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1 CRIStAL, UMR CNRS 9189, Université Lille 1 — Inria Lille-Nord Europe, France
arnaud.liefooghe@univ-lille1.fr
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Abstract. This article reports an experimental analysis on stochastic
local search for approximating the Pareto set of bi-objective uncon-
strained binary quadratic programming problems. First, we investigate
two scalarizing strategies that iteratively identify a high-quality solution
for a sequence of sub-problems. Each sub-problem is based on a static or
adaptive definition of weighted-sum aggregation coefficients, and is ad-
dressed by means of a state-of-the-art single-objective tabu search pro-
cedure. Next, we design a Pareto local search that iteratively improves
a set of solutions based on a neighborhood structure and on the Pareto
dominance relation. At last, we hybridize both classes of algorithms by
combining a scalarizing and a Pareto local search in a sequential way.
A comprehensive experimental analysis reveals the high performance of
the proposed approaches, which substantially improve upon previous
best-known solutions. Moreover, the obtained results show the superi-
ority of the hybrid algorithm over non-hybrid ones in terms of solution
quality, while requiring a competitive computational cost. In addition,
a number of structural properties of the problem instances allow us to
explain the main difficulties that the different classes of local search al-
gorithms have to face.

1 Introduction

The unconstrained binary quadratic programming (UBQP) problem is one of the
most challenging problem from single-objective combinatorial optimization [11].
Given a collection of n items such that each pair of items is associated with
a profit value that can be positive, negative or zero, the UBQP problem seeks
a subset of items that maximizes the sum of their paired values. The value of
a pair is summed up only if the two corresponding items are selected. From a
computational point-of-view, a feasible solution to a UBQP instance can be rep-
resented as a binary string of size n. Each position from the binary string maps to
a particular variable that indicates whether the corresponding item is included
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in the subset of selected items or not. Beyond its theoretical significance [8],
the utility of UBQP has been demonstrated on a wide variety of application
fields [11]. Furthermore, a number of NP-hard combinatorial optimization prob-
lems can be recast as UBQP problems, such as graph coloring, max-cut, set
packing, set partitioning, or maximum clique, among others [11]. The single-
objective UBQP problem has received a growing interest in recent years [9, 11],
and a multi-objective extension of UBQP has been proposed recently [12].

In this paper, we focus on bi-objective UBQP, where two profit values are
associated with each pair of items. By optimizing both sums of profit values
simultaneously, we can improve the descriptive power of the conventional single-
objective UBQP problem, and provide a more general formulation. However,
as for many problems from multi-objective combinatorial optimization, the bi-
objective UBQP problem raises several difficulties for heuristics design. In par-
ticular, the number of optimal solutions can be very large [12], and determining
whether a candidate solution is optimal is NP-complete, even in the single-
objective case [8]. For these reasons, we design and experiment with multi-
objective stochastic local search algorithms, and measure their efficiency and
their effectiveness on instances with different dimensions and correlation degrees
between the objective function values. Furthermore, we analyze the problem
structure to learn more about those difficulties, and to improve the design of
algorithms. The contributions of the paper are two-fold.

(i) We characterize the features of small-size, enumerable bi-objective UBQP
instances. More particularly, we analyze the number of global and local op-
timal solutions, based on scalarizing functions and on the Pareto dominance
relation; and we examine the connectedness between optimal solutions.

(ii) We design and analyze local search algorithms for bi-objective UBQP, includ-
ing two scalarizing approaches, a Pareto-based approach, and a hybrid ap-
proach combining these two complementary search strategies. The designed
algorithms substantially improve over the previous attempts in solving large-
size bi-objective UBQP instances [12]. More importantly, our experimental
analysis allows us to better understand how the performance of these classes
of algorithms relates to the structural properties of the search space, explain-
ing the high efficiency and effectiveness of the proposed approaches.

The remainder of the paper is organized as follows. In Section 2, we present
the bi-objective UBQP problem. In Section 3, we study the characteristics of
small-size instances. In Section 4, we introduce four stochastic local search algo-
rithms for bi-objective UBQP. In Section 5, we analyze the performance of these
algorithms on a set of large-size bi-objective UBQP instances. In Section 6, we
finally conclude the paper and discuss further research directions.

2 Bi-objective UBQP

This section presents the problem formulation, some definitions related to multi-
objective combinatorial optimization, and the problem instances that are inves-
tigated in the paper.
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2.1 Problem Formulation

The bi-objective UBQP (bUBQP) problem can be formalized as follows [12].

max f1(x) =

n
∑

i=1

n
∑

j=1

qij1 xixj

max f2(x) =

n
∑

i=1

n
∑

j=1

qij2 xixj

subject to x ∈ {0, 1}n

(1)

where (f1, f2) is the pair of objective functions to be maximized, n is the number
of items, Q1 = (qij1 ) and Q2 = (qij2 ) are both an n×n matrix of constant values,
either positive, negative or zero. As in the single-objective case, the solution
space X = {0, 1}n is defined on binary strings of size n; its size is then 2n.

2.2 Definitions

We denote by Z ⊆ IR2 the feasible region in the objective space, i.e. the image of
feasible solutions when using the maximizing function vector f = (f1, f2) such
that Z = f(X). The Pareto dominance relation is defined as follows. A solution
x ∈ X is dominated by a solution x′ ∈ X, denoted as x ≺ x′, if fk(x) ≤ fk(x

′)
for all k ∈ {1, 2}, with at least one strict inequality. If neither x 6≺ x′ nor x′ 6≺ x
holds, then both solutions are mutually non-dominated. A solution x ∈ X is
Pareto optimal if there does not exist any other solution x′ ∈ X such that x ≺ x′.
The set of all Pareto optimal solutions is the Pareto set, and its mapping in the
objective space is the Pareto front. One of the most challenging issues in multi-
objective optimization is to identify a minimal complete Pareto set, i.e. one
Pareto optimal solution mapping to each point from the Pareto front. Since the
bUBQP problem is both NP-hard and intractable [12], approximate algorithms
like stochastic local search are well suited to identify a Pareto set approximation.

2.3 Problem Instances

Following [12], the definition of each bUBQP objective function is based on a
matrix Qk, k ∈ {1, 2}. As in the single-objective UBQP instances available in
the OR-lib [3], non-zero matrix integer values are randomly generated following
a uniform distribution in [−100,+100]. The density d ∈ [0, 1] gives the expected
proportion of non-zero entries in the matrix. Following a Bernoulli distribution
of parameter d, a given entry at position (i, j) is set to zero on both matrices,
i.e. qij1 = qij2 = 0. Moreover, we define a correlation coefficient ρ between the
data contained in the two matrices. The positive (respectively negative) data
correlation decreases (respectively increases) the degree of conflict between the
objective function values. The generation of correlated data follows a multivari-
ate uniform distribution of dimension 2 [12]. As reported in Fig. 1(a), the coef-
ficient ρ allows to tune the correlation between objective function values with a
high accuracy. The considered bUBQP problem instances as well as an instance
generator are available at the following URL: http://mocolib.sf.net/.
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3 Characteristics of Small-Size bUBQP Instances

Thereafter, we study the impact of the density d and of the objective correlation ρ
on the number of Pareto optimal solutions, Pareto local optimal solutions, sup-
ported solutions, and on the connectedness property of bUBQP instances. More
particularly, we consider a density d ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and an objective
correlation ρ ∈ {−0.9,−0.7,−0.4,−0.2, 0.0,+0.2,+0.4,+0.7,+0.9}. The prob-
lem size is set to n = 18 in order to enumerate the solution space exhaustively.
For each parameter setting, 30 independently generated random instances are
considered. Experimental results are given in Fig. 1(b–f). In the following, we
provide a detailed analysis of these statistics.

3.1 Pareto Optimal Solutions

Fig. 1(b) shows the proportion of Pareto optimal solutions in the solution space.
Interestingly, the density d does not affect the size of the Pareto set. However, the
objective correlation ρmodifies the number of Pareto optimal solutions to several
orders of magnitude. Indeed, almost 0.05% of the solution space correspond
to non-dominated solutions for conflicting objectives (ρ = −0.9), whereas this
number drops to less than 0.003% for correlated objective (ρ = +0.9). As a
consequence, the larger the objective correlation ρ, the lower the cardinality of
the Pareto set. This means that an algorithm is expected to take more time to
identify the whole Pareto set when the objectives are in conflict.

3.2 Supported Solutions

In multi-objective optimization, scalarizing approaches consist in transforming
the original problem into a single-objective one by means of an aggregation of
the objective function values. A typical example is the weighted-sum scalarizing
function [6] that can be defined as follows.

gλ(x) = λ1 · f1(x) + λ2 · f2(x) (2)

where x ∈ X is a candidate solution, and λ = (λ1, λ2), such that λ1, λ2 ≥ 0, is
a weighting coefficient vector. Supported solutions are non-dominated solutions
which are optimal with respect to a weighted-sum aggregation of the objective
functions. Their corresponding objective vectors are located on the boundary of
the convex hull of the Pareto front [6]. On the contrary, non-supported solutions
are not optimal for any setting of the weighting coefficient vector λ. In order
to explain the ability of scalarizing multi-objective optimization approaches to
identify a large portion of Pareto optimal solutions, we should put the problem-
related properties in relation with the proportion of supported solutions. Fig. 1(c)
shows the proportion of supported solutions in the Pareto set. Once again, the
matrix density d has a very small influence. However, when the objective corre-
lation increases, and despite the absolute number of supported solution actually
gets lower, the proportion of supported solutions on the Pareto set increases.
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Fig. 1. (a) Spearman correlation coefficient between the objective function values,
(b) ratio of the number of Pareto optimal solutions to the solution space size, (c) ratio
of the number of supported solutions to the Pareto set size, (d) ratio of the size of the
largest connected component of the Pareto graph for Hamming distance 1 to the Pareto
set size, (e) minimal Hamming distance to connect the Pareto graph, and (f) ratio of
Pareto local optimal solutions to the solution space size, with respect to the objective
correlation ρ, for d = 0.2 (◦), d = 0.4 (�), d = 0.6 (⋄), d = 0.8 (△) and d = 1.0 (▽). For
each parameter setting, average values and confidence intervals (with a significance
level of 10−2) are reported over 30 independently generated random instances. The
problem size is n = 18. Notice the log-scale on the y-axis for (b) and (f).

For highly correlated objectives (ρ = +0.9), nearly all Pareto optimal solutions
are supported (this is even the case for some of the instances). On the contrary,
for conflicting objectives (ρ = −0.9), only 15% of Pareto optimal solutions are
supported. By putting this property in relation with algorithm design, we can
assume that scalarizing approaches should be more suited to approximate the
Pareto set of bUBQP instances with correlated objectives.

3.3 Connectedness

In the following, we describe some properties related to the connectedness of the
Pareto set [7]. We follow the definition of k-Pareto graph from [16]. The k-Pareto
graph is a graph PGk = (V,E), where each vertex in V corresponds to a Pareto
optimal solution, and there is an edge eij ∈ E between two nodes i and j only if
the shortest distance between solutions xi and xj ∈ X, with respect to a given
neighborhood, is below a bound k. For bUBQP, we adopt the Hamming distance
on binary strings. This corresponds to the number of moves performed with the
bit-flip neighborhood operator. Fig. 1(d) shows the ratio between the size of the
largest connected component in the 1-Pareto graph (PGk=1) and the size of the
Pareto set. The objective correlation ρ has a clear impact on this feature. Indeed,
the proportion of Pareto optimal solutions in the largest connected component
decreases from ρ = −0.9 to ρ = 0.4, and then slightly increases from ρ = 0.4 to
ρ = 0.9. Overall, we can expect to reach 50% to 95% of the whole Pareto set by
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iteratively exploring the neighborhood of an approximation set initialized with
at least one non-dominated solution. However, when there are several connected
components in the 1-Pareto graph, it may happen that the distance between
those components is small. Fig. 1(e) reports the smallest distance k such that
the k-Pareto graph becomes connected, i.e. for all pairs of vertices xi, xj ∈ V in
PGk, there is a path between xi and xj . When this minimal distance k is around
9, which is the average distance between random solutions for n = 18, we can
conclude that the distance between Pareto optimal solutions is large. Actually,
for bUBQP instances, this minimal distance is clearly smaller (between 2 and
3 in average). This means that finding a subset of non-dominated solutions can
actually help to identify additional ones, which then may constitute a valuable
asset for initializing local search algorithms.

3.4 Pareto Local Optimal Solutions

In Fig. 1(f), we report the proportion of Pareto Local Optimal (PLO) solu-
tions [14] in the solutions space. A solution x ∈ X is a PLO with respect to
a neighborhood structure N if there does not exist any neighboring solution
x′ ∈ N (x) such that x ≺ x′. As above, the neighborhood structure is taken as
the 1-bit-flip, which is directly related to a Hamming distance 1. Once again,
the distribution d does not seem to affect the number of PLO. However, similar
to the trend observed on the Pareto set cardinality, the objective correlation ρ
modifies the number of PLO to several orders of magnitude, from 20% of the
solution space for ρ = −0.9 to less than 0.02% for ρ = +0.9. Therefore, by
assuming that the difficulty for Pareto-based local search gets higher when the
number of PLO is large, the difficulty of bUBQP instances might increase with
the degree of conflict between the objectives.

4 Local Search for bUBQP

In this section, we give the working principles of four stochastic local search algo-
rithms for identifying a Pareto set approximation to bUBQP instances. We start
by introducing the algorithmic components shared by the different approaches.
Then, we present the search strategies of two scalarizing local search algorithms,
one Pareto-based local search algorithm, as well as a hybrid approach where a
scalarizing and a Pareto local search phases are sequentially applied.

4.1 Main Ingredients

Neighborhood Relation. Similarly to the previous analysis, the neighbor-
hood structure of the proposed local search algorithms is based on the 1-bit-flip
operator: Two feasible solutions are neighbors if they differ exactly on one vari-
able. In other words, a given neighbor can be reached by changing the value
of a binary variable to its complement from the current solution. The size of
the 1-bit-flip neighborhood structure is equal to the problem size n. As in the
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single-objective UBQP, each bUBQP objective function can be evaluated incre-
mentally. We follow the fast incremental evaluation procedure proposed in [9] to
calculate the move gain of a given neighbor. For each objective, the whole set of
neighbors is evaluated in linear time. As a consequence, the objective values of
all neighboring solutions are evaluated in O(n) in the two-objective case.

Tabu Search. The tabu search algorithm proposed in [10] is reported to be one
of the best-performing approaches for single-objective UBQP. In order to extend
it to the multi-objective case, we consider a simple weighted-sum aggregation,
as presented in Section 3.2, so that the initial objective vector values are (tem-
porarily) transformed into a single scalar fitness value. Once the objective values
of a given neighboring solution have been (incrementally) evaluated, we compute
its scalar fitness value with respect to the weighted-sum problem (Eq. 2) for a
given definition of the weighing coefficient vector. As a short-term memory, we
maintain the tabu list as follows: Revisiting solutions is avoided within a certain
number of iterations, called the tabu tenure. The tabu tenure of a given variable
xi is denoted by tenure(i). Hence, variable xi will not be flipped again for a
number of tenure(i) iterations. Following [9], we set the tabu tenure of a given
variable xi after it has been flipped as tenure(i) = tt + rand(10), where tt is a
user-given parameter and rand(10) gives a random integer value in [1, 10]. From
the set of neighbors produced by all non-tabu moves, we select the one with the
best (highest) fitness value. However, all the neighbors are always evaluated, and
a tabu move can still be selected if it produces a better solution than the current
global best; this is called an aspiration criterion in tabu search [10]. The stop-
ping condition is satisfied when no improvement has been performed within a
given number of moves α, called the improvement cutoff. For more details on the
tabu search algorithm for single-objective UBQP, the reader is referred to [10].

4.2 Scalarizing Local Search with Uniform Weights (SLSunif)

The first approach consists in solving different settings of the weighted-sum
problem (Eq. 2) by means of multiple weighting coefficient vectors defined in a
way that the whole region of the Pareto front is covered in the objective space.
For solving each scalarizing sub-problem, any algorithm for the resulting single-
objective problem version can potentially be applied. In our case, we use the tabu
search algorithm detailed above as a (single-objective) solver. Let us consider a
set of µ uniformly defined weighting coefficient vectors (λ0, . . . , λi, . . . , λµ−1),
such that λi

1 = i/(µ − 1) and λi
2 = 1 − λi

1. Each weighting coefficient vector λi

corresponds to a scalarizing sub-problem WSi. We start by identifying a high-
quality solution with respect to the first objective function, corresponding to the
scalarizing sub-problem WS0, associated with the weighting coefficient vector
λ0 = (0, 1). The final solution is then used as a seeding solution for solving the
next sub-problemWS1. We iterate this principle, each time the initial solution for
sub-problem WSi being the one that is returned by the tabu search algorithm
for the previous sub-problem WSi−1. At last, in order to avoid a bias in the
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search process towards one objective, we re-run the same strategy by considering
the reversed sequence of weighting coefficient vectors (λµ−1, λµ−2, . . . , λ0). The
algorithm outputs the union of non-dominated solutions generated during these
two phases. The resulting scalarizing local search with uniform weights (SLSunif)
adapts the “double two-phase local search” from [15] to bUBQP by using the
single-objective tabu search procedure for solving scalarizing sub-problems.

4.3 Dichotomic Scalarizing Local Search (SLSdicho)

Similarly, the second approach is based on solving a sequence of scalarizing
sub-problems, by means of a weighted-sum aggregation function, with the single-
objective tabu search algorithm. However, unlike SLSunif that defines them a pri-

ori, the weighting coefficient vectors are now iteratively determined based on the
solutions identified at previous steps. The resulting SLSdicho approach follows
the principles of dichotomic search from exact bi-objective optimization [1], and
adapt them to a local search engine strategy, similarly to [5]. Notice that, by us-
ing any exact algorithm instead of the tabu search procedure, such a dichotomic
search would output the (exact) set of supported solutions [6]. Unfortunately,
this would require to solve an NP-hard problem for each scalarizing sub-problem.
Indeed, each sub-problem corresponds to a single-objective UBQP instance.

We start by identifying a high-quality solution for each separate objective.
Let x1 (resp. x2) be the approximate solution found by tabu search for objective
f1 (resp. f2). Both solutions are then added to a sequence UF =

{

x1, x2, . . .
}

,
arranged in the decreasing order of f1-values. Next, at each step of the algorithm,
we define a weighting coefficient vector λ =

(

f2(x
2) − f2(x

1), f1(x
1) − f1(x

2)
)

,
corresponding to the sub-problem to be solved in the current iteration. It gives a
search direction that is perpendicular to the segment defined by f(x1) and f(x2)
in the objective space. Let x be the solution identified by tabu search for this
definition of λ. If f1(x

1) > f1(x) > f1(x
2) and f2(x

2) > f2(x) > f2(x
1), then x

is added to the sequence UF . Otherwise, we remove x1 from UF and add it to
an external set UT . Following [5], for each scalarizing sub-problem, we use the
solutions found in previous iterations to seed the search process of the current
iteration. Based on preliminary experiments, both x1 and x2 are here used as
an initial solution for two independent runs of the tabu search procedure based
on λ. The SLSdicho algorithm iterates this principle until UF contains less than
two elements, and returns the non-dominated solutions from UF ∪ UT .

4.4 Pareto Local Search (PLS)

Let us now consider a Pareto approach based on a set of solutions and local
search principles. In contrast to scalarizing approaches, the selection process is
here directly based on the Pareto dominance relation. A typical example is the
Pareto Local Search (PLS) algorithm [14]. An archive of mutually non-dominated
solutions found so far is maintained in two different sets: VF for non-dominated
solutions whose neighborhood has not yet been explored, and VT for solutions
whose neighborhood has already been explored. These two sets are used in order
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to avoid a useless re-evaluation of a solution’s neighborhood. The algorithm
starts with a set of mutually non-dominated solutions to initialize VF , typically
a single random solution. At each iteration, one unvisited solution is chosen at
random from VF . All its neighboring solutions are (incrementally) evaluated and
checked for insertion in the archive. The current solution is then discarded from
VF and added to VT , and dominated solutions are removed from VF ∪ VT . The
algorithm stops once VF is empty, i.e. all solutions from the archive are visited.
PLS always terminates and returns a maximal Pareto local optimum set [14].

4.5 Two-Phase Local Search (TP-LS)

The final algorithm consists in a hybrid two-phase approach, where SLSdicho and
PLS are applied in a sequential way. It combines two fundamentally different and
complementary search strategies: a scalarizing and a Pareto-based approach. In
the first phase, SLSdicho is applied to identify a set of approximate supported
solutions, as described in Section 4.3. This set of mutually non-dominated solu-
tions is then used to initialize the archive VF of the PLS algorithm, and is further
improved by exploring the neighborhood of its own content until no improve-
ment is possible. Hence, contrary to the conventional PLS, the search process
does not start with a single random solution, but with a set of good-quality
solutions identified by a scalarizing approach. The performance of the designed
two-phase local search algorithm (TP-LS) should be impacted by the connect-
edness property for the problem under consideration; the more connected the
Pareto optimal solutions, the easier to identify new non-dominated solutions
from identified ones. Notice that TP-LS shares similar principles with existing
approaches proposed for other problem classes [4, 13, 15].

5 Experimental Analysis

5.1 Experimental Design

We conduct an experimental study on the influence of the problem size (n) and
of the objective correlation (ρ) over the performance of the proposed local search
algorithms for approximating the Pareto set of bUBQP problem instances. In ad-
dition, we consider the best-known approximation sets (best-known) identified
by multiple variants of evolutionary and memetic algorithms proposed in [12].

We investigate the following instance parameter setting: a problem dimen-
sion n ∈ {1000, 2000, 3000, 4000, 5000} and a correlation between the objective
function values ρ ∈ {−0.5,−0.2, 0.0,+0.2,+0.5}. The density of the matrices is
set to d = 0.8. One instance, generated at random, is considered per parameter
combination. This leads to a total of 25 problem instances. A set of 30 runs per
instance is performed for each algorithm. All the algorithms start with a ran-
dom solution. The tabu tenure tt is set to n/150 and the improvement cutoff α
is set to n. At last, for each phase of SLSunif, µ = 101 weighting coefficient vec-
tors (λ0, . . . , λi, . . . , λ100) are uniformly defined as λi

1 = i/100 and λi
2 = 1− λi

1.
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Since all the algorithms have a natural stopping condition, we measure their
performance in terms of approximation set quality and computational cost. For
each instance, we examine the quality of the Pareto set approximations identified
by the competing algorithms in terms of hypervolume and epsilon indicators [17].
First, we compute the hypervolume relative deviation (hypervolume) as (hv(R)−
hv(A))/hv(R), where A ⊆ Z is an approximation set and R is a reference set.
The reference set is the best-found approximation over all tested configurations
for the instance under consideration. Let z−k (resp. z+k ) be the worst (resp. best)
value obtained over all approximation sets for objective fk, the reference point
z̄ = (z̄1, z̄2) for the hypervolume calculation is set to z̄k = z−k − (z+k − z−k ) · 10−2,
k ∈ {1, 2}. Additionally, the epsilon indicator (epsilon) gives the minimum
multiplicative factor by which an approximation set has to be shifted in the
objective space in order to weakly dominate the reference set. In both cases, a
lower indicator-value is better.

5.2 Experimental Results

A summary of our computational results is presented in Table 1, following the
presentation from [2]. The first line corresponds to the bUBQP instance with
ρ = −0.5 and n = 1000, and reports the quality of the Pareto set approximation
obtained by the different algorithms with respect to hypervolume. The average
hypervolume relative deviation obtained by SLSunif, SLSdicho, PLS, TP-LS and
best-known over the 30 executions is respectively 0.009, 0.006, 0.002, 0.000 and
0.031. The ranking obtained by means of a pairwise Wilcoxon signed-rank non-
parametric statistical test gives the following order for this particular setting:
(1) TP-LS, (2) PLS, (3) SLSdicho, (4) SLSunif, and (5) best-known. Complemen-
tarily, Fig. 2 shows the average indicator-values for a subset of instances (the
error bars indicate the confidence interval within a significance level of 10−2).
The results from best-known are omitted for a better readability.

Clearly, all the local search algorithms investigated in the paper largely im-
prove over the previous best-known approximation sets from [12]. Indeed, for the
25 bUBQP instances under investigation, best-known obtains the lowest rank
for 23 of them in terms of hypervolume and epsilon. A simple approach like
SLSunif is able to obtain better best-known results in all the instances but one.
Among the algorithms proposed in the paper, SLSunif is repeatedly dominated
by the others with respect to both indicators. The only notable exceptions are for
instances with correlated objectives where SLSunif performs better than PLS in
terms of hypervolume (while it is slightly worse in terms of epsilon), and for
large-size instances with conflicting objectives where PLS encounters more diffi-
culties compared with other approaches. In both cases, the reason seems to be
that the approximation sets identified by PLS badly covers the lexicographically
optimal regions of the Pareto front. This is also the reason why SLSdicho out-
performs PLS on more than half of the instances with respect to hypervolume,
whereas the same only happens four times with respect to epsilon.

Interestingly, the quality of the approximation sets identified by scalariz-
ing approches (SLSunif, SLSdicho) slightly increases with the objective correla-
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Table 1. Comparison of the competing local search algorithms and of the previous
best-known approximation [12] with respect to the hypervolume relative deviation
(hypervolume) and to the unary multiplicative epsilon indicator (epsilon). The first
value stands for the number of algorithms that statistically outperform the one under
consideration with respect to a pairwise Wilcoxon signed-rank non-parametric statis-
tical test with a p-value of 10−2 by using a Bonferroni correction (lower is better).
The number in brackets stands for the average indicator-value, rounded to 10−3 (lower
is better). Bold ranking values correspond to the best-performing algorithm for the
instance and the indicator under consideration.

ρ n SLSunif SLSdicho PLS TP-LS best-known [12]
hypervolume

−0.5 1000 3 (0.009) 2 (0.006) 1 (0.002) 0 (0.000) 4 (0.031)

−0.2 1000 3 (0.008) 2 (0.006) 1 (0.003) 0 (0.000) 4 (0.023)

0.0 1000 3 (0.007) 2 (0.006) 1 (0.004) 0 (0.000) 4 (0.016)

0.2 1000 1 (0.005) 1 (0.005) 3 (0.006) 0 (0.001) 4 (0.008)

0.5 1000 2 (0.002) 3 (0.003) 4 (0.008) 0 (0.002) 0 (0.002)

−0.5 2000 3 (0.007) 2 (0.004) 1 (0.002) 0 (0.000) 4 (0.053)

−0.2 2000 3 (0.007) 2 (0.004) 1 (0.003) 0 (0.001) 4 (0.047)

0.0 2000 3 (0.007) 1 (0.005) 1 (0.005) 0 (0.001) 4 (0.041)

0.2 2000 2 (0.005) 1 (0.004) 3 (0.006) 0 (0.001) 4 (0.023)

0.5 2000 1 (0.003) 1 (0.003) 4 (0.010) 0 (0.002) 3 (0.006)

−0.5 3000 3 (0.007) 2 (0.003) 1 (0.002) 0 (0.000) 4 (0.083)

−0.2 3000 3 (0.007) 1 (0.003) 1 (0.003) 0 (0.001) 4 (0.068)

0.0 3000 3 (0.007) 1 (0.004) 2 (0.006) 0 (0.001) 4 (0.062)

0.2 3000 2 (0.006) 1 (0.004) 3 (0.007) 0 (0.001) 4 (0.037)

0.5 3000 2 (0.003) 1 (0.002) 3 (0.010) 0 (0.001) 3 (0.010)

−0.5 4000 3 (0.007) 1 (0.003) 2 (0.006) 0 (0.000) 4 (0.092)

−0.2 4000 3 (0.007) 1 (0.003) 2 (0.004) 0 (0.001) 4 (0.077)

0.0 4000 3 (0.007) 1 (0.003) 2 (0.005) 0 (0.001) 4 (0.093)

0.2 4000 2 (0.004) 1 (0.002) 3 (0.006) 0 (0.001) 4 (0.047)

0.5 4000 2 (0.003) 1 (0.002) 3 (0.008) 0 (0.001) 4 (0.014)

−0.5 5000 2 (0.007) 1 (0.002) 3 (0.020) 0 (0.000) 4 (0.141)

−0.2 5000 2 (0.007) 1 (0.003) 3 (0.008) 0 (0.001) 4 (0.130)

0.0 5000 3 (0.006) 1 (0.003) 2 (0.006) 0 (0.001) 4 (0.130)

0.2 5000 2 (0.005) 1 (0.003) 3 (0.007) 0 (0.001) 4 (0.094)

0.5 5000 2 (0.003) 1 (0.002) 3 (0.010) 0 (0.001) 4 (0.021)

epsilon

−0.5 1000 3 (1.013) 2 (1.009) 1 (1.003) 0 (1.001) 4 (1.015)

−0.2 1000 2 (1.011) 2 (1.009) 1 (1.004) 0 (1.001) 4 (1.014)

0.0 1000 2 (1.010) 2 (1.010) 1 (1.005) 0 (1.001) 2 (1.010)

+0.2 1000 2 (1.009) 3 (1.009) 1 (1.005) 0 (1.001) 2 (1.008)

+0.5 1000 3 (1.011) 3 (1.012) 2 (1.008) 0 (1.002) 1 (1.005)

−0.5 2000 3 (1.009) 2 (1.007) 1 (1.003) 0 (1.001) 4 (1.026)

−0.2 2000 2 (1.008) 2 (1.008) 1 (1.003) 0 (1.001) 4 (1.027)

0.0 2000 3 (1.009) 2 (1.007) 1 (1.005) 0 (1.001) 4 (1.025)

+0.2 2000 3 (1.009) 2 (1.008) 1 (1.004) 0 (1.001) 4 (1.019)

+0.5 2000 2 (1.011) 1 (1.009) 1 (1.008) 0 (1.002) 4 (1.014)

−0.5 3000 3 (1.009) 2 (1.005) 1 (1.003) 0 (1.000) 4 (1.051)

−0.2 3000 3 (1.009) 2 (1.006) 1 (1.003) 0 (1.001) 4 (1.039)

0.0 3000 3 (1.008) 1 (1.006) 1 (1.005) 0 (1.001) 4 (1.034)

+0.2 3000 3 (1.007) 2 (1.006) 1 (1.004) 0 (1.001) 4 (1.025)

+0.5 3000 2 (1.005) 1 (1.004) 1 (1.004) 0 (1.001) 4 (1.011)

−0.5 4000 3 (1.008) 1 (1.004) 2 (1.007) 0 (1.000) 4 (1.055)

−0.2 4000 3 (1.008) 2 (1.005) 1 (1.003) 0 (1.001) 4 (1.042)

0.0 4000 3 (1.008) 2 (1.005) 1 (1.004) 0 (1.001) 4 (1.059)

+0.2 4000 3 (1.006) 2 (1.004) 1 (1.003) 0 (1.001) 4 (1.033)

+0.5 4000 3 (1.005) 1 (1.003) 1 (1.003) 0 (1.001) 4 (1.020)

−0.5 5000 2 (1.008) 1 (1.004) 3 (1.021) 0 (1.000) 4 (1.074)

−0.2 5000 2 (1.008) 1 (1.004) 2 (1.007) 0 (1.001) 4 (1.090)

0.0 5000 3 (1.008) 1 (1.005) 1 (1.004) 0 (1.001) 4 (1.064)

+0.2 5000 3 (1.007) 1 (1.004) 1 (1.004) 0 (1.001) 4 (1.050)

+0.5 5000 2 (1.004) 1 (1.003) 2 (1.004) 0 (1.001) 4 (1.025)
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Fig. 2. Comparison of SLSunif (◦), SLSdicho (�), PLS (⋄) and TP-LS (△) with respect to
hypervolume (top) and epsilon (bottom) for ρ = −0.5 (left), ρ = 0.0 (center), and
ρ = +0.5 (right). A lower value is better.

tion ρ, as the proportion of supported solutions; see Fig. 1(c). By comparing
SLSunif with SLSdicho, the later is always at least as good as the former for all
the instances we investigated but one (ρ = +0.5, n = 1000). The reason is that
the SLSunif algorithm is limited on the approximation set size that it is able to
identify (a fixed number of 101 weighting coefficient vectors times two phases,
i.e. 202 solutions at most); see Fig. 3. On the contrary, SLSdicho adaptively
determines a number of weighting coefficient vectors based on the solutions it
iteratively identifies. As a consequence, it takes advantage of manipulating an
unbounded approximation set, that allows SLSdicho to obtain better indicator-
values overall. Still, as shown in Fig. 3, the number of solutions identified by both
scalarizing approaches, which only seek for supported solutions, are lower than
Pareto-based approaches by several orders of magnitude. However, the number
of solutions found by all approaches reduces with the objective correlation ρ, as
the number of Pareto optimal solutions reported in Section 3.1.

Overall, in terms of approximation quality, there is a clear advantage to
TP-LS. Actually, hybridizing SLSdicho and PLS allows to obtain statistically better
approximation sets, in terms of hypervolume and epsilon, than all the other
competing algorithms, for all the instances. In particular, there is a substantial
improvement of the indicator-values, showing that TP-LS is consistently able to
identify a high-quality approximation set, which is very close to the reference set,
especially for instances with conflicting objectives. Indeed, more than 99.67% of
the best-found hypervolume is covered by the approximation set identified by
TP-LS in the worst case. The epsilon indicator-value is always less than 1.003. The
weakness of PLS in identifying good-quality lexicographical solutions seems to be
overcome by initializing the archive with high-quality scalarizing solutions. This
means that finding some non-dominated solutions can actually help to identify
additional ones, as conjectured in Section 3.3.
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Fig. 3. Comparison of SLSunif (◦), SLSdicho (�), PLS (⋄) and TP-LS (△) with respect
to the size of the approximation set found for ρ = −0.5 (left), ρ = 0.0 (center), and
ρ = +0.5 (right). Notice the log-scale on the y-axis.

More surprisingly, the hybrid TP-LS approach also allows to improve the
performance of PLS in terms of computational time. As reported in Fig. 4, the
running time of TP-LS is below the one of PLS for most of the instances. By
analyzing this more carefully, TP-LS actually allows to generate much more can-
didate solutions, and as many potentially non-dominated solutions as PLS, by
performing much less pairwise comparisons, particularly for large-size instances.
As well, the overhead of TP-LS compared to only performing the first phase as in
SLSdicho is almost insignificant. At last, Fig. 4 also reveals that the loss of SLSunif
in terms of quality is in fact counter-balanced by a very short computing time,
which is lower than all other algorithms by several orders of magnitude. Actually,
one single run of SLSunif allows to improve the aggregated best-known results
from [12] by running faster than each single run of the algorithms from [12].

6 Conclusions

In this paper, we designed and analyzed stochastic local search algorithms for
identifying a Pareto set approximation in bi-objective unconstrained binary
quadratic programming. First, we designed a local search approach that iter-
atively identifies an approximate solution for multiple scalarizing sub-problems,
such that the whole region of the Pareto front is covered in the objective space.
The resulting SLSunif algorithm is based on a weighted-sum aggregation function,
on a set of uniformly defined weighting coefficient vectors, and on a state-of-the-
art tabu search procedure for the single-objective version of the problem under
consideration. The scalarizing sub-problems are solved in sequence, such that
the solution found at a given iteration is used to initialize the search process
of the subsequent iteration. SLSunif allows to obtain a substantial improvement
over the best-know solutions from previous studies with much less computations.
Furthermore, the computational ressources required for instances with thousands
of variables is less than a few minutes. However, the given number of weight-
ing coefficient vectors severely limits the cardinality of the approximation set
identified by SLSunif. This user-defined parameter cannot be easily set a priori

without performing an expensive experimental campaign. For this reason, we
considered an improved scalarizing approach, based on the dichotomic search
principles, that defines the weighting coefficient vector to be used in the current
iteration based on solutions identified in previous iterations. As a consequence,
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Fig. 4. Comparison of SLSunif (◦), SLSdicho (�), PLS (⋄) and TP-LS (△) with respect to
to the CPU time (top), the number of comparisons (middle), and the number of visited
solutions (bottom), for ρ = −0.5 (left), ρ = 0.0 (center), and ρ = +0.5 (right). Notice
the log-scale on the y-axis.

there is no user-defined limit on the number of solutions manipulated by this
search strategy. The designed SLSdicho algorithm allows to improve the results of
SLSunif in terms of quality, while inducing an extra cost in terms of computing
time. Still, for these two scalarizing approaches, that both seek supported opti-
mal solutions only, the cardinality of the obtained approximation set is less than
those of Pareto-based approaches. In addition, we highlighted that the perfor-
mance of scalarizing local search decreases with the degree of conflict between
the objectives, following the proportional number of supported solutions. Next,
a Pareto local search algorithm, that iteratively explores the neighborhood of
an archive of mutually non-dominated solutions, obtains similar results in terms
of quality indicator-values, while requiring even more computational resources.
Indeed, the PLS strategy obtains larger approximation sets while exploring much
less candidate solutions. The bottleneck of its effectiveness is the number of com-
parisons required to maintain the archive, while the bottleneck of its efficiency
is a poor quality in finding strong solutions at the extremes of the Pareto front.
At last, we designed a two-phase algorithm that applies SLSdicho and PLS in a
sequential way, the output of the former being the input of the latter. The TP-LS
approach significantly surpasses the other algorithms over all the configurations
we experimented. The computational overhead is negligible compared with the
stand-alone SLSdicho approach, TP-LS being able to generate as many solutions
as PLS while performing much less comparisons. This hybrid algorithm profits
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from the closeness that exists between optimal solutions. Starting with a subset
of approximate (supported) non-dominated solutions, TP-LS is able to identify
additional ones, then improving the overall approximation set quality.

Extending the stochastic local search approaches investigated in the paper
to unconstrained binary quadratic programming with more than two objectives
would improve even more the expressive ability of the problem formulation. This
would provide a more general unifying modeling and solution framework for
multi-objective optimization that could potentially enable an efficient reformu-
lation and resolution of a wide class of large-scale and NP-hard multi-objective
combinatorial optimization problems.
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