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To the Memory of I. M. Gelfand

Abstract: We prove a BGG type reciprocity law for the category of finite dimensional modules

over algebraic supergroups satisfying certain conditions. The equivalent of a standard module in

this case is a virtual module called Euler characteristic due to its geometric interpretation. In the

orthosymplectic case, we also describe indecomposable projective modules in terms of those Euler

characteristics.

Key words: Finite dimensional representations of algebraic supergroups, Flag variety, BGG

reciprocity law.

Introduction

In many representation theories, there exist reciprocity laws. Roughly speaking, if the
category in question has enough projective modules, one defines in a natural way a family
of so-called standard modules such that every projective indecomposable module has a
filtration with standard quotients. The reciprocity law states that the multiplicity of a
standard module in the projective cover of a simple module equals the multiplicity of
this simple module in the standard module. Those standard modules are usually easy to
describe, in particular, their characters are given by simple formulae.

For instance, Brauer discovered such a law in the case of finite groups representations
in positive characteristic, [5]. Another example is a result of Humphreys, [13], for repre-
sentations of semi-simple Lie algebras in positive characteristic. In 1976 ([2]) Bernstein,
Gel’fand and Gel’fand introduced the category O of highest weight modules for a semi-
simple Lie algebra in characteristic 0, and proved a reciprocity law in this category. Irving,
[14], and Cline, Parshall and Scott, [11], introduced a general notion of highest weight cat-
egory and proved a generalized BGG reciprocity. Using this general approach, it is easy
to prove similar results for the category O of highest weight modules for classical simple
Lie superalgebras. For the category of finite-dimensional representations of classical Lie
superalgebras of type I, Zou proved BGG reciprocity in [30]. For superalgebras of type II
the question remained open, in particular since it was unclear how to define a standard
object.

The first part of this paper (Section 2) is devoted to the generalized BGG reciprocity
for algebraic supergroups G with reductive even part and symmetric root decomposition.
This class includes all simple supergroups such that the corresponding Lie superalgebras
admit an invariant even symmetric form, in particular, both type I and type II classi-
cal Lie superalgebras. In those cases, the irreducible representations are parametrized
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by a highest weight, and if λ is a highest weight, we denote by Lλ the corresponding
irreducible representation. Every Lλ has an indecomposable projective cover Pλ in the
category of finite-dimensional representations of G, [26]. However, in this situation there
is no direct analogue of the so-called standard modules. Hence we introduce a family
of virtual modules E(µ), living in the Grothendieck group of the category: we call those
modules Euler characteristics because they come from the cohomology of line bundles on
flag supervarieties. It turns out that in the Grothendieck ring, the class [Pλ] of Pλ are
linear combinations of E(µ)-s and we denote the coefficient of E(µ) in [Pλ] by a(λ, µ). In
general the coefficients a(λ, µ) may be negative. The reciprocity law (Theorem 1) states
that a(λ, µ) is exactly the multiplicity of Lλ in E(µ). The key argument in the proof is a
Z/2Z-graded analogue of the Bott reciprocity result, [3], see Proposition 1.

All the constructions above depend on the choice of a Borel subgroup in G: in the super
case, this choice is not unique up to conjugation, and the result is true for every possible
choice. In particular, in the case of GL(m,n) our result generalizes Zou’s result. In this
case the modules E(µ) are not virtual - they coincide with the so-called Kac modules (see
the example at the end of Section 2).

It is worth mentioning that in general the weights λ (labeling Lλ and Pλ) and µ (labeling
E(µ)) do not belong to the same set. For instance, in the orthosymplectic case (Section
4) the µ-s must have tailless weight diagrams. Finally, let us emphasize on the fact that
this category has infinite cohomological dimension and the subgroup generated by [Pλ]-s
is a proper subgroup in the whole Grothendieck group. Probably the simplest example of
such situation is the category of finite-dimensional representations of the algebra C[z]/(z2)
with a unique simple module L and a unique indecomposable projective module P related
by [P ] = 2[L] in the Grothendieck group.

The rest of the paper deals with the computation of the coefficients a(λ, µ) for the
orthosymplectic supergroup SOSP (m, 2n). The first computation of those coefficients in
the GL(m,n) case was made in [24]. In [4], J. Brundan used another method, relating
this representation theory with the one of gl1. He interpreted the translation functors for
gl(m,n) as linear operators of gl1 acting on Λn(V ) ⌦ Λm(V ⇤), where V is the standard
representation of gl1. Later on, in [6, 7, 8] Brundan and Stroppel introduced weight
diagrams, which give a clear picture of the translation functors action. Thus the category of
finite dimensional GL(m,n)-modules is very well understood now, including the projective
modules.

We adopt Brundan’s categorification approach. Here we have to separate in two cases
depending on the parity ofm. Ifm is odd, we identify the lattice in the Grothendieck group
generated by E(µ)-s with a natural lattice in the tensor representation Λm(V ⇤) ⌦ Λn(V )
of the infinite-dimensional Lie algebra gl1/2 with Dynkin diagram

◦ − ◦ − ◦ − . . . .

As in the case of GL(m,n) certain translation functors correspond to the Chevalley gen-
erators of gl1/2. However, there is another translation functor, which we call the switch

functor which does not have such interpretation. We compute the coefficients a(λ, µ) in
Section 8 (see Theorem 2, Theorem 3 and Theorem 4) via a comparison between the action
of the translation functors on Pλ-s and E(µ)-s. We start with a typical λ (in this case
Pλ, E(λ) and Lλ coincide) and then obtain an arbitrary Pλ by application of translation
functors. If m is even, the corresponding infinite-dimensional Lie algebra is gl1/2⊕ gl1/2

(see Section 7).
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Note that in [4] Brundan identifies indecomposable projectives with certain topological
basis in a natural completion of the tensor representation of Λm(V ⇤) ⌦ Λn(V ). In our
case one can realize projectives inside Λm(V ⇤)⌦ Λn(V )⌦Z Q without taking completion,
see Proposition 3 (Section 8). In particular, one can express any E(µ) as a finite rational
combination of [Pλ]-s. This is an essential difference with the case of GL(m,n). One
only has to use the completion for realization of simple modules as we explain at the end
of paper. At the moment we do not have a nice characterization of the lattice in the
completion generated by the classes of simple modules.

The main result of the paper for orthosymplectic supergroups is a simple combinatorial
algorithm calculating a(λ, µ). This algorithm implies, in particular, that a(λ, µ) = 0,±1.
It also provides the algorithm for calculating characters of all indecomposable finite-
dimensional projective modules and multiplicities of all finite-dimensional simple modules
in all indecomposable projective modules. That however does not imply automatically
an expression of irreducible characters in the same terms. In the case of GL(m,n) this
difficulty can be resolved by allowing infinite linear combinations of Euler characteristics
E(µ)-s, i.e. by completing the Grothendieck ring. For general approach in this situation
see [1]. It is possible to do in our case, but we do not solve this problem in the present pa-
per. We only give an illustration how it can be done in the simplest case (see the example
at the end of the paper).

The problem of calculating irreducible characters was solved in [12] by a slightly different
method, namely, by calculating Euler characteristics of vector bundles over an adequate
variety (a generalized grassmannian) related to the highest weight and using an induction
on the rank of the supergroup. It seems that this difference between general linear and
orthosymplectic cases is related to the fact that in the latter case the set of dominant
weights has a minimal element with respect to the standard order.

There remain several open questions such as an interpretation of indecomposable projec-
tives and simple modules in terms of canonical bases and the construction of the analogue
of Khovanov’s diagram algebra, see [6],[7],[8] and [9]. It would be also quite interesting to
understand how formulae for characters of the projective modules obtained in this paper
are related to the results of [10]. In Section 4 we explain how to transfer combinatorial
data of [10] into the language of weight diagrams used in the present paper.

We thank Jonathan Brundan, Catharina Stroppel and Elizaveta Vishnyakova for fruitful
discussions. This work was partially supported by NSF grant n. 0901554.

1. Notations and context

We work over algebraically closed field of characteristic zero. For the general theory
of Lie superalgbras and their representations, see [20]. Let G be a connected algebraic
supergroup with reductive even part G0 and g denote its Lie superalgebra. Then g0 is a a
reductive Lie algebra and g is a semisimple g0-module, see [26]. We denote by h0 a Cartan
subalgebra of g0 and by h a Cartan subalgebra of g, let H0 and H be the corresponding
algebraic subgroups of G. Denote by W the Weyl group W (g0, h0).

In order to prove the BGG reciprocity we need the following assumptions on g

• h = h0, and therefore H = H0;
• g1 ' g⇤1 as a g0-module.

The following simple Lie superalgebras satisfy these assumptions: (p)sl(m,n), osp(m, 2n),
D(2, 1; a), G3 and F4. Other examples can be found in [26].
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Recall that H = H0 is an algebraic torus. Let Λ denote the free abelian group of
characters of H. One has a root decomposition

g = h⊕
M

α2∆

gα,

where

gα = {x 2 g|Adh x = ↵(h)x, 8h 2 H}.

The finite subset ∆ ⇢ Λ is called the set of roots of g. Our assumptions imply that
dim gα = (1, 0) or (0,mα) for any root ↵ 2 ∆. In the former case we say that ↵ is
even and in the latter that ↵ is odd. So we have a decomposition ∆ = ∆0 [∆1 defined
by the parity of roots. Furthermore, our assumptions imply that ∆ = −∆. It is not
difficult to show that one can define a parity function p : Λ! Z2 satisfying the condition
p(λ+ ↵) = p(λ) + p(↵) for all λ 2 Λ and ↵ 2 ∆. In general the choice of p is not unique.

As in the case of reductive Lie algebras, we define a decomposition ∆ = ∆+ [ ∆− of
roots and the corresponding triangular decomposition

g = n− ⊕ h⊕ n

where

n− =
M

α2∆−

gα, n =
M

α2∆+

gα.

The subalgebra b = h⊕n is called a Borel subalgebra of g and the corresponding algebraic
subgroup B is called a Borel subgroup of G. Recall that the Borel subgroups in G are
not always mutually conjugate. It is easy to see that B is the semi-direct product of the
algebraic torus H and the unipotent supergroup N . We set

⇢0 =
1

2

X

α2∆+

0

↵, ⇢1 =
X

α2∆+

1

mα↵, ⇢ = ⇢0 − ⇢1.

By C we denote the category of finite-dimensional G-modules, which is isomorphic to
the category of g-modules, semisimple over h, with weights in Λ, see [26]. It was shown
in [17] that any simple module in C is a quotient of a Verma module with highest weight
λ 2 Λ by its maximal submodule. A weight λ is called dominant if this quotient is finite-
dimensional. Thus, every dominant weight defines two simple modules, one is obtained
from another by application of the functor Π of change of parity. In order to avoid parity
chasing, we introduce a parity function p : Λ ! Z2 and define the category F as the full
subcategory of C consisting of modules such that the parity of any weight space coincides
with the parity of the corresponding weight. It is not hard to see that C = F ⊕Π(F).

Define the standard order on Λ by setting: λ  µ iff µ− λ =
P

α2∆+ nα↵ where all nα

are non-negative integers.
For any dominant weight λ, we will denote by Lλ the simple g-module in the category

F with highest weight λ.
It is well-known (see, for example, [26] Lemma 9.1), that in the category F every simple

module Lλ has an indecomposable projective cover which we denote by Pλ.
Denote by Λ+ the set of all weights λ such that hλ, β̌i is a positive integer for any simple

root β of ∆+
0 , where β̌ 2 [gβ , g−β ] such that hβ, β̌i = 2.

Let R = Z[eµ] for all µ 2 Λ. For M 2 F let mµ denote the multiplicity of the weight µ
in M . Define the character

Ch(M) =
X

µ2Λ

mµe
µ 2 R.
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Denote by K(F) the Grothendieck ring of the category F (multiplication comes from
tensor product). We will denote by [M ] the class of a module M in K(F) and by [M : L]
the multiplicity of an irreducible module L in the module M . Clearly, [Lλ] for all dominant
λ form a basis of K(F). It is also clear that Ch : K(F)! R is a homomorphism of rings.
Note that

Ch(Lλ) = eλ +
X

µ<λ

mµe
µ,

thus the Ch(Lλ) are linearly independent. Due to our convention about parity, for any
two modules M and N in F , Ch(M) = Ch(N) if and only if [M ] = [N ] in K(F). Hence
Ch is injective. For classical Lie superalgebras the image of Ch is described in [29].

Let g be a finite-dimensional Kac–Moody superalgebra such that the quotient of [g, g]
by the center is simple. In other words, g = sl(m,n), where 1  m < n, gl(n, n) with
n ≥ 2, osp(m, 2n), D(2, 1;↵), G3 or F4 (see [16]). Let G denote a connected algebraic
supergroup with Lie algebra g. For existence of such supergroup see, for instance, [26].
Then G satisfies our assumptions.

Recall that g is equipped with a non degenerate invariant bilinear form and the restric-
tion of this bilinear form to h is also non degenerate. Thus, we have a non-degenerate
form on Λ.

Following [17], we call a weight λ typical if (λ + ⇢, ↵) 6= 0 for any isotropic root ↵.
(Recall that an isotropic root is automatically odd). It follows from [17] that Pλ = Lλ if
and only if λ is typical.

As follows from [17] a typical λ is dominant iff λ+ ⇢ 2 Λ+. For a general λ, the latter
statement is true only for gl(m,n) or osp(2, 2n) and a special choice of a Borel subgroup.

Let U(g) be the universal enveloping algebra of g and Z(g) be its center. For every
weight λ, we write χλ for the corresponding central character. A central character χ is
dominant if there exists a dominant λ such that χ = χλ.

The category F splits into direct sum of blocks ⊕Fχ consisting of modules admitting
the generalized central character χ. For any M 2 F we denote by Mχ the projection of
M to the block Fχ.

2. Geometric induction and BGG reciprocity

In this section we assume that G satisfies the assumptions of Section 1.
Let B be a Borel subgroup of G with Lie algebra b, and let V be a B-module. In [12]

we defined a derived functor Γi(G/B, ·) from the category of B-modules to the category
of G-modules. For any B-module V we define

Γi(G/B, V ) := H i(G/B, V ⇤)⇤,

where H i(G/B, V ⇤) denotes the i-th cohomology group of the induced vector bundle
G⇥B V ⇤ on the flag supervariety G/B (see [18],[19] and [22] for definitions). Recall that
H i(G/B, V ⇤) is a G-module, see [18], [19], and it is not difficult to see that Γi(G/B, V ) :=
H i(G/B, V ⇤)⇤ is an object of F if V satisfies the parity condition about weights.

It is also possible to define H i(G/B, V ⇤) following [15]. Using this approach one can
avoid the rather technical question of existence of G/B. We will follow this approach in
the paper. We define H0(G/B, ·) as a functor from the category of B-modules to the
category of G-modules using the Zuckerman functor, see, for instance, [27]. Let Γg0(M)
denote the set of g0-finite vectors in a g-module M . For any B-module V we set

(1) H0(G/B, V ) = Γg0(HomU(b)(U(g), V )).
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It is not hard to see that H0(G/B, V ) has a unique G-module structure compatible with
the action of g. It is straightforward that H0(G/B, ·) is right adjoint to the restriction
functor. Furthermore, H0(G/B, ·) is left exact, and we define H i(G/B, ·) as the right
derived functor of H0(G/B, ·).

Denote by Cλ the one-dimensional B-module with weight λ 2 Λ and by E(λ) the class
of the Euler characteristic

E(λ) :=
X

µ2Λ

dim(G/B)0
X

i=0

(−1)i[Γi(G/B,Cλ) : Lµ][Lµ].

One can easily generalize Proposition 1 in [12] or Theorem 12 in [27] and obtain the
following character formula for E(λ)

Lemma 1. -

(2) Ch E(λ) = D
X

w2W

"(w)ew(λ+ρ),

where

D0 =
Y

α2∆+

0

(eα/2 − e−α/2), D1 =
Y

α2∆+

1

(eα/2 + e−α/2)mα , D =
D1

D0
.

Proof. - Note that in the case G = G0, (2) is a direct consequence of the Borel-Weil-Bott
theorem. Moreover, if V is a B0-module and

E0(V ) :=

dim(G0/B0)
X

i=0

(−1)i[Γi(G0/B0, V )],

then

(3) Ch E0(V ) =
1

D0

X

w2W

"(w)w(eρ0Ch V )),

by additivity of Euler characteristic.
Consider an injective resolution 0 ! R0 ! R1 ! · · · of C−λ in the category of B-

modules. By default it is an injective resolution in the category of B0-modules. By
definition H i(G/B,C−λ) is given by the i-th cohomology of the complex

(4) 0! H0(G/B,R0)! H0(G/B,R1)! · · · .

For any subalgebra l ⇢ g containing h we denote by (l, h)-mod the category of l-modules
semisimple over h. The universal enveloping algebra U(g) considered as (b, g0)-bimodule
has a finite filtration with the quotients U(b)⌦U(b0)S

k(g1/b1)⌦U(g0), with k = 1, . . . , dim(g1/b1).
Since Ri is injective in (b, h)-mod, HomU(b)(U(g), Ri) also has a filtration with quotients

F k
i ' HomU(b)(U(b)⌦U(b0) S

k(g1/b1)⌦ U(g0), Ri) ' HomU(b0)(U(g0), Ri ⌦ Sk(g1/b1)
⇤),

where the latter isomorphism is an isomorphism of g0-modules. Note that by construction
F k
i are injective in (g0, h)-mod, hence

HomU(b)(U(g), Ri) '
M

k

F k
i = HomU(b0)(U(g0), Ri ⌦ S(g1/b1)

⇤).

By (1) we have an isomorphism of g0-modules

H0(G/B,Ri) ' H0(G0/B0, Ri ⌦ S(g1/b1)
⇤).
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Since Ri⌦S(g1/b1)
⇤ gives an injective resolution of C−λ⌦S(g1/b1)

⇤, the complex calculat-
ing H i(G0/B0, C−λ⌦S(g1/b1)

⇤) is the associated graded of (4). The Euler characteristics
of both complexes are the same. Thus, we obtain

Ch E(λ) = Ch E0(Cλ ⌦ S(g1/b1)).

The character of Cλ ⌦ S(g1/b1) is given by

Ch(Cλ ⌦ S(g1/b1)) = eλ
Y

α2∆+

1

(1 + e−α)mα = D1e
λ−ρ1

Using (3) and W -invariance of D1 one obtains (2). 2

Note that (2) implies the following

Lemma 2. - (a) For all w 2W , one has

E(λ) = "(w)E(w(λ+ ⇢)− ⇢).

In particular, if hλ+ ⇢, β̌i = 0 for some even root β, then E(λ) = 0.
(b) The set

{Ch E(λ), λ+ ⇢ 2 Λ+}

is linearly independent in R.

Proof. - (a) follows immediately from (2). To prove (b) we observe that any W -orbit in Λ

with trivial stabilizer meets Λ+ in exactly one point. Hence the set {
P

w2W "(w)ew(λ+ρ), λ+
⇢ 2 Λ+} is linearly independent in R. Therefore (2) implies (b). 2

We denote by KE(F) the Grothendieck subgroup in K(F) generated by E(λ) for all
λ+ ⇢ 2 Λ+. By Lemma 1 in [12] KE(F) is an ideal in K(F).

We continue with the following analogue of Bott’s reciprocity result.

Proposition 1. - Let Mh denote the set of h-invariants in an h-module M . Then, for
any B-module V and any dominant weight λ, we have

⇥

H i(G/B, V ) : Lλ

⇤

= dimH i(n, P ⇤
λ ⌦ V )h.

Proof. - For every M 2 F we have

[M : Lλ] = dimHomg(Pλ,M).

Consider an injective resolution 0! R0 ! R1 ! · · · of V in the category of B-modules.
By definition H i(G/B, V ) is given by the i-th cohomology of the complex (4). Since
HomG(Pλ, ·) is an exact functor, HomG(Pλ, H

i(G/B, V )) is given by the i-th cohomology
of the complex

0! HomG(Pλ, H
0(G/B,R0))! HomG(Pλ, H

0(G/B,R1))! · · · .

Using Frobenius reciprocity we have

HomG(Pλ, H
0(G/B,Rj)) = HomB(Pλ, Rj).

Thus, we obtain that

HomG(Pλ, H
i(G/B, V )) = ExtiB(Pλ, V ).

Now we recall that B is the semidirect product of the torus H and the unipotent
supergroup N . Therefore it is easy to see that

ExtiB(Pλ, V ) = Extin((Pλ, V )h = H i(n, P ⇤
λ ⌦ V )h.
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2

By dualizing we obtain the following corollary.

Corollary 1. - For any weight ⌫ and any dominant weight λ, we have

[Γi(G/B,Cν) : Lλ] = dimH i(n, Pλ ⌦ C−ν)
h.

Lemma 3. - Denote by b(⌫, λ) the coefficients in the decomposition

E(⌫) =
X

λ

b(⌫, λ)[Lλ].

One has:
(a) b(⌫, λ) = "(w)b(w(⌫ + ⇢)− ⇢, λ).
(b) The coefficient b(⌫, λ) is equal to the constant term in the formal expression D−1e−ν−ρCh(Pλ).

(c) Ch Pλ =
P

ν+ρ2Λ+ b(⌫, λ)(D
P

w2W "(w)ew(ν+ρ)).

Proof. - (a) follows from Lemma 2 (a).
Corollary 1 implies

b(⌫, λ) =
X

i

(−1)i dimH i(n, Pλ ⌦ C−ν)
h.

Using the complex which computes the Lie superalgebra cohomology we obtain
X

i

(−1)i Ch H i(n, Pλ ⌦ C−ν) =
X

i

(−1)i Ch(Pλ ⌦ C−ν ⌦ Λi(n⇤)) =

= e−ν Ch Pλ

X

i

(−1)i Ch Λi(n⇤).

Since
X

i

(−1)i Ch Λi(n⇤) =

Q

α2∆+

0

(1− e−α)
Q

α2∆+

1

(1 + e−α)mα
= D−1e−ρ,

we obtain (b).
Finally, (b) implies that for some finite subset S ⇢ Λ

Ch Pλ =
X

ν2S

b(⌫, λ)Deν+ρ.

Using (a) it can be rewritten in the form

Ch Pλ =
X

ν+ρ2Λ+\S

b(⌫, λ)(D
X

w2W

"(w)ew(ν+ρ)).

2

Theorem 1. - We have the following identity in K(F)

[Pλ] =
X

µ+ρ2Λ+

a(λ, µ)E(µ).

Moreover, the following analogue of BGG reciprocity holds

a(λ, µ) = b(µ, λ).
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Proof. - The statement follows from Lemma 3 (c) and Lemma 1. 2

Let KP (F) be the subgroup in K(F) generated by classes of all projective modules.
Since a tensor product of a projective module and any module is projective, KP (F) is
an ideal in K(F). Recall that KE(F) is the subgroup in K(F) generated by the Euler
characteristics. We have KP (F) ⇢ KE(F) ⇢ K(F). Then b(λ, µ) express the basis of of
KE(F) in terms of the basis of K(F) and a(⌫, λ) express the basis of of KP (F) in terms
of the basis of KE(F). For two dominant weights µ and ⌫ we have

[Pν : Lµ] =
X

λ+ρ2Λ+

a(⌫, λ)b(λ, µ).

Example. Let G = GL(m,n) and B be the subgroup of upper triangular matrices. Then
Λ+ − ⇢ coincides with the set of dominant weights. Moreover, it is well-known (see for
example [22]) that for any λ 2 Λ+, Γi(G/B,Cλ) = 0 if i > 0. Moreover,

Γ0(G/B,Cλ) ' Kλ := U(g)⌦U(g+) L
0
λ,

where g+ = g0 + b and L0
λ is the irreducible g0-module of highest weight λ with trivial

action of b1. The module Kλ was first considered in [17] and is usually called a Kac
module. It was proven in [30] that every indecomposable projective module Pλ has a
filtration by Kac modules Kµ and that the multiplicity of Kµ in Pλ equals the multiplicity
of Lλ in Kµ. A combinatorial algorithm for calculating a(λ, µ) in this case was obtained
by Brundan, [4]. We will explain it in Section 4 after introducing weight diagrams.

3. Classical supergroups GL(m,n) and SOSP (m, 2n)

In this section we collect all necessary facts about roots and weights for the classical
supergroups. So we assume that G = GL(m,n) or SOSP (m, 2n).

The lattice Λ of all integral weights is

Λ =
m
M

i=1

Z"i ⊕
n

M

j=1

Zδi.

We define a parity homomorphism p : Λ ! Z2 by p("i) = 0, p(δj) = 1 for all 1  i  m,
1  j  n. The invariant form on Λ is given by

("i, "j) = δij , ("i, δj) = 0, (δi, δj) = −δij .

Now we recall the description of ∆ (see [16]).
The even roots ∆0 of gl(m,n) are all the vectors of the form "i − "j and δi − δj with

i 6= j. The odd roots ∆1 of gl(m,n) are all the vectors of the form "i − δj and δi − "j .
The even roots ∆0 of osp(2m, 2n) are all the vectors of the form ±"i± "j , ±δi± δj (the

signs can be chosen independently) with i 6= j and ±2δi. The odd roots ∆1 of osp(2m, 2n)
are all the vectors of the form ±"i ± δj .

The even roots ∆0 of osp(2m+ 1, 2n) are all the vectors of the form ±"i ± "j , ±δi ± δj
with i 6= j, ±"i and ±2δi. The odd roots ∆1 of osp(2m+ 1, 2n) are all the vectors of the
form ±"i ± δj and ±δi.

Recall that not all Borel subalgebras in a Lie superalgebra are conjugate. If one fixes
an even Borel subalgebra b0 ⊃ h, the Borel subalgebras containing b0 are related by odd
reflections, see [28]. The condition λ + ⇢ 2 Λ+ is not necessary for the dominance of λ.
In the case g = gl(m,n) it is possible to choose a distinguished Borel subalgebra b (see
[16]) so that all simple roots of b0 are simple in b and then λ+ ⇢ 2 Λ+ for all dominant λ.
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For osp(m, 2n) such choice is impossible. Usually people fix a Borel subalgebra that has
maximal number of even simple roots. However, for this choice a dominant weight λ may
have large negative hλ+ ⇢, β̌i. We choose a Borel subalgebra which has maximal number
of odd simple roots. Then for a dominant λ we have hλ + ⇢, β̌i ≥ 0 for g = osp(2m, 2n)
and hλ+ ⇢, β̌i ≥ −1 for g = osp(2m+1, 2n). One can probably repeat all our calculations
for the canonical Borel subalgebra but that requires different notion of a weight diagram.

From now on we fix a Borel subalgebra of g, we make the same choice as in [12]. Below
is the list of the simple roots for our choice of Borel subalgebras.
• If g = gl(m,n), m ≥ n, the simple roots are

"1 − "2, "2 − "3, ..., "m − δ1, δ1 − δ2, ..., δn−1 − δn.

Since we consider gl(m,n) instead of sl(m,n) we can shift ⇢ in the direction "1+ "2+ ...+
"m − δ1 − ...− δn without any impact on representation theory. So we set

⇢ = m"1 + (m− 1)"2 + ...+ "m − δ1 + ...+ (−n)δn;

• If g = osp(2m+ 1, 2n) and m ≥ n, the simple roots are

"1 − "2, ..., "m−n+1 − δ1, δ1 − "m−n+2, ..., "m − δn, δn,

⇢ = −
1

2

m
X

i=1

"i +
1

2

n
X

j+1

δj +
m−n
X

i=1

(m− n− i+ 1)"i;

• If g = osp(2m+ 1, 2n) and m < n, the simple roots are

δ1 − δ2, ..., δn−m − "1, "1 − δn−m+1, ..., "m − δn, δn,

⇢ = −
1

2

m
X

i=1

"i +
1

2

n
X

j+1

δj +
n−m
X

j=1

(n−m− j)δj ;

• If g = osp(2m, 2n) and m > n, the simple roots are

"1 − "2, ..., "m−n − δ1, δ1 − "m−n+1, ..., δn − "m, δn + "m,

⇢ =
m−n
X

i=1

(m− n− i)"i;

• If g = osp(2m, 2n) and m  n, the simple roots are

δ1 − δ2, ..., δn−m+1 − "1, "1 − δn−m+2, ..., δn − "m, δn + "m,

⇢ =
n−m
X

i=1

(n−m− i+ 1)δi.

Finally, we give a description of Λ+. Let

λ+ ⇢ = a1"1 + ...+ am"m + b1δ1 + ...+ bnδn.

Then λ is integral iff ai, bj 2 Z for G = GL(m,n) or SOSP (2m, 2n), and ai, bj 2
1
2 + Z

for G = SOSP (2m+ 1, 2n). Furthermore, λ+ ⇢ 2 Λ+ if

a1 > a2 > ... > am , b1 > b2 > ... > bn if G = GL(m,n);

a1 > a2 > ... > am ≥
1

2
, b1 > b2 > ... > bn ≥

1

2
if G = SOSP (2m+ 1, 2n);
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a1 > a2 > ... > am−1 > |am| and b1 > b2 > ... > bn > 0, if G = SOSP (2m, 2n).

Every λ 2 Λ+− ⇢ is dominant. If G = GL(m,n), the set of dominant weights coincides
with Λ+− ⇢. In the orthosymplectic case we will formulate the condition of dominance in
the next section.

4. Weight diagrams

We recall the definitions and notations for weight diagrams, introduced in [6] for
GL(m,n), and in [12] for SOSP (m, 2n). Note that our notations slightly differ from
those in [6], for translation see [21].

4.1. Abstract weight diagrams. Let T ⇢ R be a discrete set, X = (x1, ..., xm) 2 Tm,
Y = (y1, ..., yn) 2 Tn. A diagram fX,Y is a function defined on T whose values are multisets
with elements <,>,⇥ according to the following algorithm.
• Put the symbol > in position t for all i such that xi = t.
• Put the symbol < in position t for all i such that yi = t.
• If there are both > and < in the same position replace them by the symbol ⇥, repeat

if possible.
Thus, fX,Y (t) may contain at most one of the two symbols >,<. We represent fX,Y by

the picture with ◦ standing in position t whenever f(t) is an empty set.

4.2. Weight diagrams for G = GL(m,n). Let G = GL(m,n). Let λ be a dominant
integral weight such that

λ+ ⇢ = a1"1 + ...+ am"m + b1δ1 + ...+ bnδn.

Set T = Z,

Xλ = (a1, ..., am), Yλ = (−b1, ...,−bn).

The diagram fλ = fXλ,Yλ
is called the weight diagram of λ.

A diagram is the weight diagram of some dominant weight if and only if |f(t)|  1
since both sequences a1, ..., am and b1, ..., bm are strictly decreasing and hence do not have
repetitions.

Examples. Let G = GL(3, 3). Then ⇢ = (3, 2, 1| − 1,−2,−3). If λ = 0 is the highest
weight of the trivial module then

fλ = (· · · ◦ ⇥ ⇥ ⇥ ◦ . . . ),

with first ⇥ at t = 1, . . . corresponding to ◦. If λ = "1 − δ1 is the highest weight of the
adjoint module, then fλ is obtained from the previous diagram by moving the right ⇥ one
position to the right:

fλ = (· · · ◦ ⇥ ⇥ ◦ ⇥ . . . ).

Now let G = GL(5, 3). Then ⇢ = (5, 4, 3, 2, 1| − 1,−2,−3). For the trivial module the
weight diagram is

· · · ◦ ⇥ ⇥ ⇥ >> ◦ . . . ,

and for the adjoint module the corresponding diagram is

· · · ◦ ⇥⇥ > ⇥◦ > ◦ . . . .
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4.3. Weight diagrams for G = SOSP (2m, 2n). Set T = Z≥0. For a dominant weight
λ such that λ+ ⇢ = a1"1 + ...+ am"m + b1δ1...+ bnδn let

Xλ = (a1, ..., am−1, |am|), Yλ = (b1, ..., bn), fλ = fXλ,Yλ
.

The position 0 is called the �tail position. If the tail position is empty we put [+] or [−]
before the diagram if am > 0 or am < 0 respectively.

A diagram fλ is the weight diagram of a dominant λ if and only if
• for any t 6= 0, fλ(t) is empty or a single element set;
• the multiset fλ(0) does not contain <, contains > with multiplicity at most 1 (it may

contain any number of ⇥).
A diagram fλ and a weight λ are called tailless if f(0) does not contain ⇥. A weight λ

is tailless iff λ+ ⇢ 2 Λ+.
Examples. Let G = SOSP (4, 2), then ⇢ = 0. If fλ is the weight diagram of the highest

weight of the trivial representation, then

fλ = (>⇥◦ . . . ).

If λ = "1 + δ1 is the highest weight of the adjoint module, then

fλ = (> ⇥ ◦ . . . ).

Now let us interpret weight diagrams in terms of [10]. Recall that the authors encode
dominant weights with non-negative am by (n|m)-hook partitions, see Lemma 6.8 in [10].
Let ⇣ be a (n|m)-hook partition and ⇣? denote the conjugate partition. Then

bi = max(⇣i −m+ n− i+ 1, 0), aj = max(⇣?j − n+m− j, 0),

for i  n, j  m.
The weight diagram corresponding to ⇣ is tailless if and only if ⇣ contains the box

with coordinates (m,n). The length of the tail is the number of boxes with coordinates
(m− x, n− x) (0  x < min(m,n)) which are not contained in ⇣.

4.4. Weight diagrams for G = SOSP (2m + 1, 2n). Let T = 1
2 + Z≥0 and define Xλ,

Yλ and fλ as in the case g = osp(2m, 2n). The dominance condition is equivalent to the
following condition on a weight diagram f
• f(t) is empty or a single element set for any t 6= 1

2 ;

• f(12) may contain at most one of < or > and any number of ⇥.

The position 1
2 is called the tail position. It is possible that two dominant weights have

the same weight diagram. That may happen if f(12) does not contain > or < and has

at least one ⇥. For example, the diagram with two ⇥ at 1
2 corresponds to (12 ,−

1
2 |

1
2 ,

1
2)

and to (−1
2 ,−

1
2 |

1
2 ,

1
2). So if the weight diagram has at least one ⇥ and no <,> at the

position 1
2 we put an indicator (which we sometimes refer to as ”sign”) (±) before the

weight diagram. Its value is + if the corresponding weight has the form

λ+ ⇢ = (a1, ..., am−s,
1

2
,−

1

2
, ...,−

1

2
|b1, ..., bn−s,

1

2
, ...,

1

2
),

and − if the corresponding weight has the form

λ+ ⇢ = (a1, ..., am−s,−
1

2
,−

1

2
, ...,−

1

2
|b1, ..., bn−s,

1

2
, ...,

1

2
),

where s is the number of crosses at the position 1
2 .

A weight λ is tailless if fλ(
1
2) has at most one symbol, and if this symbol is ⇥ the

indicator is +. As in the case G = SOSP (2m, 2n) a weight is tailless iff λ+ ⇢ 2 Λ+.
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Examples. Let G = SOSP (5, 4). Then ⇢ = (−1
2 ,−

1
2 |

1
2 ,

1
2). The diagram of the trivial

module has two ⇥ at the tail position, all other positions are empty and the indicator is
(−). The weight diagram of the standard module (λ = "1) is the same with indicator (+).
The weight diagram corresponding to the adjoint module (λ = "1 + δ1) is

>
⇥ < ◦ . . . .

Let G = SOSP (5, 6). Then ⇢ = (−1
2 ,−

1
2 |

1
2 ,

1
2 ,

1
2). The trivial module has the diagram

with two ⇥ and one < at the tail position, all other positions are empty. The standard
module (λ = δ1) has the diagram

(−)⇥⇥ < ◦ . . . ,

and the adjoint module (λ = 2δ1) has the diagram

(−)⇥⇥◦ < ◦ . . . .

Let us again explain the connection between weight diagrams and combinatorial data
in [10]. Dominant weights are encoded by (n|m)-hook partitions, see Lemma 6.1 in [10].
Let ⇣ be a (n|m)-hook partition and ⇣? denote the conjugate partition. Then

bi = max(⇣i −m+ n− i+
1

2
,
1

2
), aj = max(⇣?j − n+m− j +

1

2
,−

1

2
),

for i  n, j  m.
As in the previous case, the weight diagram corresponding to ⇣ is tailless if and only if

⇣ contains the box with coordinate (m,n). The length of the tail is the number of boxes
with coordinates (m− x, n− x) (0  x < min(m,n)) which are not contained in ⇣.

4.5. Tailless weights, degree of atypicality and blocks. Here we collect all facts
about weight diagrams which are true for all classical supergroups.

First of all, tailless diagrams are exactly the diagrams of weights in Λ+ − ⇢. Hence
tailless weights parametrize the basis E(µ) in the lattice KE(F).

The number of ⇥ in the diagram is called the degree of atypicality of the corresponding
weight. The symbols >, < are called the core symbols of the diagram. The core of a
weight λ is the diagram fλ with all ⇥ and the sign indicator removed except the case
when G = SOSP (2m, 2n) and there are no ⇥. As follows from [12] two weights admit the
same central character (i.e. the corresponding simple modules belong to the same block)
if the cores of the two weights are the same. Thus, if two weights have the same central
character, then they have the same degree of atypicality. Hence the degree of atypicality
of a central character χ is well defined. We denote it by at(χ). A weight ( resp. central
character) is typical if its degree of atypicality is zero. If χ is typical, then Fχ is semisimple
and has only one simple object up to isomorphism.

Let λ be dominant and tailless. Following Brundan and Stroppel [9] we define the cap
diagram of fλ by the following rules. The left end of a cap is at a ⇥ and the right end
is at an empty position. We start from the rightmost ⇥, make the cap by joining it to
the next free position on the right (the end is not free any more), and then repeat for the
next ⇥ to the left, and so on until there is no ⇥ left. There is no empty position under
any cap. One can see that for each weight diagram there is a unique cap diagram.

Example. For the following weight diagram,
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◦ ⇥ > < ⇥ ◦ ◦

the caps are the following:

◦ ⇥

GF ED

> < ⇥
GF ED

◦ ◦.

Denote by P(λ) the set of all the weights µ with weight diagram fµ which can be
obtained from fλ by flipping the labels at some caps. Note that the cardinality of P(λ) is
2k, where k is the total number of ⇥.

If G = GL(m,n), then all diagrams are tailless. The following result was proven in [4],
see also (5.12) in [6].

Proposition 2. - Let G = GL(m,n). Then

[P (λ)] =
X

µ2P(λ)

E(µ).

5. Categorification of gl1/2 in orthosymplectic terms

In this section we assume that G = SOSP (2m + 1, 2n). We will identify the lattice
KE(F) with a representation of gl1/2 and realize translation functors by Chevalley gen-
erators.

5.1. Representation of gl1/2. We denote by gl1/2 the infinite dimensional Lie algebra
defined over Z with Dynkin diagram

◦ − ◦ − ◦ − ◦ . . . ,

and by V its standard representation with basis v1/2, v3/2, . . .. Let w1/2, w3/2, . . . be the

basis in the costandard representation V ⇤ such that hwi, vji = δij(−1)
i+1/2. Let Ei,j be

the element of gl1/2 which acts on V in the following way: Ei,j(vk) = δjkvi and on V ⇤:

Ei,j(wk) = (−1)i+jδikwj .
Consider the representation (defined in the natural way) Λm(V ⇤) ⌦ Λn(V ) of gl1/2.

Then, if λ is a tailless dominant weight for osp(2m+1, 2n), such that λ+ ⇢ =
Pm

i=1 ai"i+
Pn

j=1 bjδj with ai, bj 2 1/2+Z, we associate to λ the following vector in Λm(V ⇤)⌦Λn(V ):

xλ := wa1 ^ . . . ^ wam ⌦ vb1 ^ . . . ^ vbn .

We denote the weight of the action of gl1/2 on vi by γi (hence, the weight of the action

on wi is −γi), so that every vector xλ is equipped with a gl1/2-weight which we denote

by γ(λ).

Remark. - The weights with the same core have the same gl1/2-weight. Therefore for
every pair of tailless dominant weights λ, µ, one has

χλ = χµ , γ(λ) = γ(µ).
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Define the map ϕ : KE(F)! Λm(V ⇤)⌦Λn(V ) by ϕ(E(λ)) = xλ for all tailless dominant
λ. Obviously, ϕ is an isomorphism of abelian groups.

5.2. Interpretation of the translation functors in this setting. Since the weight of
the gl1/2-action encodes the central character, every block in F can be parametrized by a
gl1/2-weight γ, hence F = ⊕γFγ . The translation functors consist in tensoring with the

standard module E of osp(2m+ 1, 2n) and then projecting in the appropriate block.
For any M 2 Fγ , a 2

1
2 + Z≥0, we set:

Ta,a+1(M) = (M ⌦ E)γ+γa−γa+1
,

Ta+1,a(M) = (M ⌦ E)γ+γa+1−γa .

The functors Ta,a+1 and Ta+1,a, being exact, induce linear operators in the Grothendieck
group K(F), and we keep the same notations for them. Note also that
(5)
Homg(M,Ta,a+1(N)) = Homg(Ta+1,a(M), N), Homg(M,Ta+1,a(N)) = Homg(Ta,a+1(M), N),

for any M,N 2 F . Hence Ta,a+1 and Ta+1,a are adjoint.
It was shown in [12] (Lemma 1(b)and Corollary 1),

Γi(G/B,Cλ ⌦ E) = Γi(G/B,Cλ)⌦ E.

Therefore KE(F) is invariant under both Ta,a+1 and Ta+1,a.

Lemma 4. - For any a ≥ 1
2 one has

ϕ ◦ Ta+1,a = Ea+1,a ◦ ϕ

and

ϕ ◦ Ta,a+1 = Ea,a+1 ◦ ϕ.

Proof. - Let γ0 be a gl1/2-weight and let λ be a tailless dominant osp(2m+1, 2n)-weight

with γ(λ) = γ. Corollary 1 in [12] implies that

(6) Γi(G/B, (Cλ ⌦ E)Φ−1(γ0)) = (Γi(G/B,Cλ)⌦ E)γ0 ,

where Φ−1(γ0) is the set of all weights µ such that γ(µ) = γ0.
The b-module Lλ(b)⌦E has a filtration by all the Cµ with µ = λ±εj , λ±δk, λ. Since the

Euler characteristic of the associated graded sheaf coincides with the Euler characteristic
of the original sheaf, we obtain

Ta,a+1(E(λ)) =
X

µ

E(µ),

where the sum is taken over all µ = λ± εj ,λ± δk such that γ(µ) = γ(λ) + γa − γa+1.
By direct inspection if µ is not dominant, then (µ+ ρ,β) = 0 for some even root β and

therefore by (2) E(µ) = 0. Hence in fact only dominant µ contribute in the summation.
To find all such µ we use the weight diagram fλ of λ, and we only have to look at the
positions a and a+ 1 in fλ. Here is a table of the different fµ which can occur (see figure
1). Note that since only tailless weights appear, if the left position is 1

2 , and there is a ⇥
then the sign before it should be (+) and we omit it for simplicity of notation.
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fλ a a+ 1 fµ a a+ 1

◦ ◦ ;
◦ < < ◦
◦ > ;
◦ ⇥ < >
< ◦ ;
< < ;
< > ;
< ⇥ ;
> ◦ ◦ >
> < ◦ ⇥ ⊕ ⇥ ◦
> > ;
> ⇥ ⇥ >
⇥ ◦ < >
⇥ < < ⇥
⇥ > ;
⇥ ⇥ ;

(figure 1)

Now we conclude, noticing that

Ta,a+1(Eλ) =
X

µ+ρ2Λ+

Eµ

with the weights µ we computed, and since

Ea,a+1(xλ) =
X

µ+ρ2Λ+

xµ

by construction, we have proved the first identity. The proof of the second identity is
similar and we leave it to the reader. 2

Remark. - Thus, the isomorphism ϕ : KE(F) ! Λm(V ⇤)⌦ Λn(V ) is an isomorphism of
gl1/2-modules.

5.3. The switch functor. In [12] we constructed a certain functor in the category F of
osp(2m + 1, 2n)-modules. When applied to a simple module, it switches the sign of the
corresponding weight diagram. By this reason we call it the switch functor. It is very
important for calculation of a(λ, µ) since it increases the length of the tail of a diagram if
the sign changes from (+) to (−). In particular, this functor can map Lλ with λ+ ρ 2 Λ+

to Lµ with µ+ ρ /2 Λ+. The functors Ta,a±1 do not give such an option.
Recall that the switch functor sw : Fγ ! Fγ is defined by

sw(M) = (M ⌦ E)γ .

We also denote by sw the corresponding linear operator in K(F).
The following lemma explains how sw acts on E(λ).

Lemma 5. - Let λ be a tailless dominant weight. If fλ has an empty tail position, then
sw(E(λ)) = E(λ).

If fλ has ⇥ at the tail position, then sw(E(λ)) = −E(λ).
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If fλ has > or < at the tail position, then sw(E(λ)) = 0.

Proof. - We use the same idea as in the proof of Lemma 4. The weights of E are 0,
±εi, i = 1, . . . ,m and ±δj , j = 1, . . . , n By Lemma 1 in [12] and we have the following
identity in the Grothendieck ring:

E(λ)[E] =
X

ν

E(λ+ ν),

where ν runs the set of weights of E. When we apply the switch functor we just pick
up the summands which have the same central character as λ. Thus, as follows from
Corollary 1 in [12]

sw(E(λ)) = E(λ) +
X

µ

E(µ),

where the summation is over all µ = λ± εj ,λ± δk such that γ(µ) = γ(λ).
Looking at the weight diagram fλ we see that the number of summands in the latter

formula depends only on the tail position. Indeed, if ai >
1
2 (resp. bj > 1

2) the core of
fλ±εi (resp. of fλ±δj ) is different from the core of fλ.

If fλ has empty tail position, then the only weight appearing in the sum is λ itself.
If fλ has > at the tail position, then the weights appearing in the sum are λ and λ−εm.

But λ− εm = s(λ+ ρ)− ρ where s is the reflection with respect to the root εm. Hence by
(2) E(λ− εm) = −E(λ) and sw(E(λ)) = 0.

Similarly, if fλ has < at the tail position,

sw(E(λ)) = E(λ) + E(λ− δn) = 0.

Finally, if fλ has ⇥ at the tail position, then

sw(E(λ)) = E(λ) + E(λ− εm) + E(λ− δn) = −E(λ).

2

6. Translation functors action on simple and projective modules

In this section G = SOSP (2m+1, 2n). We study here the action of translation functors
on simple and indecomposable projective modules. The combinatorial statements of this
section are about all dominant weights (possibly with tail).

6.1. Functors Ta,a+1 and Ta+1,a.

Lemma 6. - Let Lλ, Lν 2 F , ν = λ− α for some isotropic positive root α = εi + δj such
that (λ+ ρ,α) = 0. Then

[Γ0(G/B,Cλ) : Lλ] = 1, [Γ0(G/B,Cλ) : Lν ] ≥ 1.

Proof. - By Lemma 2 in [12] Γ0(G/B,Cλ) is the maximal finite dimensional quotient of the
Verma module with highest weight λ. Hence [Γ0(G/B,Cλ) : Lλ] = 1. Propositions 2 and 5
in [12] imply that for some parabolic subgroup P containing B we have [Γ0(G/P,Lλ(P )) :
Lν ] = 1, where Lλ(P ) is a simple P -module with highest weight λ. By Lemma 2 in [12]
there is a surjective homomorphism

Γ0(G/B,Cλ)! Γ0(G/P,Lλ(P )).

Hence the statement. 2
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In the case of GL(m,n) the following result first appeared in [24], see also Lemma 3.4
in [8].

Lemma 7. - Let χ and θ be two distinct central characters such that at(χ) ≥ at(θ). Denote
by T the translation functor which maps Fχ to Fθ. Then, if some dominant weight λ (resp.
λ1, λ2) has central character χ, then T (Lλ) is either a simple module of Fθ or zero.

Moreover, if T (Lλ1
) = T (Lλ2

) 6= 0, then λ1 = λ2.

Proof. - All b-singular vectors in Lλ ⌦ E have weights of the form λ ± εj ,λ,λ ± δk. At
most one of those has the central character θ, as one can figure out writing the weight
diagrams. Hence the first statement.

Assume now that T (Lλ1
) = T (Lλ2

) = Lµ, then λ1 − λ2 is an isotropic root, a multiple
of an even root, or zero.

Case 1 : λ1−λ2 is a multiple of an even root say β ( one has λ1−λ2 = ±2εi, εi−εj ,±2δi
or δi − δj) and then λ1 + ρ = sβ(λ2 + ρ), where sβ is the reflection with respect to the
root β. Hence λ1 and λ2 cannot be both dominant except if (λ1+ ρ,β) = 0, in which case
λ1 = λ2.

Case 2 : λ1 − λ2 is an isotropic root α = ±(εi + δj), which we can assume to be a
positive root. As follows from Lemma 6

[Γ0(G/B,Cλ1
) : Lλ1

] = 1 [Γ0(G/B,Cλ1
) : Lλ2

] ≥ 1.

By Corollary 1 in [12] (see also (6))

T (Γ0(G/B,Cλ1
)) = Γ0(G/B,Cµ).

As [Γ0(G/B,Cµ) : Lµ] = 1, either T (Lλ1
) or T (Lλ2

) is zero. 2

Lemma 8. - Let χ and θ be two distinct central characters such that at(χ)  at(θ). Then
the translation functor T which maps Fχ to Fθ maps projective indecomposable modules
(PIMs for short) to PIMs or to zero.

Proof. - Let λ be a dominant weight with central character χ. Since T (Pλ) is a projective
module in Fθ, it is sufficient to show that

Homg(T (Pλ), Lµ) = C

for at most one dominant weight µ, and is zero otherwise.
Let us denote by T ⇤ the adjoint functor of T , which is the translation functor mapping

Fθ to Fχ; one has

Homg(T (Pλ), Lµ) = Homg(Pλ, T
⇤(Lµ))

and by the Lemma 7, the statement follows. 2

6.2. The action of the switch functor on simple modules and PIMs.

Lemma 9. - Let λ be an integral dominant weight.
If fλ has the empty tail position, then sw(Lλ) = Lλ.
If fλ has > or < at the tail position, then sw(Lλ) = 0.
If fλ has several ⇥ at the tail position and no core symbols, then sw(Lλ) = Lµ, where

fµ is obtained from fλ by change of sign.
The action of the switch functor on PIMs is given by the same rule.



19

Proof. - The first assertion easily follows from

sw(Γ0(G/B, Cλ)) = Γ0(G/B,Cλ).

To prove the second assertion choose the parabolic subalgebra q ⇢ g with semisimple
part osp(2k + 3, 2k) if fλ has k ⇥ and > at the tail position and with semisimple part
osp(2k+1, 2k+2) if fλ has k ⇥ and < at the tail position. Then Cλ has a natural q-module
structure and Lλ is a quotient of the parabolically induced module Sλ = U(g) ⌦U(q) Cλ.
It is easy to check that

sw(Sλ) = (U(g)⌦U(q) (Cλ ⌦ E))γ(λ) = 0.

Hence sw(Lλ) = 0.
Now let fλ have k ⇥-s at the tail position and no core symbols. Let q be the parabolic

subalgebra with semisimple part osp(2k+1, 2k). If the sign of fλ is − then Lλ is a quotient
of Sλ. On the other hand,

S0
λ := sw(Sλ) = U(g)⌦U(q) (Cλ ⌦ E0),

where E0 is the standard module over semisimple part of q. The unique simple quotient
of S0

λ is isomorphic to Lµ, where fµ is obtained from fλ by change of sign. Since the
application of the switch functor to any other simple subquotient of Sλ can not produce
Lµ we have sw(Lλ) = Lµ. If the sign of fλ is +, the assertion follows similarly from the
fact that sw(S0

λ) = Sλ.
Finally, the statement about PIMs follows by duality. 2

6.3. Elementary changes. The main idea in calculation of a(λ, µ) is to start with a
typical weight λ, for which the problem is trivial, and move to an arbitrary weight by use
of translation functors. Each time we want to map a PIM to a PIM (see Lemma 10).
At the level of weight diagrams such functors correspond to elementary changes which we
define by the list.
• The change of the sign (+) and (−) in front of the diagram.
• An elementary change which involves positions a and a+ 1 with a > 1

2 :
a) . . .⇥ ◦ . . .! . . . > < . . . (decreases the degree of atypicality by 1),
b) . . . < ◦ . . .$ . . . ◦ < . . . (doesn’t change the degree of atypicality),
c) . . . > ◦ . . .$ . . . ◦ > . . . (doesn’t change the degree of atypicality),
• An elementary change which involves positions 1

2 and 3
2

at) (+)⇥k ◦ . . .! >
⇥k−1 < . . . (decreases the degree of atypicality by 1),

bt) >
⇥k ◦ . . .$ (−)⇥k > . . . (doesn’t change the degree of atypicality),

ct) <
⇥k ◦ . . .$ (−)⇥k < . . . (doesn’t change the degree of atypicality),

The ⇥k sign indicates that there are k ⇥ at the tail position and $ means that we can
go in either direction.

It is convenient to divide elementary changes in two groups: ones that do not involve the
tail position and ones that involve the tail position. We call the latter the tail elementary
changes.

Lemma 10. - If (fλ, fµ) is a pair of weight diagrams of the list a),..., ct), then for a
suitable choice of a translation functor T we have T (Lλ) = Lµ and T ⇤(Pµ) = Pλ.

Proof. - In the cases b),c),bt) and ct), we already know ([12] Section 6) that T is an
equivalence of the corresponding blocks, thus we have nothing to prove.
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It remains to prove the statement for a pair (fλ, fµ) in the cases a)and at).
We have µ = λ + δa+1. It is easy to see that among the weights λ ± εi,λ ± δj only µ

has weight γ(µ). Therefore by Corollary 1 in [12] we have

(7) T (Γ0(G/B,Cλ)) = Γ0(G/B,Cµ).

The multiplicity of Lλ in Γ0(G/B,Cλ) is 1 as well as the multiplicity of Lµ in Γ0(G/B,Cµ).
If Lν is a simple subquotient of Γ0(G/B,Cλ) and ν 6= µ, then ν < µ and by Lemma 7
T (Lν) 6= Lµ. Therefore (7) implies T (Lλ) = Lµ. 2

Lemma 11. - Let λ be any dominant weight with atypicality degree k > 0 . Then one
can find a dominant typical weight µ such that there exist a sequence of weights µ =
µ1, µ2, . . . , µr = λ and translation functors T1, . . . , Tr−1 such that Pµi

= Ti−1(Pµi−1
), and

at(µi)  at(µi+1).

Proof. - Due to the previous Lemma we have to check that fλ can be transformed to a
typical fµ by elementary changes.

We prove the statement by induction on degree of atypicality of λ. Let t be the position
of the rightmost ⇥ in the weight diagram fλ. Assume first that t 6= 1

2 . If the position
t + 1 is empty we can use elementary change a) to decrease the atypicality degree of λ.
If the position t+ 1 is occupied by a core symbol, we can use elementary changes of type
b) and c) to move all core symbols in positions t+ 1, t+ 2, . . . to the right. The diagram
obtained in this way will have the position t+1 empty and now we can decrease the degree
of atypicality using elementary change a).

Now let t = 1
2 . That means fλ has only core symbols outside the tail position. Using

elementary changes of type b) and c) we can transform fλ to the diagram that has an
empty position 3

2 . Hence without loss of generality we may assume that the position 3
2 in

fλ is empty. Now we are going consider 3 different cases.
If all symbols at the tail positions are ⇥ and the sign is +, we apply elementary change

at) to decrease the degree of atypicality.
If all symbols at the tail positions are ⇥ and the sign is −, we apply the switch functor

to fλ and reduce the situation to the previous case.
If the tail position contains a core symbol, we apply elementary change bt) or ct) and

reduce the situation to the previous case.
Thus, the statement follows by induction. 2

7. The action of translation functors in the case SOSP (2m, 2n)

In this section G = SOSP (2m, 2n). There is an involutive automorphism σ preserving
the maximal torus H which acts on Λ by the formula

σ(εm) = −εm, σ(εi) = εi if i 6= m σ(δj) = δj .

The induced action of σ on the weight diagrams is the change of the sign if the diagram
has a sign, otherwise σ preserves the weight diagram.

The action of σ on F preserves blocks except the case when χ is typical and the diagram
has an empty tail position. In the latter case σ permutes two blocks. If M 2 F we denote
by Mσ the twist of M by σ.

The induced action of σ on the Grothendieck ring K(F) has two eigenspaces K(F)±

with eigenvalues ±1. So we have the following decompositions

K(F) = K(F)+ ⊕K(F)−
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and

KE(F) = KE(F)
+ ⊕KE(F)

−, KP (F) = KP (F)
+ ⊕KP (F)

−.

Note that the translation functors preserve those splittings.

7.1. Categorification of gl1. As in Section 5 we identify the lattice KE(F) with a
representation of gl1 and realize translation functors by linear operators corresponding to
Chevalley generators in this representation. By gl1 we understand the Lie algebra with
Dynkin diagram

. . .− ◦ − ◦ − ◦ − ◦ . . . ,

and by U its standard representation with basis ui with i 2 Z. Let Ei,j be the element of
gl1 which acts on V the following way: Ei,j(vk) = δjkvi. Denote the weight of va by γa
for a > 0 and by −γ−a for a < 0. Set γ0 = 0. Let U0 be the span of ui for all i  0, U+

and U− be the span of ui for i > 0 and i < 0 respectively. Set

X+ = Λm(U0)⌦ Λn(U+),

X− = Λm(U−)⌦ Λn(U+).

Finally set

Fi,j = (−1)i+j+1(Ei,j + E−j,−i), for i, j > 0; Fi,0 = 2E0,−i, F0,i = E−i,0.

Those elements generate the Lie algebra sl1/2 ⊕ sl1/2 inside gl1.

Let λ + ρ 2 Λ+ ( i.e. λ is tailless) be such that λ + ρ =
Pm

i=1 aiεi +
Pn

j=1 bjδj with
ai 2 Z≥0, bj 2 Z>0, we associate to λ the vector

xλ := u−am ^ . . . ^ u−a1 ⌦ ub1 ^ . . . ^ ubn .

The weight of xλ and the translation functors Ta,a+1 and Ta+1,a (for a 2 Z>0) are
defined as in Section 5. In addition we define the translation functors T0,1, T1,0 : F ! F
by the formulae:

T0,1(M) = (M ⌦ E)γ−γ1 for M 2 Fγ

T1,0(M) = (M ⌦ E)γ+γ1 for M 2 Fγ

Next we define isomorphisms of Z-modules ψ± : KE(F)
± ! X± by setting

ψ+(E(λ)) = xλ, ψ−(E(λ)) = 0

if am = 0,

ψ±(E(λ)± E(λ)σ) = xλ,

if am > 0.

Lemma 12. - For any a > 0 one has

ψ± ◦ Ta+1,a = Fa+1,a ◦ ψ
±

and

ψ± ◦ Ta,a+1 = Fa,a+1 ◦ ψ
±.

If a = 0, then

ψ+ ◦ T1,0 = F1,0 ◦ ψ
+

and

ψ+ ◦ T0,1 = F0,1 ◦ ψ
+.
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Proof. - This lemma can be proven exactly as Lemma 4 by direct comparison.
The action of the functors Ta,a+1 for a ≥ 1 in terms of weight diagrams is given in figure

1.
Below in figure 2 and figure 3 we give the action of T0,1 and T1,0 respectively.

2

fλ 0 1 fµ 0 1

[±] ◦ ◦ ;
[±] ◦ < ;
[±] ◦ > ;
[±] ◦ ⇥ ;

> < [+] ◦ ⇥ ⊕ [−]◦ ⇥
> ◦ [+] ◦ > ⊕ [−]◦ >
> > ;
> ⇥ ;

(figure 2)

fλ 0 1 fµ 0 1

[±] ◦ ◦ ;
[±] ◦ < ;
[±] ◦ > > ◦
[±] ◦ ⇥ > <

> < ;
> ◦ ;
> > ;
> ⇥ ;

(figure 3)

7.2. Action of translation functors on simple modules and PIMs. All statements
in this subsection are about all dominant weights, i.e. weights can have tails. The following
statement is analogous to Lemma 7.

Lemma 13. - (a) Let χ and θ be two distinct central characters such that at(χ) ≥ at(θ).
Assume that a ≥ 1. Let T = Ta,a+1 or Ta+1,a be a translation functor which maps Fχ to
Fθ. Then, if some dominant weight λ (resp. λ1, λ2) has central character χ, then T (Lλ)
is either a simple module of Fθ or zero.

Moreover, if T (Lλ1
) = T (Lλ2

) 6= 0, then λ1 = λ2.
(b) If at(χ)  at(θ) and a ≥ 1, then T (Pλ) is either PIM or zero and if T (Pλ1

) =
T (Pλ2

) 6= 0, then λ1 = λ2.

We define non-tail elementary changes as a), b), c) in subsection 6.3 with the convention
that a non-tail elementary change does not change the sign of the diagram.
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Lemma 14. - Let λ be a dominant weight. Assume that the degree of atypicality of λ
is not less than the degree of atypicality of γ(λ) − γ1. If fλ does not have > at the tail
position, then T0,1(Lλ) = 0. If fλ has > at the tail position, then the action of T0,1 is
given by the following change in the diagram fλ.

1) >
⇥k ◦ . . .! ⇥

k > . . . ;

2) >
⇥k−1 ⇥ . . .! ⇥k > . . . ;

3) > ◦ . . .! [+]◦ > . . .⊕ [−] ◦ > . . . .
Assume that the degree of atypicality of λ is not less than the degree of atypicality of

γ(λ) + γ1. If T1,0(Lλ) 6= 0, then fλ has no > at the tail position and fλ(1) = ◦ or >. The
action of T1,0 is given by the following change in fλ.

4) ⇥k ◦ . . .! >
⇥k−1 < . . . ;

5) ⇥k > . . .! >
⇥k ◦ . . . ;

6) [±]◦ > . . .! > ◦ . . . .

Proof. - The statement is an immediate consequence of Theorem 3.2 (iii) in [25]. 2

Corollary 2. - Let λ be dominant and with degree of atypicality not greater than the
degree of atypicality of γ(λ) + γ1. Then T1,0(Pλ) = 0 if fλ contains > at the tail position.
If fλ does not have > at the tail position the action of T1,0 can be described by the following
diagrams.

a’) ⇥k > . . .! >
⇥k . . .⊕

>
⇥k−1 ⇥ . . . ;

b’) [±]◦ > . . .!> ◦ . . . .
Now assume that the degree of atypicality of λ is not greater than the degree of atypicality

of γ(λ) − γ1. If T0,1(Pλ) 6= 0 then fλ contains > at the tail position. The action of T0,1

on Pλ is given by one of the following changes:
c’) >

⇥k−1 < . . .! ⇥k ◦ . . . ;

d’) >
⇥k ◦ . . .! ⇥

k > . . . ;

e’) > ◦ . . .! [+]◦ > . . .⊕ [−] ◦ > . . . .

We call a’)-e’) the elementary tail changes. Note that a translation functor correspond-
ing to an elementary tail change does not always map a PIM to a PIM, a’) and e’) map
sometimes a PIM to the direct sum of two PIMs. Thus, a straightforward analogue of
Lemma 11 does not hold.

Lemma 15. - The Grothendieck group KP (F) is generated (as a Z-module) by [Pλ] for
typical λ and [Tm ◦ · · · ◦ T1(Pλ)] (λ typical) where Ti does not decrease the degree of
atypicality of Ti−1 ◦ · · · ◦ T1(Pλ).

Proof. - We prove the statement by induction on the degree of atypicality. Let S denote
the span of the [Tm ◦ · · · ◦ T1(Pλ)]. It is clear that [Pλ] 2 S for typical λ. Assume that
[Pµ] 2 S if at(µ) = k− 1. Suppose that at(λ) = k. If fλ has at least one ⇥ which is not at
the tail position, then we can obtain [Pλ] from some [Pν ] with at(ν) = k − 1 in the same
way as in the proof of Lemma 11.

Now assume that all the ⇥ of fλ are at the tail position. We check all the possible cases
for fλ.

If fλ = ⇥k ◦ . . ., then Pλ = T0,1(Pν) with fν = >
⇥k−1 < . . . (Corollary 2 c’)). By induction

assumption [Pν ] 2 S. Hence [Pλ] 2 S.
If fλ = ⇥k > . . . or fλ = ⇥k < . . ., we use non-tail elementary changes to move the

non-tail symbols to the right, then apply the translation functor as in the previous case
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and then move the non-tail symbols back. For instance, if fλ = ⇥k > ◦, we use

>
⇥k−1 <>! ⇥k◦ >! ⇥k > ◦.

Now let fλ = >
⇥k . . .. Using non-tail elementary changes we can reduce to the case

fλ = >
⇥k ◦ . . . in the same way as above. By Corollary 2 a’)

T1,0(Pν) = Pλ ⊕ Pµ,

where fν = ⇥k > . . . and fµ = >
⇥k−1 ⇥ . . .. But fµ has ⇥ at non-tail position. We have

proved above that [Pµ] 2 S. We also have checked above that [Pν ] 2 S. This implies
[Pλ] 2 S. 2

8. PIM as a linear combination of Euler characteristics

In this section we compute a(λ, µ) for the orthosymplectic supergroups.

8.1. The case of a tailless weight. In this subsectionG = SOSP (2m, 2n) or SOSP (2m+
1, 2n). We claim that if λ is tailless, then a(λ, µ) can be computed in the same way as in
the case G = GL(m,n).

Theorem 2. - Let λ be a tailless dominant weight. One has:

[P (λ)] =
X

µ2P(λ)

E(µ).

Proof. - This statement has the same proof as the corresponding result in the case gl(m,n)
obtained by J. Brundan. We write down the argument for the sake of completeness.

Due to Lemma 10 and Lemma 15 it is sufficient to check that if the statement holds for
Pκ, then it holds for Pλ = T (Pκ), where T is a translation functor corresponding to some
elementary change. If the elementary change is of type b) or c) consisting in moving a
core symbol from position t+1 to t, then clearly the weight diagrams of P(λ) are obtained
from those of P(κ) by exchanging symbols in position in t + 1 and t. If the elementary
change is of type a)

><! ⇥◦,

then the cap diagram of fλ has exactly one new cap joining ⇥ and ◦ in fλ. All other caps
remain the same. Hence the statement holds in this case as well. 2

Remark. As follows from Theorem 2, if µ is tailless a(µ, ν) = 0 or 1.

Examples. Let G = SOSP (7, 6).

[P (◦ ⇥ > < ⇥)] = E(◦ ⇥ > < ⇥) + E(◦ ⇥ > < ◦ ⇥)+
+E(◦ ◦ > < ⇥ ◦ ⇥) + E(◦ ◦ > < ◦ ⇥ ⇥),

[P (◦ ⇥ ⇥ ◦ ⇥)] = E(◦ ⇥ ⇥ ◦ ⇥) + E(◦ ⇥ ◦ ⇥ ⇥) + E(◦ ⇥ ⇥ ◦ ◦ ⇥)+
+E(◦ ⇥ ◦ ⇥ ◦ ⇥) + E(◦ ◦ ⇥ ◦ ⇥ ◦ ⇥) + E(◦ ◦ ◦ ⇥ ⇥ ◦ ⇥)+
+E(◦ ◦ ⇥ ◦ ◦ ⇥ ⇥) + E(◦ ◦ ◦ ⇥ ◦ ⇥ ⇥).

and the caps are the following:
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◦ ⇥

GF ED

⇥
GF ED

◦ ⇥
GF ED

◦ ◦.

8.2. The general case G = SOSP (2m+1, 2n). Here we give an algorithm for calculating
a(λ, µ) if λ+ ρ /2 Λ+, or, equivalently, if fλ has a tail. Color all ⇥ at the tail position. We
define the tailless weight λ̄ as follows. Ignore for a moment the tail position and consider
the cap diagram associated to the weight diagram for the remaining positions. We call a
position free if it is empty and is not an end of a cap. Enumerate all free position ignoring
the others counting from left to right. Move ⇥-s from the tail position to free positions
according to the rule below:
• If fλ has a core symbol at the tail, move all ⇥ from the tail position to the free

positions number 1,3,... .
• If fλ does not have a core symbol at the tail, move all but one ⇥ from the tail to the

free positions number 2,4,....

Example. If fλ = (⇥3 ⇥ ◦ . . .), then fλ̄ = (⇥⇥ ◦ ◦ ⇥ ◦ ⇥ ◦ . . .).

Theorem 3. - Let G = SOSP (2m+1, 2n). If the tail position of the diagram fλ contains
<, > or the diagram has (−) sign, then

a(λ, ν) = (−1)c(λ,ν)a(λ̄, ν)

where c(λ, ν) = x+ y where x is the total number of colored ⇥ in fλ̄, and y is the number
of colored ⇥ in fλ̄ moved to the right ends of caps to get fν from fλ̄.

If the sign of fλ is (+), we change the sign of a(λ, ν) for all ν such that fν has a ⇥ at
the tail position.

Proof. - As in the proof of Theorem 2 we have to check that the statement for Pµ implies
the statement for T (Pµ) for a translation functor T corresponding to some elementary
change. This check for elementary changes a)-c) is completely analogous to the case of
tailless λ. So we leave it to the reader.

Now we deal with the tail elementary changes at)-ct). Let λ and µ be related by an
elementary change bt) i.e.

fµ = (−)⇥k > . . .! fλ = >
⇥k ◦ . . .

Then λ̄ is obtained from µ̄ by switching ⇥ at the tail position with > at position 3
2 , and

the number of colored ⇥ in fλ̄ and in fµ̄ is the same. All ν 0 2 P(λ̄) are obtained from
ν 2 P(µ̄) by interchanging symbols at positions 1

2 and 3
2 . Clearly c(λ, ν) = c(µ, ν). The

case of elementary change ct) is similar.
Now let λ and µ be related by an elementary change at), namely

fµ = >
⇥k < . . .! fλ = (+)⇥k+1 ◦ . . .

Then λ̄ is obtained from µ̄ by removing core symbols from 1
2 and 3

2 and adding ⇥ to

the tail position 1
2 . The cap diagram for fλ̄ has an additional cap joining 1

2 and 3
2 . The

number of colored ⇥ increases by 1. However, since sign of fλ is (+), the signs agree after
applying the switch functor to Pλ. 2
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Examples. G = SOSP (5, 4)


P

✓

>
⇥ <

◆]

= −E(> < ⇥) + E(> < ◦ ⇥),


P

✓

(+)
⇥
⇥

◆]

= −E((+)⇥ ◦ ⇥)− E(◦ ⇥ ⇥) + E((+)⇥ ◦ ◦ ⇥) + E(◦ ⇥ ◦ ⇥),


P

✓

(−)
⇥
⇥

◆]

= E((+)⇥ ◦ ⇥)− E(◦ ⇥ ⇥)− E((+)⇥ ◦ ◦ ⇥) + E(◦ ⇥ ◦ ⇥).

8.3. The general case G = SOSP (2m, 2n). It turns out that the coefficients a(λ, µ) for
SOSP (2m, 2n) can be expressed in terms of certain a(λ0, µ0) for SOSP (2m+ 1, 2n). Let
λ be a dominant weight for SOSP (2m, 2n). Let λ0 be the weight for SOSP (2m + 1, 2n)
such that the corresponding weight diagrams are related by

fλ0(t) = fλ(t−
1

2
).

If fλ has some ⇥ at the tail and no >, then we assume that fλ0 has (+) sign.
Note that if ν+ρ 2 Λ+, then ν 0 has either > or ◦ at the tail position. Note also that the

map λ! λ0 is neither injective nor surjective, since (σ(λ))0 = λ0 and fν0 does not have <
at the tail position. If ν is tailless, then ν 0 is also tailless, however some weights with a tail
are mapped to the tailless weights. For instance (⇥⇥ ◦ . . . ) has a tail for SOSP (2m, 2n)
but the corresponding weight diagram (+)(⇥ ⇥ ◦ . . . ) is the diagram of a tailless weight
for SOSP (2m+ 1, 2n).

Theorem 4. - Let G = SOSP (2m, 2n). Then for any dominant ν and λ such that
ν + ρ 2 Λ+, λ+ ρ /2 Λ+, we have

a(λ, ν) = a(λ0, ν 0).

Remark. - The case of a tailless λ was covered in Theorem 2. Theorem 4 implies the
following relation in the Grothendieck group of SOSP (2m, 2n):

[Pλ] =
X

ν+ρ2Λ+

a(λ0, ν 0)E(ν).

The right hand side of this expression is σ-invariant which is consistent with the condition
P σ
λ = Pλ.

Proof. - Let us introduce a few notations. For any Z-module A, denote QA = Q ⌦Z A.
For m,n fixed , we denote by K+(F) the σ-invariant subgroup of the Grothendieck group
for SOSP (2m, 2n) and by K(F 0) the Grothendieck group for SOSP (2m + 1, 2n). The
definitions of K+

P (F), K
+
E(F), KP (F

0) and KE(F
0) are obvious.

We define two Q-linear maps α : QKE(F
0) ! QK

+
E(F) and β : QK

+
E(F) ! QKE(F

0) in
the following way. First we define α : U ! V ⊕ V ⇤ and β : V ⊕ V ⇤ ! U by the formulae

α(v1/2) = 0, α(vi) = ui−1/2, i > 1, α(wi) = u1/2−i

β(ui) = w1/2−i, i  0, β(ui) = vi−1/2, i > 0.
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Next, we extend α and β to Λm(V ⇤)⌦ Λn(V ) and X+ in the natural way. The following
diagram explains the maps α and β on the level of Grothendieck groups

β
−!

X+ α
 − Λm(V ⇤)⌦ Λn(V )

ψ+ " " φ
β
−!

QK
+
E(F)

α
 − QKE(F

0).

Note that α is surjective, β is injective and α ◦ β = id. For a linear operator T in K+
E(F)

corresponding to a translation functor we define an operator T 0 in KE(F
0) by the following

rules
if T = Ta,a+1 then T 0 = Ta+1/2,a+3/2,
if T = Ta,a−1 and a 6= 1 then T 0 = Ta+1/2,a−1/2,
if T = T1,0 then T 0 = 2T3/2,1/2.
Direct computation gives the following result:

Lemma 16. - One has for any T = Ta,a±1

T = α ◦ T 0 ◦ β.

Next we define β̄ : QK
+
P (F)! QKP (F

0) by setting:

β̄[Pλ] =
1
2([Pλ0 ] ⊕ [sw(Pλ0)]) if fλ(

1
2) = ⇥k, k > 0 (we use the notation ⇥k for the

multiset containing ⇥ k times);
β̄[Pλ ⊕ P σ

λ ] = [Pλ0 ] if fλ(
1
2) = ◦;

β̄[Pλ] = [Pλ0 ] if fλ(
1
2) = {⇥

k, >}, k ≥ 0;

and ᾱ : QKP (F
0)! QK

+
P (F) as follows:

If ν = λ0 or sw(λ0) for some dominant SOSP (2m, 2n) weight λ we set ᾱ[Pν ] = [Pλ] or
[Pλ ⊕ P σ

λ ] (in the case Pλ 6= P σ
λ ). Otherwise we set ᾱ[Pν ] = 0.

It follows immediately from the definitions that ᾱ is surjective, β̄ is injective and ᾱ◦ β̄ =
id.

Lemma 17. - Let T = Ta,a±1, P = Pλ or P = Pλ⊕P σ
λ . If T does not decrease the degree

of atypicality of λ, then
T ([P ]) = ᾱ ◦ T 0 ◦ β̄([P ]).

Proof. - If T 6= T0,1 or T1,0 the statement follows from the fact that the elementary
changes listed in subsection 6.3 are the same in the even and odd cases.

If T 6= T0,1 or T1,0 one can just compare the actions of T and T 0 in all possible cases.
We show how it works in the most interesting cases and leave to the reader the remaining
cases.

⇥k <
β̄
−! 1

2((+)⇥k < ⊕(−)⇥k <)
T0,1 # # T1/2,3/2

0
ᾱ
 − 1

2(
<
⇥k)◦

>
⇥k−1 <

β̄
−! >

⇥k−1 <

T0,1 # # T1/2,3/2

⇥k◦
ᾱ
 − (+)⇥k ◦
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⇥k >
β̄
−! 1

2((+)xk > ⊕(−)xk >)
T1,0 # # 2T3/2,3/2
>
⇥k ◦ ⊕

>
⇥k−1⇥

ᾱ
 − >

⇥k ◦ ⊕
>
⇥k−1⇥

[+]◦ > ⊕[−]◦ >
β̄
−! ◦ >

# T1,0 # 2T3/2,1/2

2 > ◦
ᾱ
 − 2 > ◦

2

Lemma 18. - One has

β ◦ α|
QKP (F 0) = β̄ ◦ ᾱ.

Proof. - Both β ◦ α and β̄ ◦ ᾱ are projectors. Observe that Kerβ ◦ α is generated by
{E(λ)|fλ(

1
2) =< or⇥}. Ker β̄ ◦ ᾱ is generated by {[Pλ]|fλ(

1
2) = {⇥k, <}} and {[Pλ] −

[sw(Pλ)]|fλ(
1
2) = ⇥k}. Now we can use Theorem 3. If fλ(

1
2) contains <, then [Pλ] =

P

a(λ, µ)E(µ) with fµ(
1
2) =<, and α(E(µ)) = 0. If fλ(

1
2) = ⇥

k, then [Pλ] − [sw(Pλ)] =
P

a(λ, µ)E(µ) with fµ(
1
2) = ⇥. Again α(E(µ)) = 0. That implies

Ker β̄ ◦ ᾱ = Kerβ ◦ α \ QKP (F
0).

Similarly

Im β̄ ◦ ᾱ = Imβ ◦ α \ QKP (F
0).

The statement follows. 2

Lemma 19. - One has

β|
QK

+

P
(F) = β̄, α|

QKP (F 0) = ᾱ.

Proof. - By definition β([P ]) = β̄([P ]) if P is typical or a direct sum of two typical PIMs.
By Lemma 15 it is sufficient to check that β([P ]) = β̄([P ]) implies β(T [P ]) = β̄(T [P ]) if
T does not decrease the degree of atypicality of P . Indeed we have

β̄(T ([P ])) = β̄ ◦ ᾱ(T 0(β̄([P ]))) = β̄ ◦ ᾱ(T 0(β([P ])))

and similarly

β(T ([P ])) = β ◦ α(T 0(β([P ]))).

Thus the statement about β follows from Lemma 17.
The statement about α follows immediately from Lemma 18 and the statement about

β. Indeed, for any P 2 KP (F
0) we have

α(P ) = α ◦ β ◦ α(P ) = α ◦ β̄ ◦ ᾱ(P ) = α ◦ β ◦ ᾱ(P ) = ᾱ(P ).

2

Now we are ready to prove Theorem 4. Write

[Pλ] = α(β([Pλ]).

Use Theorem 3. If fλ has > at the tail we have

β([Pλ]) = [Pλ0 ] =
X

a(λ0, ν 0)E(ν 0),
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and since α(E(ν 0)) = E(ν) we obtain

[Pλ] =
X

a(λ0, ν 0)E(ν).

If fλ does not have > at the tail position, then

β([Pλ]) =
1

2
[Pλ0 ⊕ sw(Pλ0)] =

X

a(λ0, ν 0)E(ν 0).

Here all fν0 have ◦ at the tail position. Hence again

[Pλ] =
X

a(λ0, ν 0)E(ν).

2

Examples. G = SOSP (4, 2).
[P (>><)] = E(>><),
[P (> ⇥)] = E(> ⇥◦) + E(> ◦⇥),
[P (><>)] = E(><>),
[P (⇥◦ >)] = E([+] ◦ ⇥ >) + E([−] ◦ ⇥ >),
[P (⇥ > ◦)] = E([+]◦ > ⇥) + E([−]◦ > ⇥),
⇥

P (>⇥ ◦ ◦) + P (> ⇥◦)
⇤

= 2E(> ◦⇥),
⇥

P (>⇥ ◦ ◦)
⇤

= −E(> ⇥◦) + E(> ◦⇥).
G = SOSP (4, 4)


P

✓

⇥
⇥

◆]

= −E([+] ◦ ⇥ ⇥)− E([−] ◦ ⇥ ⇥) + E([+] ◦ ⇥ ◦ ⇥) + E([−] ◦ ⇥ ◦ ⇥).

Corollary 3. - Let G = SOSP (2m, 2n) or SOSP (2m + 1, 2n). Then for any dominant
λ, µ such that µ+ ρ 2 Λ+ we have a(λ, µ) = 0 or ±1. If λ+ ρ 2 Λ+, then a(λ, µ) ≥ 0.

8.4. A basis in (Λm(V ⇤) ⌦ Λn(V ))Q. We assume here that G = SOSP (2m + 1, 2n).
The goal of this subsection is to show that ϕ[Pλ] for all dominant λ form a basis in

Λm|n := (Λm(V ⇤)⌦ Λn(V ))Q. It follows from [23] that Λm|n is an indecomposable gl1/2-

module. Let Θ : Λm|n ! Λm−1|n−1 be the contraction map defined by

Θ(wa1 ^ · · · ^ wam ⌦ vb1 ^ · · · ^ vbn) =
X

im,jn

(−1)i+jhwai , vbj iwa1^· · ·^wai−1
^wai+1

^· · ·^wam⌦vb1^· · ·^vbj−1
^vbj+1

^· · ·^vbn .

Then

(8) 0 ⇢ KerΘ ⇢ KerΘ2 · · · ⇢ KerΘmin(m,n) ⇢ Λm|n

defines the socle filtration on Λm|n.
Let λ be a tailless weight and Θλ be the set of all weights µ such that fµ is obtained

from fλ by removing one ⇥. Let µ 2 Θλ. If fµ is obtained from fλ by removing a ⇥ at
position t, then by s(µ) we denote the total number of >, < standing before t plus t+ 1

2 .
By a direct check for any tailless λ we have

Θ(xλ) =
X

µ2Θλ

(−1)s(µ)xµ.

Now let λ be any dominant weight, k be the length of the tail of λ and c(λ) be the
tailess weight obtained from λ by removing the k ⇥-s from the tail position, getting a
dominant weight for SOSP (2m+1−2k, 2n−2k). By Pc(λ) we denote the indecomposable
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projective module over SOSP (2m + 1 − 2k, 2n − 2k) with highest weight c(λ). It is not
hard to show from the above formula and Theorem 3 that

(9) Θk+1(ϕ[Pλ]) = 0, Θk(ϕ[Pλ]) = 2kk!ϕ[Pc(λ)].

Proposition 3. The set ϕ[Pλ] for all dominant λ forms a basis of Λm|n over Q. Moreover,
ϕ[Pλ] for all dominant λ with tail length less or equal than k form a basis of the (1+k)-th
term KerΘk+1 of the socle filtration.

Proof. It is sufficient to show that the set ϕ[Pλ] for all tailless λ is a basis of KerΘ, since
then the statement follows from (8) and (9) by induction.

The linear independence of ϕ[Pλ] for all tailless λ follows from the fact that ϕ[Pλ] =
xλ +

P

xµ for some µ > λ.
The fact that ϕ[Pλ] for all tailless λ generate KerΘ follows from irreducibility of KerΘ

over gl1/2. Indeed, a vector xν for some typical ν generate KerΘ over U(gl1/2). Hence

any vector in KerΘ is a finite linear combination
P

ajYjxν where aj 2 Q and Yj are
non-commutative monomials in Ea,a±1. Since xν = ϕ[Pν ] and translation functors map
projective modules to projective modules, we have that Yjxν is a finite positive linear
combination of ϕ[Pλ]-s. The statement follows. ⇤

Corollary 4. In the abelian group KE(F)/KP (F), every element has finite order.

Now let us illustrate the above statement on the example of SOSP (3, 2). Tailess domi-
nant highest weight are of the form aε+ bδ with a−1, b 2 Z≥0. The only dominant weight
with a tail is 0. We can express any Euler characteristic class E(µ) as a finite rational
linear combination of projective modules. If a − 1 6= b we have E(a, b) = [Pa,b] and if
a− 1 = b we obtain

E(1, 0) =
1

2
([P1,0]− [P0]), E(2, 1) =

1

2
([P1,0] + [P0]),

E(a+ 1, a) =

a−1
X

j=1

(−1)j+a−1[Pj+1,j ]−
(−1)a

2
([P1,0] + [P0]).

To write the classes of simple modules [Lλ] in terms of E(µ) (λ is dominant, µ is tailless)
one can use BGG resiprocity. However, it is not possible to construct a basis dual to [Pλ]

in Λm|n. One can construct such a basis in a natural completion Λ̄m|n := (Λn|m)0 ⊃ Λm|n,

where by (Λn|m)0 we mean the algebraic dual of Λn|m. For our example we have

[L0] =
1

2
(−E(1, 0)−

1
X

j=1

(−1)jE(j + 1, j)),

[L1,0] =
1

2
(E(1, 0)−

1
X

j=1

(−1)jE(j + 1, j)),

and for a > 0

[La+1,a] =

1
X

j=a+1

(−1)a+j+1E(j + 1, j).
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