. This process can however be supported by
numerous existing approaches for constructing Bayesian networks [8].

Example 3. A Bayesian network BNt associated with our running ADTree t is
shown in Fig. 2. The joint probability distribution for BNt is

p(XEV, XSE, XDU, XSA, XRA, XIA) = p(XRA|XIA)× p(XIA)× (3)
p(XEV|XSE, XDU)× p(XSE|XSA)× p(XDU|XSA)× p(XSA).

Install Anti-virus Run Anti-virusp(XIA = 1) = 0.6

p(XRA = 1|XIA = 1) = 0.9
p(XRA = 1|XIA = 0) = 0.0

Send E-mail
with Attachment

Execute
Virus

Spoof
Anti-virus

Distribute
USB Stick

p(XDU = 1|XSA = 1) = 0.4
p(XDU = 1|XSA = 0) = 0.5

p(XEV = 1|XSE = 1, XDU = 1) = 0.9
p(XEV = 1|XSE = 1, XDU = 0) = 0.2
p(XEV = 1|XSE = 0, XDU = 1) = 0.8
p(XEV = 1|XSE = 0, XDU = 0) = 0.1

p(XSE = 1|XSA = 1) = 0.9
p(XSE = 1|XSA = 0) = 0.5

p(XSA = 1) = 0.3

Fig. 2. Bayesian network BNt associated with ADTree t from Figure 1.

The conditional probability tables used in Figure 2 have been constructed on an
intuitive basis. The accuracy of the input values, as well as the actual methods
for their estimation are a research topic in itself and are outside the scope of this
submission. In the rest of the paper, we assume that the conditional probability
tables have been constructed and are available.

3.2 Probabilistic Computations in the Presence of Dependencies

We now present our framework for probability computations on an ADTree t,
taking the dependencies between the involved actions into account. Our compu-
tation makes use of the Boolean function ft and the Bayesian network BNt.

Given configuration x ∈ {0, 1}vart , we define

ψt(x) = ft(x)× p(x), (4)

where p is the joint probability distribution of BNt. If x is an attack with respect
to t, then ft(x) = 1 and ψt(x) returns the probability value for x from the
Bayesian network, representing the success probability of attack x. If x is not
an attack with respect to t, then ft(x) = 0 and thus ψt(x) = 0.

Example 4. Consider the situation where the attacker installs a virus file on the
system by sending an e-mail with attachment (XSE = 1 and XDU = 0), executes
the virus file (XEV = 1), but does not use a fake anti-virus program (XSA = 0).
The defender, in turn, installs a real anti-virus (XIA = 1) which however is not
running (XRA = 0). The corresponding configuration

x = (XEV = 1, XSE = 1, XDU = 0, XSA = 0, XRA = 0, XIA = 1)

is an attack, because

ft(x)
(1)
=

((
(XSE ∨XDU) ∧ ¬(XIA ∧ (XRA ∧ ¬XSA))

)
∧XEV

)
(x) = 1.

By instantiating formula (3) with values from Fig. 2, we obtain that this attack
will be successfully executed with the probability

ψt(x) = ft(x)× p(x) = p(XEV = 1|XSE = 1, XDU = 0)× p(XSE = 1|XSA = 0)

×p(XDU = 0|XSA = 0)× p(XSA = 0)× p(XRA = 0|XIA = 1)× p(XIA = 1)

= 0.2× 0.5× (1− 0.5)× (1− 0.3)× (1− 0.9)× 0.6 = 0.0021.

Next, assume we are not interested in calculating the probability of success-
fully executing a specific set of basic actions, but more generally in the success
probability of attacking a system according to the scenario represented with
ADTree t. This corresponds to the sum of the probabilities of all possible at-
tacks with respect to t. We thus have

P (t) =
∑

x∈{0,1}vart
ψt(x)

(4)
=

∑
x∈{0,1}vart

ft(x)× p(x). (5)

We refer to the value P (t) as the probability related to ADTree t. Finally, the
success probability of the most probable attack with respect to t is computed as

Pmax(t) = max
x∈{0,1}vart

ψt(x)
(4)
= max

x∈{0,1}vart
ft(x)× p(x). (6)

4 ADTrees as Constraint Systems

We know that the number of possible configurations is exponential with respect
to the number of basic actions. Thus, for large systems, the brute force compu-
tation of P (t) and Pmax(t), as suggested by formulæ (5) and (6), is no longer
possible. We now present methods allowing us to represent P (t) and Pmax(t) in
a factorized form, in order to increase the efficiency of their computations.

4.1 Indicator Functions for ADTrees

We employ an encoding technique from constraint reasoning and construct a
factorized indicator function φt for the Boolean function ft. Indicator φt maps
to 1 if and only if its arguments represent a valid assignment with respect to ft.
The construction of the global indicator φt relies on local indicators that make
use of inner variables and are defined as follows.

1. If ft =
k∨
i=1

fti , then the propositional variables Y, Y1, . . . , Yk are associated

with ft, ft1 , . . . , ftk , respectively, and the local indicator function for ft is
defined as: φ(Y, Y1, . . . , Yk) = 1 if Y = max{Y1, . . . , Yk} and 0 otherwise.

2. If ft =
k∧
i=1

fti , then the propositional variables Y, Y1, . . . , Yk are associated

with ft, ft1 , . . . , ftk , respectively, and the local indicator function for ft is
defined as: φ(Y, Y1, . . . , Yk) = 1 if Y = Y1 × . . .× Yk and 0 otherwise.

3. If ft = ft1∧¬ft2 , then the propositional variables Y , Y1 and Y2 are associated
with ft, ft1 and ft2 , respectively, and the local indicator function for ft is
defined as: φ(Y, Y1, Y2) = 1 if Y = Y1 × (1− Y2) and 0 otherwise.

Example 5. A step-wise construction of the local indicators for the Boolean func-
tion given in Example 2 proceeds as follows:

ft =
(
(XSE ∨XDU)︸ ︷︷ ︸

Y1

∧¬ (XIA ∧ (XRA ∧ ¬XSA)︸ ︷︷ ︸
Y2

)

︸ ︷︷ ︸
Y3

)

︸ ︷︷ ︸
Y4

∧XEV

︸ ︷︷ ︸
Yt

In this case, the inner variables are Y1, Y2, Y3, Y4, Yt and the local indicators are

φ1(Y1, XSE, XDU) = 1 exactly if Y1 = max(XSE, XDU),

φ2(Y2, XRA, XSA) = 1 exactly if Y2 = XRA × (1−XSA),

φ3(Y3, XIA, Y2) = 1 exactly if Y3 = XIA × Y2,
φ4(Y4, Y1, Y3) = 1 exactly if Y4 = Y1 × (1− Y3),
φ5(Yt, Y4, XEV) = 1 exactly if Yt = Y4 ×XEV.

Let t be an ADTree. Having constructed all local indicators, we can build the
global indicator function φt. The domain of φt contains all variables used by the
local indicators, i.e., the inner variables and the variables corresponding to basic
actions of t. An assignment over all variables is valid if and only if each local
assignment is valid. Hence, we may compute the global indicator function for ft
by multiplying all its local indicators. For the function from Example 5, we get:

φt(Y1, Y2, Y3, Y4, Yt, XSE, XDU, XRA, XSA, XIA, XEV) = φ1(Y1, XSE, XDU)×
φ2(Y2, XRA, XSA)× φ3(Y3, XIA, Y2)× φ4(Y4, Y1, Y3)× φ5(Yt, Y4, XEV). (7)

In this paper, we use the following notation: given the global indicator func-
tion φt for t, we denote by Yt the inner variable corresponding to the entire tree
t. The set of all inner variables of φt is denoted by dt.

Consider an indicator function φ(Y, Y1, . . . , Yk). Let z be an assignment of
values to the variables Y1, . . . , Yk. There is, by definition, exactly one value y ∈
{0, 1} for Y , such that φ(y, z) = 1. Since the global indicator function is obtained
by multiplication, we may directly conclude the following theorem.

Theorem 1. Consider an ADTree t with basic actions B1, . . . , Bn and its global
indicator function φt. Given a specific assignment x of values to the variables
XB1

, . . . , XBn
corresponding to basic actions, there is exactly one assignment y

to the inner variables from dt, such that φt(y,x) = 1.

An immediate consequence of Theorem 1 is that, for a specific assignment x ∈
{0, 1}vart of values to the variables associated with basic actions, we have

max
y∈{0,1}dt

φt(y,x) =
∑

y∈{0,1}dt

φt(y,x) = 1. (8)

When performing probabilistic computations as specified by formulæ (4), (5)
and (6), we are only interested in those combinations of basic actions that cor-
respond to attacks. Thus, when reasoning in terms of global indicator functions,
we need to restrict our considerations to those configurations where variable Yt
equals 1. This can be achieved by conditioning φt on Yt = 1, which means that
we invalidate all configurations with Yt = 0. We therefore define a filter Ft for
the ADTree t that satisfies Ft(Yt) = 1 if and only if Yt = 1. In other words,
Ft : {0, 1}{Yt} → {0, 1} is the identity function for variable Yt. Multiplying filter
Ft and global indicator φt results in a function, denoted by φt|Yt=1, which maps

to 1 if and only if the assignment of values to the variables is valid with respect
to ft and it represents an attack according to t. We thus have,

∀z ∈ {0, 1}vart ∪dt : φt|Yt=1(z) = Ft(z
↓{Yt})× φt(z). (9)

Let t be an ADTree, φt be its global indicator function and Ft be the fil-
ter for t. Assume furthermore that we are given a specific configuration x ∈
{0, 1}vart . Configuration x is an attack with respect to t if and only if, there ex-
ists y ∈ {0, 1}dt , such that φt|Yt=1(y,x) maps to 1. Using formula (8), we obtain

max
y∈{0,1}dt

φt|Yt=1(y,x) =
∑

y∈{0,1}dt

φt|Yt=1(y,x) = ft(x) =

{
1 if x is an attack
0 otherwise.

(10)

4.2 Indicators for Probability Computation

Making use of the property described by (10), the procedure for the probabilistic
computations developed in Section 3.2 can be redefined as follows. Let t be an
ADTree and x ∈ {0, 1}vart be an assignment of Boolean values to the variables
corresponding to the basic actions of t. If x is an attack with respect to t, then
its probability is computed as

ψt(x)
(4)
= ft(x)× p(x)

(10), distrib.
=

∑
y∈{0,1}dt

(
φt|Yt=1(y,x)× p(x)

)
(11)

(10), distrib.
= max

y∈{0,1}dt

(
φt|Yt=1(y,x)× p(x)

)
. (12)

The probability related to ADTree t is expressed as

P (t)
(5)
=

∑
x∈{0,1}vart

ψt(x)
(11)
=

∑
x∈{0,1}vart

∑
y∈{0,1}dt

(
φt|Yt=1(y,x)× p(x)

)
=

∑
z∈{0,1}vart ∪dt

(
φt|Yt=1(z)× p(z↓vart)

)
. (13)

Similarly, the probability of the most probable attack with respect to t is

Pmax(t)
(6)
= max

x∈{0,1}vart
ψt(x)

(12)
= max

z∈{0,1}vart ∪dt

(
φt|Yt=1(z)× p(z↓vart)

)
. (14)

Example 6. Let u = {Y1, Y2, Y3, Y4, Yt, XSE, XDU, XRA, XSA, XIA, XEV}. The fac-
torized form for the probability related the ADTree from Figure 1 is

P (t)
(13),(9),(7),(3)

= (15)∑
z∈{0,1}u

(
Ft(z

↓{Yt})× φ1(z↓{Y1,XSE,XDU})× φ2(z↓{Y2,XRA,XSA})× φ3(z↓{Y3,XIA,Y2})

× φ4(z↓{Y4,Y1,Y3})× φ5(z↓{Yt,Y4,XEV})× p(z↓{XEV,XSE,XDU})× p(z↓{XSE,XSA})

× p(z↓{XDU,XSA})× p(z↓{XSA})× p(z↓{XRA,XIA})× p(z↓{XIA})
)
.

5 Efficiency Considerations

The factorization of the global indicator function, in terms of local indicators
which are bounded in size, introduces additional structure that can be exploited
for so-called local computation [22]. In this section, we show how the fusion
algorithm allows us to improve the efficiency of evaluating formulas (13) and (14).

5.1 Semiring Valuations

An algebraic structure 〈A,⊕,�〉 with binary operations ⊕ and � is called com-
mutative semiring if both operations are associative, commutative, and if � dis-
tributes over ⊕, i.e., if for a, b, c ∈ A, we have a� (b⊕ c) = (a� b)⊕ (a� c) and
(a⊕b)�c = (a�c)⊕(b�c). Typical examples of commutative semirings include
the Boolean semiring 〈{0, 1},max,×〉, the tropical semiring 〈N,min,+〉, the
product t-norm semiring 〈[0, 1],max,×〉 and the arithmetic semiring 〈R,+,×〉.

Let u ⊆ r be a finite set of propositional variables and 〈A,⊕,�〉 be a commu-
tative semiring. A semiring valuation over 〈A,⊕,�〉 is a function φ : {0, 1}u → A
associating a value from A with each configuration from {0, 1}u. We denote by
dom(φ) = u the domain of valuation φ. The combination of two valuations φ
and ψ over a semiring 〈A,⊕,�〉 is defined, for all x ∈ {0, 1}dom(φ)∪dom(ψ), as:

(φ⊗ ψ)(x) = φ(x↓dom(φ))� ψ(x↓dom(ψ)).

The elimination of variableX ∈ dom(φ) is defined, for all x ∈ {0, 1}dom(φ)\{X}, as:

φ−X(x) = φ(x, 0)⊕ φ(x, 1).

Due to associativity of semiring addition ⊕, we can eliminate variables in any
order. For {X1, . . . , Xm} ⊆ dom(φ), we may therefore write

φ−{X1,...,Xm} =
(
. . .
(
(φ−X1)−X2

)
. . .
)−Xm

.

Indicator functions are Boolean semiring valuations over 〈{0, 1},max,×〉.
Arithmetic semiring valuations over 〈R,+,×〉 capture conditional probability
tables from Bayesian networks, and product t-norm semiring valuations over
〈[0, 1],max,×〉 compute maximum attack probabilities, as in formula (14).

It has been shown in [10] that semiring valuations over arbitrary commutative
semirings always satisfy the axioms of a valuation algebra [9,22]. The compu-
tational interest in valuation algebras is stated by the inference problem. Given
a set of (semiring) valuations {φ1, . . . , φn}, called knowledgebase, with domains
ui = dom(φi), for i = 1, . . . , n, and a set of variables {X1, . . . , Xm} ⊆ u1∪. . .∪un,
the inference problem consists of computing

φ−{X1,...,Xm} = (φ1 ⊗ . . .⊗ φn)−{X1,...,Xm}. (16)

Example 7. Let u = {Y1, Y2, Y3, Y4, Yt, XSE, XDU, XRA, XSA, XIA, XEV}. Com-
puting the probability in Example 6 amounts to solving the inference problem(
Ft(z

↓{Yt})× φ1(z↓{Y1,XSE,XDU})× . . .× p(z↓{XIA})
)−u

=∑
z∈{0,1}u

(
Ft(z

↓{Yt})× φ1(z↓{Y1,XSE,XDU})× . . .× p(z↓{XIA})
)
.

Here, the knowledgebase consists of all local indicator functions, filter Ft and all
conditional probability tables, which instantiate arithmetic semiring valuations.
Likewise, computing maximum attack probability, expressed by formula (14),
amounts to solving a similar inference problem over the product t-norm semiring.

5.2 Fusion

A direct evaluation of formulas (13), (14), and more generally of (16), is in
most cases not possible, due to the exponential complexity of combination of
semiring valuations. However, because the computational tasks are stated with
respect to a factorization of the global indicator function and the joint probability
distribution, we may exploit the additional structure inside the factorization and
perform calculations locally on the domain of the factors. Fusion [27] (or bucket-
elimination [5]) is one of the local computation algorithms that can be applied to
factorizations of arbitrary valuation algebras. Thus, we may use it for processing
inference problems obtained from ADTrees.

The elimination of a single variable X ∈ dom(φ) = dom(φ1)∪ . . .∪ dom(φn)
from a set {φ1, . . . , φn} of valuations can be performed as follows:

FusX({φ1, . . . , φn}) = {ψ−X} ∪ {φi : X /∈ dom(φi)}, (17)

where ψ =
⊗

i : X∈dom(φi)
φi. This means that we only need to eliminate X from

the factors that have X in the domain. As described in [9], the fusion algorithm
then follows by repeated application of this operation:

(φ1 ⊗ . . .⊗ φn)−{X1,...,Xm} =
⊗

FusXm
(. . . (FusX1

({φ1, . . . , φn}))).

In every step i = 1, . . . ,m of the fusion algorithm, the combination in (17) creates
an intermediate factor ψi with domain dom(ψi). Then, variable Xi is eliminated
only from ψi in (17). We define λ(i) = dom(ψi) \ {Xi} called label and observe
that λ(m) = (dom(φ1) ∪ . . . ∪ dom(φn)) \ {X1, . . . , Xm}. The domains of all
intermediate results of the fusion algorithm are therefore bounded by the size of
the largest label plus one. The smaller the labels are, the more efficient fusion
is. We further remark that the labels depend on the chosen elimination sequence
for variables X1, . . . , Xm. Finding a sequence that leads to the smallest label is
NP-complete [1], however, there are good heuristics that achieve reasonable exe-
cution time [6]. In summary, the complexity of computing (16) is not necessarily
exponential in the number of variables involved in the problem, but only in the
size of the largest label, also called tree width [25], that occurs during fusion.

We have applied fusion to the inference problem from Example 7. The results
show that, when fusion is used, time and space complexity of the computation
of P (t) for our running ADTree are bounded by 25. To compare, a naive, direct
computation, as in (15), is bounded by 211. We have also automated the compu-
tation of P (t) with the help of the open-source tool Nenok [23] which provides
an extensive library of generically implemented local computation algorithms.
When applying fusion, Nenok outputs the value of P (t) after 0.031 sec in con-
trast to 3.422 sec that the application requires to compute the same value in a
naive way, i.e., by using expression (15) directly.

6 Related Work

ADTrees are only one of more than 30 graphical formalisms for security assess-
ment, which are based on attack trees. A recent survey, by Kordy et al. [15]
presents a complete state of the art in the field of DAG-based approaches for
modeling of attacks and defenses. It summarizes existing formalisms, compares
their features and proposes their taxonomy. The reader is referred to this survey
for an overview of existing methods for quantitative, and in particular proba-
bilistic, analysis of security. In the remainder of this section, we compare our
framework with the most prominent, existing models that combine AND-OR
graphs with Bayesian networks.

Qin and Lee are one of the pioneers in applying Bayesian networks for secu-
rity analysis [24]. They propose a conversion of regular attack trees into Bayesian
networks, in order to make use of probabilistic inference techniques to evaluate
the likelihood of attack goals and predict potential upcoming attacks. Edges
representing disjunctive refinements in the tree are also present in the corre-
sponding Bayesian network, because they represent cause-consequence relations
between components. Contrary to our interpretation, a conjunction in attack
trees is assumed to have an explicit or implicit order in which the actions have
to be executed. This allows to convert conjunctions into a directed path in the
Bayesian network, starting from the first child, according to the given order,
and ending with the parent node. The construction from [24] implies that the
Bayesian network and the attack tree contain the same set of nodes. Furthermore
the Bayesian network models cause-consequence relationships that correspond
to the child-parent connections in the underlying attack tree. In our case, the
Bayesian network depicts additional dependencies that represent how different
basic actions are influenced by each other.

In [7], Frigault and Wang advance a model, called Bayesian attack graphs.
They construct a Bayesian network starting from an attack graph which depicts
how multiple vulnerabilities may be combined in an attack. The resulting di-
rected acyclic graph contains all nodes of the original attack graph. Employing
the CVSS mechanism [19], the nodes are then associated with the conditional
probability tables. In [21], Poolsappasit et al. revisit the framework of Bayesian
attack graphs to be able to deal with asset identification, system vulnerability
and connectivity analysis, as well as mitigation strategies. In addition to the con-

ditional probability tables that represent the probability with which an attack
takes place, they consider edge probabilities expressing how likely a present at-
tack succeeds. Furthermore, the authors of [21] augment Bayesian attack graphs
with additional nodes and values representing defenses. This extended structure
allows them to solve the multiobjective optimization problem of how to select
optimal defenses. Even though this model is similar to ours, it does not cover
interleaved attacks and defenses.

Yet another approach that makes use of Bayesian networks for security anal-
ysis was described by Sommestad et al. [28]. It transforms defense trees [3] (an
extension of attack trees with defenses attached to leaf nodes) into extended
influence diagrams [17] (an extension of Bayesian networks with conjunctive and
disjunctive nodes as well as countermeasures). The relationships between the
nodes are encoded in conditional probability tables assigned to each node. The
authors state that with this setup, Bayesian inference can be used to derive val-
ues, however they do not provide detailed computation algorithms. Our paper
specifies how the necessary computational steps could be performed.

Contrary to our design, none of the above approaches separate the logical
structure (conjunctions and disjunctions) from the probabilistic structure. One
advantage of our approach is that we are not transforming one model into an-
other, but we are using them modularly. Merging the two methodologies is only
implicitly done during fusion. Unlike our model, all related approaches assume
a one-to-one correspondence between the nodes in the original graph and the
Bayesian network. Since in our framework, the Bayesian network concerns only
basic actions, its size is much smaller compared to the size of Bayesian networks
used by the approaches described in this section.

7 Conclusion and Future Work

This paper proposes to combine the ADTree methodology with Bayesian net-
works in order to evaluate probabilistic measures on attack–defense scenarios
involving dependent actions. The introduced approach improves upon the stan-
dard, bottom-up, computational routine for attack tree-based formalisms, which
assumes that all actions involved in the model are independent. By lifting the in-
dependency assumption, we provide a pragmatic methodology for accurate prob-
abilistic assessment of security scenarios modeled using attack trees or ADTrees.

In our framework, the Bayesian network does not replace the information
represented by the structure of an ADTree, but complements it with additional
probabilistic dependencies between attack steps, which cannot be depicted using
AND-OR relations. Keeping the two models separated allows us to take advan-
tage of the strengths of both formalisms. The propositional encoding of ADTrees
is used to identify configurations which represent attacks. Bayesian networks to-
gether with the fusion algorithm and techniques based on semiring valuation
algebras provide ways to improve the efficiency of probabilistic computations.

To support modeling and quantitative analysis of security using the ADTree
methodology, a free software tool, called ADTool [11], has recently been devel-

oped. We are currently extending the functionality of ADTool by interfacing it
with Nenok, so that it can handle the framework introduced in this paper. Since
Nenok implements generic algorithms for efficient processing of semiring-based
computations, the extended tool will support efficient, automated probabilistic
analysis of real-world, possibly large-scale, attack–defense scenarios.

Employing fusion implies that time and space complexity are bounded by a
structural parameter of the problem rather than by the total number of variables
involved. It thus cannot be predicted in general how well fusion can cope with
large problems involving many variables. It all depends on whether a small tree
width (or good elimination sequence) can be found by some heuristic. Prediction
of the tree width is possible for specific families of graphs [4]. It is one of our
future research directions to investigate whether combination of an ADTree with
a Bayesian network, both produced by human security experts, would satisfy the
definition of one such family.

The algorithmic technique based on semiring valuations that we have used
in this paper also works in a broader context. From an algebraic perspective,
the combination of indicator functions and probabilities is possible because the
Boolean semiring for indicator functions is a sub-algebra of both semirings used
for expressing probabilities, i.e., the arithmetic and product t-norm semiring.
Consequently, we may directly apply the same construction to other semiring
valuations under the additional condition that the corresponding semiring takes
the Boolean semiring as sub-algebra. The large family of t-norm semirings [22]
are important candidates used in possibility and fuzzy set theory [29].

Acknowledgments. We would like to thank Sjouke Mauw, Pieter Hartel, Jan-
Willem Bullée, Lorena Montoya Morales, and the anonymous reviewers for their
valuable comments that helped us to improve the paper. The research leading
to these results has received funding from the European Union Seventh Frame-
work Programme under grant agreement number 318003 (TREsPASS) and from
the Fonds National de la Recherche Luxembourg under grants PHD-09-167 and
C13/IS/5809105.

References

1. Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of Finding Embeddings in
a k-Tree. SIAM J. of Algebraic and Discrete Methods 8, 277–284 (1987)

2. Bagnato, A., Kordy, B., Meland, P.H., Schweitzer, P.: Attribute Decoration of
Attack–Defense Trees. IJSSE 3(2), 1–35 (2012)

3. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense Trees for Economic Evaluation of
Security Investments. In: ARES. pp. 416–423. IEEE Computer Society (2006)

4. Bodlaender, H.L.: A Partial K-arboretum of Graphs with Bounded Treewidth.
Theoretical Computer Science 209(1-2), 1–45 (1998)

5. Dechter, R.: Bucket Elimination: A Unifying Framework for Reasoning. Artif. In-
tell. 113, 41–85 (1999)

6. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
7. Frigault, M., Wang, L.: Measuring Network Security Using Bayesian Network-

Based Attack Graphs. In: COMPSAC. pp. 698–703 (2008)

8. van Harmelen, F., van Harmelen, F., Lifschitz, V., Porter, B.: Handbook of Knowl-
edge Representation. Elsevier Science, San Diego, USA (2007)

9. Kohlas, J.: Information Algebras: Generic Structures for Inference. Springer (2003)
10. Kohlas, J., Wilson, N.: Semiring induced Valuation Algebras: Exact and Approxi-

mate Local Computation algorithms. Artif. Intell. 172(11), 1360–1399 (2008)
11. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: Security Analysis with

Attack–Defense Trees. In: Joshi, K.R., Siegle, M., Stoelinga, M., D’Argenio, P.R.
(eds.) QEST. LNCS, vol. 8054, pp. 173–176. Springer (2013)

12. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of Attack–
Defense Trees. In: Degano, P., Etalle, S., Guttman, J.D. (eds.) FAST. LNCS, vol.
6561, pp. 80–95. Springer (2010)

13. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack–Defense Trees. Jour-
nal of Logic and Computation 24(1), 55–87 (2014)

14. Kordy, B., Mauw, S., Schweitzer, P.: Quantitative Questions on Attack–Defense
Trees. In: ICISC. LNCS, vol. 7839, pp. 49–64. Springer (2013)

15. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-Based Attack and Defense
Modeling: Don’t Miss the Forest for the Attack Trees. CoRR 1303.7397 (2013),
available at http://arxiv.org/abs/1303.7397 (under submission)

16. Kordy, B., Pouly, M., Schweitzer, P.: Computational Aspects of Attack–Defense
Trees. In: SIIS. LNCS, vol. 7053, pp. 103–116. Springer (2011)

17. Lagerström, R., Johnson, P., Närman, P.: Extended Influence Diagram Generation.
In: Jardim-Gonçalves, R., Müller, J.P., Mertins, K., Zelm, M. (eds.) IESA. pp. 599–
602. Springer (2007)

18. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: Won, D., Kim, S. (eds.)
ICISC. LNCS, vol. 3935, pp. 186–198. Springer (2005)

19. Mell, P., Scarfone, K., Romanosky, S.: A Complete Guide to the Common Vulnera-
bility Scoring System Version 2.0. http://www.first.org/cvss/cvss-guide.html
(2007)

20. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1988)

21. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic Security Risk Management Using
Bayesian Attack Graphs. IEEE Trans. Dep. Sec. Comp. 9(1), 61–74 (2012)

22. Pouly, M., Kohlas, J.: Generic Inference - A Unifying Theory for Automated Rea-
soning. John Wiley & Sons, Inc. (2011)

23. Pouly, M.: NENOK - A Software Architecture for Generic Inference. Int. J. on
Artif. Intel. Tools 19, 65–99 (2010)

24. Qin, X., Lee, W.: Attack plan recognition and prediction using causal networks.
In: ACSAC. pp. 370–379 (2004)

25. Robertson, N., Seymour, P.: Graph Minors I: Excluding a Forest. J. Comb. Theory,
Ser. B 35(1), 39–61 (1983)

26. Schneier, B.: Attack Trees. Dr. Dobb’s Journal of Software Tools 24(12), 21–29
(1999)

27. Shenoy, P.: Valuation-Based Systems: A Framework for Managing Uncertainty in
Expert Systems. In: Zadeh, L., Kacprzyk, J. (eds.) Fuzzy Logic for the Management
of Uncertainty, pp. 83–104. John Wiley & Sons, Inc. (1992)

28. Sommestad, T., Ekstedt, M., Nordström, L.: Modeling security of power commu-
nication systems using defense graphs and influence diagrams. IEEE Trans. Pow
Del. 24(4), 1801–1808 (2009)

29. Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems
1, 3–28 (1978)

http://arxiv.org/abs/1303.7397
http://www.first.org/cvss/cvss-guide.html

	A Probabilistic Framework for Security Scenarios with Dependent Actions

