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A  computer  aided product  design (CAPD) tool  is proposed  that  finds mixtures matching  target properties.

Genetic  algorithm  crossover  and  mutation  operators are  completed  with  insertion or  deletion  operators

adapted  for side branches. A  new  substitution operator is devised  for  cyclic molecules. The  mixture

fitness is evaluated  by a  weighted sum of  property  performances.  Molecules are represented by molecular

graphs. They are  split  into  molecular fragments  which  are built from  polyatomic  groups.  Molecules  or

molecular  fragments  can  be fixed, constrained or  left free  for  building a new  molecule.  Building  blocks are

chemical  functional  groups or  bio­sourced  synthons. A  specific  coding of  hydrogen­suppressed atoms  is

devised  that  can be used with  various property estimation models  where  atom connectivity information

is  required. Illustration  is provided  through three  case studies  to find levulinic,  glycerol and bio­based

derivatives  as substitute  for chlorinated  paraffin, methyl p­coumarate  ester  solvent  and blanket wash

solvent,  respectively.

1. Introduction

The chemical industries are on the frontline of sustainable devel­

opment due to the potential impact on the environment, health and

safety of its product and process activities. Regulations such as the

European REACH (REACH, 2006) and VOC (VOC, 2004) directives or

the keen interest of consumers for eco­labelled products push the

chemical industries to reconsider the products which they use and

produce.

In Europe, the cost of registering chemicals to  comply with

REACH could exceed D 2.1 billion, based on about 30,000 sub­

stances (ECHA, 2012). Therefore there is a strong incentive to find

substitute molecules and chemical products. New products need
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to obey environmental, health and safety constraints in addition to

usual product and process requirements. Economists have argued

that a  doubly green chemistry perspective prevails among chemical

industry engaged in green activities: one green for  the reduction of

their impacts on environment and one green for the use of renew­

able raw materials (Garnier et al., 2012). The first perspective is

a direct transcript of the definition of sustainable growth in the

founding Brundtland 1987 report. The second is the seventh prin­

ciple of green chemistry (Anastas and Warner, 1998). As it should

allow sustainable issues like toxicity or degradability to be met

more easily, the use of bio­sourced molecules or synthons is a major

stimulus when looking for a new product.

For finding a substitution molecule, the usual ‘trial and error’

approach seems inefficient unless high throughput screening is

used. Instead, reverse engineering approaches, like Computer

Aided Molecular Design (CAMD) are fit to  handle several proper­

ties and to propose molecular structures matching the target values

of these properties. In some cases, the problem of substituting a

molecule may result in  proposing a mixture. This further brings

forth the challenge of computing mixture properties which may

not always obey a linear mixing rule.

This paper presents a Computer Aided Molecular Design tool

and its tailoring for finding alternative bio­sourced molecules

and mixtures, with the help of model driven engineering (MDE)
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concepts. The CAPD tool follows the general methodology of CAMD

tool with several modifications. By using a  genetic algorithm, this

tool simultaneously optimizes the molecular structure of the com­

ponents and their compositions in the mixture in  order to best fit

the desired properties at normal operating conditions set by the

user.

After a  section devoted to  present background information

related to CAMD, we describe the data structures and methods.

They concern molecular representation, atom coding, fragment

builder along with specific genetic operators to build or delete

side chemical branches and to enhance changes in aromatic rings

while keeping their aromaticity. Their implementation into a three

software­component tool is then presented using MDE concepts.

Three case studies are presented to illustrate some of the fea­

tures of the tool: mixture search (case 1), search of a  molecule

with predefined bio­sourced synthons (case 2), two level search

(case 3).

2. Background

Computer Aided Molecular Design (CAMD) aims at finding

molecules that satisfy a set of property targets defined in advance

(Achenie et al., 2003). CAMD relies upon four main concepts,

namely, a molecular representation model, a set of property cal­

culation models, a  solving method and a performance criterion.

Candidate molecules can be searched in a database or built from

chemical groups. Their fitness is evaluated thanks to property esti­

mation models by comparing the values of estimated property and

the target property. Then they are discriminated according to their

performance and either modified, kept as is  or rejected, with the

help of the solving algorithm. During the problem setting, in addi­

tion to the initial definition of the property target values, chemical

blocks are pre­selected to be used in the molecular construction.

The CAMD problem solving method has often been tailored

to a specific representation model. The early “generate and test”

method was developed for a set of chemical groups that were also

used by the group­contribution property estimation method (Gani

et al., 1991; Constantinou et al., 1996). A vector of groups and their

occurrences described candidates. However, a single vector may

correspond to several isomer molecules and in this case a final

step is required to  generate the true molecules. To overcome this,

some representation describing explicitly the group interconnec­

tions have been used: a genetic algorithm with adapted operators

was used to generate polymers with a  symbol string encoding

(Venkatasubramanian et al., 1994), a  binary representation of atom

connectivity in molecules was used with a MILNP method (Churi

and Achenie, 1996), an adjacency matrix was used with a simulated

annealing (Ourique and Silva Telles, 1998), a graph representation

was used with TABU search (Lin et al., 2005) and recently a graph­

based representation issued from signature descriptors was used

with a genetic algorithm (Herring and Eden, 2014). These explicit

representations of molecule are fit for many kinds of property esti­

mation methods once a routine for finding the groups or descriptors

of the corresponding estimation method is provided.

Regarding the fitness of a candidate molecule, the differences

between the predicted and target values of all properties are aggre­

gated in a  global objective function through either an arithmetic

mean (Vaidyanathan and El­Halwagi, 1996) or a geometric mean

(Del Castillo et al., 1996). The geometric mean penalizes severely

the fitness when an individual property prediction/estimation

method is far from target. In that way it  is  more discriminant than

the arithmetic mean.

The evaluation of the performance of each molecule relies upon

the calculation of property values that have been classified as

product­properties, process­related properties and usage­related

properties (Costa et al., 2006). Product attributes found desir­

able  or undesirable by consumers belong to the latter class. For

the CAMD problem, product requirements have to  be translated

into target property values, which have been done by using prob­

lem templates (Mattei et al., 2014a,b). Most product and process

properties are usually described by group contribution methods

(Joback and Reid, 1987; Constantinou and Gani, 1994; Martin and

Young, 2001; Marrero and Gani, 2001, 2002; Nannoolal et al., 2004,

2007; Hukkerikar et al., 2012) or QSAR/TI topological index/QSPR

methods (Veith and Konasewich, 1975; Karelson et al., 1996; Gani

et al., 2005; Chemmangattuvalappil and Eden, 2013). Some envi­

ronmental, health and safety (EHS) properties like R­phrase or CMR

classification are described by similarity methods, relying upon the

finding of specific molecular patterns in molecules (Gallenos, 2006).

The problem of designing a mixture is  referred to as Com­

puter Aided Product Design (CAPD) where individual molecules

within the mixture and their composition must be found. Some

CAMD methods have been extended to CAPD with an additional

composition search (Klein et al., 1992; Gani and Fredenslund,

1993; Vaidyanathan and El­Halwagi, 1996; Duvedi and Achenie,

1997; Churi and Achenie, 1997; Sinha and Achenie, 2003). Over­

all, CAPD raises new issues compared to CAMD: firstly, more

properties have to be matched, including more usage­related prod­

uct properties or the mixture stability. Secondly, several mixture

property models such as boiling point and flash point, exhibit non­

linear mixing rules and need to be solved with built­in routines,

which may increase the computation time. Thirdly, some usage­

related properties may not be described by any suitable prediction

model.

Several approaches have been taken to solve CAPD problem:

some have performed a sequential search of each mixture com­

ponents individually, before checking mixture properties, stability

and composition (Gani, 2004; Conte et al., 2011; Papadopoulos

et al., 2013; Mattei et al., 2014a,b), some others have done decom­

position of the problem into a set of subproblems (Karunanithi

et al., 2005), while some have solved the problem globally for

a given application, for example polymer blends (Vaidyanathan

and El­Halwagi, 1996). As part of a methodology for the design

of formulated products, Gani and co­workers (Conte and Gani,

2011; Conte et al., 2011; Mattei et al., 2014a,b) have conceived

the Virtual Product­Process Design Laboratory. They propose to

run sequentially a  design scenario within a computer aided stage:

select a problem template and translate product needs into prop­

erties (Mattei et al., 2014a,b), choose an active ingredient of the

product from the database, then design the solvents with their

MIXD algorithm either from a pre­defined list or generated with

a CAMD tool (Conte, 2010) and then add additives from another

list and finally end up with the optimization of composition. To

escape the computer­aided stage, a verification scenario is  run with

more accurate models, possibly involving model developments.

An ultimate experimental validation ends the design activity. For

overcoming the problem of consumer attributes not described by

models, Solvason et al. (2009) combined an enumerating CAMD

technique and MDOE (mixture design of experiments) technique.

Illustrated with the formulation of a refrigerant mixture, they first

solve a  reverse formulation problem to  find property relations that

match user­defined attributes. Those relations are then used as

target of a  reverse problem aiming at finding the suitable mixture.

3.  Methods and data structures

We have developed a CAPD tool, named as IBSS (Integrated Bio

Sourced Search). It follows the general methodology of CAMD tools

and is aimed at finding mixtures in which some molecule may bear

bio­sourced fragments. The problem of finding a single molecule



is handled as a mixture with one element. The methods and data

structures developed to cope with that tailoring are now presented.

3.1. Optimization problem

The CAPD problem is multi­objective since several properties

must be matched. It is transformed into a single­objective prob­

lem, aiming at maximizing a global performance, GloPerf, described

by an objective function OF, subject to k  equality constraints and i

inequality constraints on property targets P. It can be  modelled as

follows:

OF = max(GloPerf (MGi, zi, condj))

s.t. Pk(MGi, zi, condj) = Pk,fixed

Pl,lowerbound ≤ Pl(MGi, zi, condj) ≤ Pl,upperbound

s.t. constraints on MGi, zi, condj

(1)

The optimization variables are the molecular graph structure

MGi of the individual i mixture components, the mixture compo­

sition zi and j conditions condj.  The conditions, condj, affect the

performance calculation by imposing conditions under which the

properties are calculated.

The optimization variables can be constrained to allow the user

to  tailor the problem: the composition of any molecule, zi and con­

dition condj can be fixed, bounded or free. For example, the user

can impose mole fraction of an ingredient, specify a physical state

of the molecule or define the range of operating conditions. Any

molecule MGi of the mixture can be fixed (ex. an active ingredient),

sourced from a list of molecule (ex. a list of additives or solvents) or

left free for optimization. In that latter case, one  or more chemical

fragments can be fixed or taken from a list  of fragments to design the

molecule (ex. to impose a  renewable material derivative fragment

in the molecule).

The global performance, GloPerf, is formulated as  the product

of a penalty function and of a weighted sum of np  individual per­

formance PropPerfp with weight wp with respect to each property

target.

GloPerf (MGi, zi, condj) = min
ır=1

(ır · (1 − Penalr))

·

∑np

p=1
wp ·  PropPerfp(MGi, zi, condj)

∑np

p=1
wp

(2)

The penalty function min (ır·(1 − Penalr)) is related to user

defined rules. Each rule r contains data related to a molecular pat­

tern described as an opened molecular graph and is assigned a

penalty percentage Penalr.  ır is  equal to 1 if the rth rule is  violated,

0 otherwise. Typical rules describe unrealistic structures from the

chemical synthesis point of view, or  molecular patterns that are

correlated with toxicity.

Each individual performance PropPerfp for the property p, com­

pares the predicted value x with the targeted value P. The user

can select among mathematical functions F(x) as shown in Table 1:

Gaussian (Venkatasubramanian et al., 1994), desirability functions

(Del Castillo et al., 1996) or straight functions.

CAMD solution robustness is shattered by the property model

prediction uncertainty. Solutions have been proposed in the lit­

erature, like the use of fuzzy logic operators to define upper and

lower bounded property ranges associated to  degrees of satisfac­

tion (Ng et al., 2014), as  can be done here with the straight function

representation. Alternatively, the knowledge of property model

uncertainty for some group contribution methods (Hukkerikar

et al., 2012) can be used to define the Tol parameter in the Gaussian

function representation.

Table 1

Property performance functions.

3.2. The search algorithm

The search algorithm selected is a genetic algorithm with elitism

policy as earlier proposed by Venkatasubramanian et al. (1994)

in CAMD. Modification operators are added to alter the mixture

composition, conditions and molecules and to perform a multilevel

search. The population size, the elitism value, the number of level

and all the probabilities of operators are defined by the user.

The initial population of individuals is  generated randomly

within the predefined constraints on the optimization variables

related to MGi, zi, condj. The method for building fragments from

chemical building blocks is described later.

The CAPD search can be performed in several sequential lev­

els (Harper et al., 1999; Korichi et al., 2008). At low level, simple

and/or fast­computing property prediction models are used over

a large population. Then as the level increments, more complex

and/or time­consuming models are used over a smaller population

originated from the fittest individuals of the previous level popula­

tion. At the next level, the same set of building blocks and molecular

structures is  kept. In the meantime, the objective function can be

modified according to the user’s initial choices: property estima­

tion models can be dropped, added or substituted by more complex

ones.

3.3. Mixture representation data

3.3.1. Mixture representation

The mixture structure is  customisable as presented in Fig. 1. Each

mixture is an assembly of items and conditions. Each item contains

one molecule and one mole fraction value. Each molecule is further

split into interconnected fragments. The fragments are further built

from basic or complex functional groups.

Initially, the user defines the mixture structure: the number

of molecules, their type (fixed, list or free) and composition con­

straints. For each free molecule, he sets the number of fragments,

fragment type (fixed, list  or free) and fragment interconnections.

For each free fragments, he defines the building groups to be used

and their maximum number Different building block list can be

used for different fragments. A molecule may contain a  single free

fragment. In that case the fragment has no external connections.

3.3.2. Molecular representation

We have selected molecular graph for the molecular represen­

tation which is described by an adjacency matrix (Achenie et al.,



Fig. 1. Overview  of the mixture  structure  and its substructures.

2003). The diagonal elements are either a hydrogen­suppressed

atom basic group, or a complex group or a  fragment. The off­

diagonal elements are bond type connections. A  matrix with

a diagonal that contains basic groups exclusively is called an

extended molecular graph hereafter.

A molecule graph is the aggregation of its fragment graphs.

Fig. 2 describes the acetoin molecule (3­hydroxybutanone) built as

a structure of three interconnected fragments. Fragment 1 is built

from two basic groups and one complex group. Fragments 2 and 3

are just one basic group.

Basic groups (BGs) represent a  hydrogen­suppressed atom, like

O, OH, CH3, CH2, >CH2,  NH3, N, etc. BGs are often simi­

lar to some first order groups in group contribution methods. They

are assigned a “BG.ID” attribute. It  is an ‘elementary group’ integer

EG =  P1P2P3P4 that is displayed in the extended molecular graph

diagonal. P1 refers to the atomic number preceded with a 1 (106

for C, 107 for N, 108 for O, 117 for Cl. .  .), P2 refers to the highest

bond order, P3 to  the type of the atom attached to, including its

occurrence in an aromatic or non­aromatic cycle, and P4 to the

number of implicit hydrogen atoms bonded to the atom. BGs

also bear a  “bondvector” attribute that represents the number of

single, double and triple bonds. e.g. for  BG.short formula =  “=C<”,

BG.ID = “106200” and BG.bondvector = “[2;1;0]”.

Complex functional groups (CGs) are multi­atom groups. They

are useful for a compact description of multi­atom chemi­

cal functions, like carboxyl groups, R COOH, nitrite R O N O,

nitro R NO2,  peroxy ROOR′,  ester RCOOR′, acetals RCH(OR′)(OR′′),

sulfenyl RSOR′.  . .  A non­exhaustive list of BGs and CGs along with

BG.ID is provided as  Supplementary material. As they are kept intact

when applying modification operators, complex groups are suit­

able to describe bio­sourced molecule derivative or synthons and

to keep them in the molecule candidates.

CGs inherit from the basic group attributes, but the “ID” attribute

has no specific meaning and is  assigned a  unique incremental value

2xxxxx defined by the user. Additional CGs attributes are a molecu­

lar graph “CG.graph” describing the complex group in terms of basic

Fig. 2. Molecular  graph representation  of  3­hydroxybutanone as three fragments.



groups and a “CG.connectionVector” integer attribute that repre­

sents the number and location of the external connections of the

group in the molecular graph (see Fig. 2).

Fragments “Fgt” are described as an adjacency matrix and an

external connection vector. The adjacency matrix contains basic or

complex functional group information (see Fig. 2). The vector rep­

resents the single, double or triple bond external connections, and

their location on the functional groups. Similar bond type external

connections on one group are distinguished by a letter.

3.4. Group vector

The classification of functional groups by Constantinou et al.

(1996) is adapted into group vectors “GV” to provide the list of basic

and complex functional groups authorized by the user to  build a

free fragment where k  groups are allowed. A group vector GV is

represented by the following way:

GV = {N1, N2,  .  . ., Nn}  (3)

Where Ni is the number of groups in the fragment that have

i connections, from 1 to n. Basic functional groups have up  to 4

connections. Some groups with sulphur and phosphorous atoms

where atom valence can be 6 and 5 respectively, though they are

described with 4 connections (see a  list of basic groups in Supple­

mentary material). For complex groups, the number of connections

n  can be higher than 4.  Authors have used some groups with 6 exter­

nal connections, especially those that are sourced from renewable

synthons.

In addition, the following chemical feasibility rules coming from

the octet rule hold:

n
∑

j=1

Nj =  k (4)

n
∑

j=1

Nj(2  − j) = 2m −  extconnections (5)

where m is a  number equal to 1 minus the maximum number of

cycles allowed by the user and extconnections is the number of

external connections of the fragment.

3.5. Fragment creation

The method for building a free fragment from a preselected

list of basic or complex functional groups is developed to ensure

a diversity of structures, in particular heterocycles and aromatic

cycles which may often disappear during modification by a  genetic

algorithm.

The procedure for constructing a fragment is described as an

activity diagram in Fig. 3 which is explained below:

(1) Initialization of the user parameters: minimum kmin and max­

imum kmax number of BGs and/or CGs functional groups in a

fragment, the maximum number of cycles m max, the number

of external connections for the fragment extconnections and

the preselected BGs and CGs ordered into Nj lists.

(2) Choice of the fragment parameters: a value of k between kmin

and kmax and a  value of m between 1 and 1  − m  max are

randomly selected. Using those values, the possible group vec­

tors are determined, e.g. assuming that groups with up to

4 external connections exist (n =  4) and k = 6, five group vec­

tors are possible GV1 =  {1,5,0,0}, GV2 = {2,3,1,0}, GV3 = {3,1,2,0},

GV4 = {3,2,0,1}, GV5 = {4,0,1,1}. A GVi is picked and used as a

basis for the fragment construction. Each group vector has the

same probability to be chosen to ensure a higher diversity of

the generated structures.

(3) Addition of a  new element to  the fragment: At this point either

an acyclic group or an entire cycle structure can be added. The

decision is made randomly considering the number of cycles yet

to be  constructed and the remaining number of elements that

can be inserted. If an acyclic group is selected, a Nj is selected

randomly from GVi. Then one of the groups of the Nj list is picked

and is added. Step 3 is repeated until all k  groups have been

added (go to step 6). If a cycle is selected go to step 4.

(4) Cycle building: The cycle size and its aromaticity are  decided

before the cycle construction starts. Then all the elements that

form the cycle are inserted one after the other until the cycle

is complete. Side branches to the cycle are inserted only once

the cycle is closed to the cycle groups that still bear unsaturated

external connections. This way the elements of a  cycle are con­

secutive in the adjacency matrix to make the graph easier to

handle.

(5) Fused cycle building: At the end of step 4 it is  possible to add

a fused cycle. The decision is made randomly considering the

number of cycles yet to be constructed and the remaining num­

ber of elements that can be inserted. Then size and aromaticity

are decided. For a non­aromatic fused cycle, the attachment

points of the fused cycle are searched on the last inserted cycle

and its adjacent cycles. A couple of attachment points are ran­

domly chosen and the shortest way between these two points

is determined. This path is  then considered as  a part of the

fused cycle to build. Then the number of elements still to  be

added is randomly chosen and the elements are added one by

one. The process to construct an aromatic cycle is the same

with supplementary constraints: the attachment points must

be consecutive in the last cycle; they must be connected with a

double bound and must concern aromatic groups. This process

goes on until the fragment is complete (go to step 6).

(6) Fragment complete: All the groups having been added, the cor­

responding molecular consistency is tested. If so, the possible

complex groups are expanded into basic groups to create the

expanded molecular graph of the fragment.

3.6. Molecule modification operators

The operators used to  alter the molecular graph adjacency

matrix are summarized in Fig. 4: mutation, crossover, insertion,

deletion and substitution.

Regarding the insertion and deletion operators, we have added a

specific branch constructor or destructor. We have also developed

a new substitution operator to improve the chances of structural

changes in aromatic rings without breaking their aromaticity.

• The mutation operator consists in the random replacement of a

single group by a  group from the Ni reference list that bears the

same external connections, e.g. >NH by >CH2 both with two single

bonds in Fig. 4.
• The crossover operator consists in randomly choosing two iden­

tical non­cyclic bond types (single, double or triple bound) in two

extended molecular graphs. This is  checked with the P3 value in

the ID attribute of a group. The semi­graphs are then switched

and recombined to  form two new molecules.
• The insertion operator consists in the random addition of a group

in the graph. We have developed the possibility to insert a  group

that has more than two connections, like CH<, thus enabling the

completion of the graph with a new branch (Fig. 4).
• The deletion operator consists in the random removal of a group

with at least two connections of the same type in the graph. To

be consistent with the insertion operator, it is possible to delete

a group that has more than two external connections. This may



Fig. 3. Activity  diagram  of the creation  of  a  free fragment  object.

possibly induce the deletion of a side branch of the molecule. In

Fig. 4, the group C< is randomly chosen for deletion. The extra

branches are deleted and the two remaining branches are directly

reconnected. The branch NH is  deleted because it is not consis­

tent with the remaining connection type. Thus another suitable

group F is reconnected instead.

• The new substitution operator combines the principles of muta­

tion and insertion and consists in the replacement of a group by

a group that has more connections. It was developed because the

other operators performed poorly in modifying aromatic cycles

without destroying their aromaticity: a mutation operator alone

would be ineffective because of the limited number of aromatic



Fig.  4. Molecule modification  operators.

groups, here only enabling to replace CaromH  by Narom and

conversely. The crossover operator cannot be applied on rings.

The insertion and deletion operators would only allow adding or

deleting the aromatic heteroatoms O  and NH ,  to  maintain

the aromaticity.

4. Implementation

The methods described above have been implemented in the

“IBSS” CAPD tool software prototype. The iterative process of

the IBM­RUP software development method (Kroll and Kruchten,

2003) was applied. It is centred on the architecture and driven

by the functional needs that should cover the CAPD tool. Those

needs were expressed by the partners of the French ANR CDP2D

2009 project InBioSynSolv, aiming at designing biosolvents. Those

needs highlighted that the sustainability of the candidate mix­

ture may rise from the occurrence of bio­sourced fragments

within the molecular structure and by the use of EHS property

models to evaluate the performance of each candidate. To speed­

up the implementation process, Model Driven Engineering, MDE

principles were followed with the help of UML 2.0 (Unified Mod­

elling Language) and BPMN (Business Process Modelling Notation)

diagrams. It produced architectural, behavioural, functional and

structural UML 2.0 views that are now briefly presented.

4.1. Architectural view

The CAPD tool is developed as  component­based software. Each

of  the three components, ‘Man–Machine­Interface MMI’; ‘SEARCH’

and ‘P3’, is  a  software package that encapsulates a set of func­

tions and data and communicates through interface with the other

components (Fig. 5). Next to them, an XML­structured database

contains the basic and complex groups.

In the spirit of MDE, effective coding was started after the CAPD

tool architecture and needs definition were well advanced. The

first MMI component is written in java and aims at providing an

input XML file to the search component. The second component

“SEARCH” is built around an object­oriented architecture and is

written in C# within the Visual Studio® environment. The third

property calculation component “P3” is  a Dynamic­Link Library

written in VB.NET. It contains a library of property estimation mod­

els and automatic group finders or molecular descriptor routines

used to translate the molecular graph information sent by the

search component into suitable inputs for the property estima­

tion models. As a standalone component, various interface methods

enable the use of the P3 component with the search component or

with other independent software. Currently, thirty properties can

be estimated from twenty property estimation models which are

listed in the Supplementary material.

4.2. Behavioural view

The behavioural view presents the different processes of the tool

and highlights the components interoperability (Fig. 6).

The interoperability between the MMI and the Search compo­

nents is asynchronous via an XML file  as input and a  text file  for

the results. The interoperability between the Search and the Prop­

erty calculation components is synchronous and Windows­Library

like. The XML file is generated through the MMI­component and

loaded in the search component interface. Then, the Resolution

package launches the search algorithm, a genetic algorithm with

a single level in Fig. 6. First the initial population is generated. Then

properties are evaluated by the property calculation component to

calculate the performance of each mixture. The population is  mod­

ified and evaluated again until a stop criterion is satisfied putting

an end to the search. Results are  then saved in a text format to the

MMI package of the search component. The data in these files are

afterwards displayed by the MMI component.

4.3. Functional view

The functional view highlights the potential users and the main

functionalities of the software, like the function “launching a CAPD

search” represented in Fig. 7. In compliance with the hierarchical

decision making process for sustainable product design presented

elsewhere (Heintz et al., 2014), we distinguish the expert user

from the basic user. The former can access all parameters. The role

of basic user is intended for people with moderate expertise in

property estimation and chemistry, typically business or techni­

cal managers. The basic user has access to following functionality

of the tool: to select pools of chemical building blocks classified by

raw material sources, to choose product requirements to be con­

sidered, to define the rough structure of the product mixture and to

set generic product constraints, like a  fixed ingredient within the

mixture.



Fig. 5. CAPD  tool  UML component  diagram.

Fig. 6. BPMN  diagram of  the  three  IBSS components  behaviour.

Fig. 7 describes the use case diagram of the ‘launch a search’

functionality. It gives access to the definition of the problem data

through three data subsets and describes actions available to the

user.

• The mixture data are relevant to the structure of the mixture and

its components: building blocks and compositions. With these

parameters, the user can customize the mixture by defining the

possible fixed parts and the degrees of freedom of the different

variable parts.
• The objective function data are related to the properties, their

target values, their estimation models and the conditions used to

calculate these properties.
• The genetic algorithm search parameters are data that can

directly influence the speed and the effectiveness of the search:

population size, elitism, modification operator probabilities,

search level.

Fig. 7. “Launch  a search” UML  use case  diagram.



Table  2

Examples  of  product requirements  and  associated  calculable properties.

Product  requirement  Calculable

property

Default  pure  compound

calculation  model

Fluidity
Viscosity Conte et  al.  (2008)

Molecular

weight

Atomic  weight summation

Volatility
Boiling  point Marrero and Gani (2001)

Vapor  pressure Riedel (1954)

Toxicity

Log(Kow) Marrero and Gani (2002)

−Log(LC50) Martin  and  Young  (2001)

Log(BCF)  Veith  and Konasewich (1975)

The mixture data should preferably be set before the objec­

tive function data because some property calculation models must

be chosen for each mixture component which number must be

known beforehand. The algorithm data can be specified at any time.

Any data set can be saved and retrieved independently. When the

data are correctly defined, the application offers the user to  run

the search algorithm. The results are displayed as a  list of product

candidate which the user can choose to save.

4.4. Structural view

The structural view concerns the model abstractions, object

classes and their relationships.

• The mixture data structure implements the

hierarchy described earlier in Figs. 1 and 2: mix­

ture > composition +  molecules + conditions >  fragments > building

blocks; along with the methods like the fragment constructor

displayed in Fig. 3. A routine is developed to use the basic and

complex groups stored in the “Block” database.
• The search algorithm data structure contains the genetic algo­

rithm parameters and the modification operator methods which

are described earlier.
• The objective function structure contains all the data and meth­

ods related to property target values and performance function in

addition to the property estimation model for pure compounds

and mixtures. In addition, we allow the basic user to be logged in

the MMI component to identify product requirements as needs

(Yunus et al., 2014) rather than as precise property names and

models. Requirements are edited by an expert user into a set of

calculable properties, with specific targets and property estima­

tion models as done by others (Mattei et al., 2014a,b). Table 2

displays an example.

5. Case studies

5.1. Case study 1: blanket wash mixture substitution

5.1.1. Problem setting

“Blanket wash” are needed to  clean ink residues from rubber

blankets in the lithographic printing process. In replacement of

petroleum sourced solvents, Sinha and Achenie (2003) used a  CAPD

approach on a pre­selection of seven water­soluble and low EHS­

impacts solvents and solved a MINLP problem to find the optimal

composition of the aqueous blend. Heintz et al. (2014) revisited

the whole decision process leading to substitute blanket wash. It

led to the specification of a  tree of requirements translated here

into property target values for a CAPD search with the IBSS tool. We

search for an aqueous mixture and we optimize simultaneously the

organic molecule and its molar composition.

A first requirement consists in solubilizing the phenolic resin ink

which is evaluated by the Relative Energy Difference, RED, prop­

erty given by Eq. (6). RED is computed by using Hansen solubility

Fig. 8. Organic  molecular  structure and  building  blocks in the blanket wash  mixture

search.

parameters, ıD, ıP,  ıH, along with the Hansen distance by the ink

solubility radius:

RED =

√

4(ıD −  19.7)
2
+ (ıP −  11.6)

2
+ (ıH − 11.6)

2

12.7
(6)

If RED < 1, the solvent dissolves the solute. For the best solubi­

lization results, we set a target value of RED = 0.

Other requirements refer to the cleaning process conditions: the

solvent should keep its fluidity over the rubber blanket surface,

which is evaluated by setting target values for viscosity and surface

tension. It should comply with Volatile Organic Compound, VOC

limits, evaluated with the vapour pressure. Environmental Health

and Safety issues are assessed with a five EHS indices model and a

flammability class is  evaluated with a flash point model. The prop­

erty target values are displayed in Table 3 along with the property

weights, operation conditions, linear or non­linear mixture models

and pure compound model. A Gaussian function is used for each

property performance in Eq. (2).

In the global performance Eq. (2), we set penalties, namely the

occurrence of three consecutive oxygen atoms or of C­C­C ring

(Penalr = 100% => forbidden).

The organic solvent structure is split into two fragments, one

with a  core synthon traceable from various renewable biomass

material stocks and the other built from less than 10 groups among

a pool of simple and complex groups displayed in Fig. 8.

The search is ran with the following set of parameters: num­

ber of generations (300), population size (100), elitism (30) and the

probabilities of crossover, mutation, insertion and deletion (respec­

tively 65, 15, 10 and 10). It is completed in less than 40 min. Cyclic

compounds are excluded. The probability for composition change

and molecule change are 0.7 and 0.3 respectively.

5.1.2. Results

The output file displays a list of hundred mixtures rated by their

performance (Heintz et al., 2012) and the best solution (Fig. 9)

emerged after 40 generations.

Sinha and Achenie (2003) suggested a mixture of g­

butyrolactone and water (45/55 mol%) for  which posterior

evaluation of the performance with our criteria is 0.94. Our solu­

tion reaches a  performance of 0.96 for a  composition of 31 mol%.

Confidential issues prevent us to display the formula of organic

molecule which is different than g­butyrolactone. Fig. 9 shows how

the organic molar fraction affects the RED property. The minimum

is at 0.3, indicating that the genetic algorithm correctly finds the

best solution. It also shows that adding water to the biosolvent

improves its cleaning ability.



Table  3

Blanket wash  substitution  calculable  properties,  target,  model  and parameters.

Property  name Weight  Target Performance  functiona Mixture  model  Pure cpnd  model  Operating  conditions

Molecular weight  1  <200 g/mol G(20,0.8)  –

Flash  point 1 >323.15  K G(5,0.8)  Linear Catoire  et  al. (2006)

Vapor pressure  1  <0.00267  bar  G(10−4 ,0.8) Linear Riedel  (1954) T  = 298.15  K

RED  4  =0  G(1,0.9)  Volumic fraction  HSPiP  See  Eq.  (6)

Env. waste  0.2 >8 G(1,0.8)  Linear Weis  and Visco  (2010)

Env. impact 0.2 >8 G(1,0.8)  Linear Weis  and Visco  (2010)

Health 0.2 >8 G(1,0.8)  Linear Weis  and Visco  (2010)

Safety  0.2 >8 G(1,0.8)  Linear Weis  and Visco  (2010)

LCA 0.2 >8  G(1,0.8)  Linear Weis  and Visco  (2010)

Viscosity  1  ∈ [0.8;1.4] cP  G(0.1,0.8)  Non  linear; Tamura

and  Kurata (1952)

Conte et  al. (2008)  T  = 298.15  K

Surface  tension  1  ∈ [30;45] dyn/cm2 G(5,0.8)  Non  linear; Rice

and  Teja (1982)

Conte et  al. (2008)  T  = 298.15  K

Density  1  ∈ [0.9;1.1] G(0.05,0.8)  Linear HSPiP  3.1, Model,  2010

Log(Ws) 4  >4 mg/L  G(0.5,0.8)  Linear Marrero and  Gani (2002)

a G(Tol,Val):  Gaussian type function see Table  1.

5.2. Case study 2: substitution of chlorinated paraffins

5.2.1. Problem setting

We seek an alternative molecule to chlorinated paraffins (CPs).

With a  general formula CnH2n+2−xClx, they have been used as

additives in high­temperature lubricants and cutting fluids for met­

alworking, plasticizers and flame retardants in plastics, sealants

and leather (Bayen et al., 2006). Sourced from petroleum, their use

and risks (toxicity, potential carcinogenic) have been assessed and

are regulated (EU Report, 2008).

Table 4 summarizes the targeted physical properties.

We seek a suitable alternative sourced from levulinic acid (LA),

which is known as a biomass platform chemical with derivatives

already in use as lubricants, coatings and printing/inks (Bozell et al.,

2000). The structure of substitute molecule consists in two frag­

ments, one is fixed as  LA and the other is constructed as assembly

of less than 10 groups among 19 basic groups and 8 complex groups

as displayed in Fig. 10.

Two different searches are executed: one uses only basic and

complex groups to generate candidates (set 1); the other uses a

fixed fragment (levulinic acid) and generate LA derivatives using

basic and complex groups (set 2).

The following parameters are used: number of generations

(300), population size (100), elitism (10) and the probabilities of

crossover, mutation, insertion and deletion (respectively 20,  50, 15

and 15). The formation of cyclic and aromatic compounds is not

allowed. No penalty related to specific chemical sub­structure is

set.

5.2.2. Results

The search with set 1 (no LA fragment) produces the molecule

shown in Fig. 11 that was brought out by the genetic algorithm after

the 100th generation with a  performance of 0.9122. It  has great

similarities with known CPs alternatives and displayed in Fig. 11.

Notice that viscosity is not computed because of no suitable group

Fig.  9. Performance  and  property  values for  the best  biomass  derivative mixture

and  influence  of  its fraction  on RED  property.

contribution value in Joback and Reid’s model exists. The user can

overcome failure in property calculation by allowing the perfor­

mance equation to  be computed without those properties. In such

situation, property weights are normalized appropriately.

Introducing LA fragment in the molecule, we display the influ­

ence of kmax (maximum number of building groups in  fragment 2),

on the performance of the genetic algorithm in Fig. 12. It shows

that acceptable solutions are found if we use kmax >  4. The maxi­

mum performance (1.000) is always found for kmax ≥ 6, and found

more rapidly with kmax = 7.

With the set 2 (LA +  basic +  complex groups), the maximum per­

formance (1.00) is achieved after 100 generations for kmax =  7. The

best 10 molecules of the 100th generation are given in Fig. 13, along

with a general scheme for the present approach and their predicted

values of various properties in Table 5.

For the set 2, the flash point of molecules 6 and 9 could not be

estimated. Indeed, group contributions do  not exist for the group

>CO (molecules 1–8 and 10) and for the group CHCO (molecule

9). The Configuration Interaction “CI” correction of the Hukkerikar

model was not used (Hukkerikar et al., 2012). For the molecules

other than 6 and 9, the viscosity was not predicted because the

Joback and Reid method does not handle the phosphate group.

Besides, the method of Hukkerikar et al. does not have the contribu­

tion of the group aC­PO4 for the boiling point; therefore, the values

of boiling point shown in Table 5 are only first approximations that

do not take into account the aC­PO4 group. Such property model

deficiencies for complex structures confirm that CAPD computer

based approaches should necessarily be validated by laboratory

experiments. As mentioned before, the global performance was

renormalized.

Analysing the results for molecules 6 and 9, predicted melting

points values are greater than the target values but remains below

the  reported average absolute error of the model (17.65 K). These

molecules can be retained for further experimental analysis of their

melting point. Nevertheless, they will likely be waived by chemists

because they exhibit a double ketone sequence, C(  O) C( O) ,

that is known to  be unstable. Alternatively, this rule could be coded

in the IBSS tool and a penalized performance could have been used

instead.

5.3. Case study 3: find solvents for extraction of natural

antioxidants

5.3.1. Problem setting

The objective is to find a solvent for methyl p­coumarate

(MpCA), an ester of cinnamic acid isolated from plants. This class

of compounds is  known for their antibacterial, antifungal and/or



Table  4

CPs  substitution  case:  product  requirements  and calculable  properties with corresponding CAMD  parameters.

Product  requirement  Calculable property  Weight  Target Performance  functiona Pure  cpnd model  Operating  conditions

Liquid  at usage  temperature
Melting point  1  <283.15  K G(10,0.8)  Hukkerikar et  al. (2012)

Boiling point  1  >523.15  K G(5,0.8)  Hukkerikar et  al. (2012)

Non  flammable at  high  temperatures Flash  point 1  >505.15 K  G(5,0.8)  Hukkerikar et  al. (2012)

Fluidity  Viscosity 1  >37 cP  G(10,0.8)  Joback and  Reid (1987)  T =  298.15  K

Low  potential  to bioaccumulation  Log(Kow) 1  <3 G(2,0.8)  Hukkerikar et  al. (2012)

a G(Tol,Val):  Gaussian  type  function see  Table 1.

Table  5

Predicted  properties for  the best 10 candidates  for  chlorinated  paraffins  substitution  (100th generation,  kmax =  7, levulinic + basic groups  +  complex  groups).

Performance  Melting  point  (K) Boiling point  (K)  Flash point  (K) Viscosity  (cP) Log(Kow)

Molecule  1 1.0000  274.80  358.67  518.95  –  0.31

Molecule  2  1.0000  266.34  360.24  507.30 –  0.30

Molecule  3  0.9999  283.30  362.01  520.23  –  0.36

Molecule  4  0.9986  284.72  361.60  506.98  –  −0.97

Molecule  5  0.9982  284.94  362.59  527.74  –  −0.82

Molecule  6  0.9976  284.14  317.97  – 35.19  −0.72

Molecule  7  0.9964  285.71  353.64  512.73  –  −1.45

Molecule  8  0.9902  287.39  369.86  537.69  –  0.37

Molecule  9 0.9884 280.08 307.51 – 32.38  −0.96

Molecule  10  0.9656  291.30  364.25  522.11  –  −1.33

antiviral activity (Galanakis et al., 2013; Sova, 2012). Panteli et al.

(2010) found that tert­pentanol was the best solvent for MpCA

among tert­butanol, tert­pentanol, ethyl acetate and n­hexane.

Here we search for a glycerol based solvent. The molecular struc­

ture we look for consists in  two fragments. Fragment Fgt1 is taken

from a  list of two glycerol derivatives with either sn­1 or sn­2 sub­

stituent. The other fragment is  constructed as assembly of less than

10 groups among those displayed in  Fig. 14.

We use the IBSS tool with a two level search. At level 2, we

keep the three best molecules from the list of candidates found

Fig.  10.  A chlorinated paraffin  example and  building  blocks used to  generate  alternative molecules.

Fig.  11.  Candidate  and known  alternatives for  chlorinated paraffins  (CP) substitution.



Fig.  12.  Influence  of  the maximum  number  of  building  blocks on the genetic algo­

rithm  performance.

at level 1 and improve the prediction of their solubility by using

a solid–liquid equilibrium calculation instead of the RED property

(see Eq. (6)) used at level 1. The solubility x of an ideal solid phase in

a liquid solvent is given by Eq. (7) in first approximation (Prausnitz

et al., 1998):

ln x =
1Hm

RT

(

1 −
T

Tm

)

− ln 
 (7)

where 
 is the activity coefficient (computed by the UNIFAC mod­

ified Dortmund 1993 model), 1Hm and Tm are the fusion enthalpy

and the melting temperature of MpCA, respectively.

Table 6 summarizes the physical properties to be satisfied by a

potential candidate.

The following set of parameters are used: number of generations

(300), population size (50), elitism (5), kmax (4) and the probabili­

ties of crossover, mutation, insertion and deletion (respectively 40,

50, 5, 5). The formation of cyclic and aromatic compounds is  not

allowed.

5.3.2. Results

The maximum performance (0.9802) is achieved in 60 gener­

ations. The best 10 molecules of the 60th generation are given in

Fig. 15 and their properties are displayed in Table 7.

None of those molecules exhibit a  sn­2 glycerol derivative.

Indeed, the contribution to the melting point predictions of the

sn­2 OCHCH2OH group is much larger (10.9421) than the sn­

1 OCH2CHOH group contribution (1.7527) in the Hukkerikar’s

method (Hukkerikar et al., 2012). Thus, isomers can show a dif­

ference in melting point up  to 100 K. Even though all the generated

Fig.  13.  Candidates  for chlorinated  paraffins substitution.  Building  blocks: levulinic  acid +  basic  groups + complex  groups. 100th generation,  kmax =  7.

Fig.  14. Methyl  p­coumarate solubilization: target  molecule and  building blocks.



Table  6

MpCA  solvent extraction  case: product requirements  and calculable  properties  with  corresponding  CAMD  parameters.

Product  requirement  Calculable  property  Weight  Target  Performance

functiona

Pure  cpnd  model

Level  1

Pure cpnd model

Level 2

Must  dissolve  MpCA RED 2  =0  G(1,0.95)  Hukkerikar  et  al.  (2012)b UNIFAC  +  SLE  at 25 ◦C

Liquid  at room temperature
Melting  point  1  <283.15  G(10,0.8)  Hukkerikar  et  al.  (2012) –

Boiling  point 1  >373.15  K  G(5,0.8)  Hukkerikar  et  al.  (2012) –

Non  flammability  Flash  point  1  >343.15  K  G(1050.8)  Hukkerikar  et  al.  (2012) –

Low  potential  to bioaccumulation  Log(Kow)  1  <3  G(2,0.8)  Hukkerikar  et  al.  (2012) –

a G(Tol,Val):  Gaussian  type  function see  Table 1.
b The  Hukkerikar  model  is used  to  compute the Hansen  solubility parameters, which  are used  to  compute RED.

Table  7

Predicted  properties for  the best 10 candidates  for  methyl  p­coumarate  solubilization  (60th generation,  kmax =  4, glycerol + basic  groups).

Level 1  Level  2

Performance  Melting  point  (K)  Boiling  point  (K)  Flash point  (K)  Log(Kow)  RED Solubility  fraction

Molecule  1 0.9802 285.24 532.92  349.35  0.03 1.04  0.0896

Molecule  2  0.9732  287.34  548.81  341.47  1.29  0.99  0.0787

Molecule  3  0.9710  290.63  529.80  349.19  0.17  0.75  0.0902

Molecule  4  0.9635  283.62  537.89  339.35  1.07  0.99  –

Molecule  5  0.9570  293.23  523.40  345.25  0.09 0.74  –

Molecule  6 0.9471 290.25 535.61 340.53 −0.84  1.24 –

Molecule  7  0.9213  298.71  539.53  356.66  0.55  0.74  –

Molecule  8  0.9196  295.18  535.27  343.21  −1.09  1.46 –

Molecule  9  0.9150  295.13  534.63  338.28  0.78  0.67  –

Molecule  10  0.9095  300.37  556.14  347.41  0.96  0.77  –

molecules have predicted melting points greater than the target,

this difference is within the reported average absolute error of the

model (17.65 K), and these molecules can be retained for further

experimental analysis. It can be also noted that the best molecule

is a compromise, with a larger RED than other molecules but with

an overall better performance.

The top 3 molecules proposed by level 1 are retained for fur­

ther analysis of their solubility with the UNIFAC–SLE approach. The

results of level 2 shift the order of molecules 1 and 2  in terms of

performance compared to that of the level one by using the RED

model: the molar fraction solubility of molecule 2 is predicted at

0.0787, lower than that of molecule 1 at 0.0896. The predicted solu­

bility of molecule 3 is the highest: 0.0902. This value confirms with

the level 1 RED prediction, in which molecule 3  is that with the

lowest RED value.

Fig.  15. Candidates  for  methyl p­coumarate solubilization.  Glycerol  and  basic

groups  as building blocks;  60th  generation.

6. Conclusion

We have described the methods, data structures and software

implementation of IBSS, a computer aided product design (CAPD)

tool that is aimed at finding mixtures. Based on CAMD concepts, it

is able to optimize simultaneously the mixture components, com­

positions and mixture conditions.

With the help of a  model driven engineering approach, the archi­

tecture and the functional needs of the CAPD tool were devised, and

specifically aimed at finding mixtures with molecules that can be

sourced from pools of renewable materials. This is done by set­

ting constraints on the mixture molecules or on fragments within

molecules, like bio­sourced synthons.

A molecular representation based on an adjacency matrix

was selected. It  was made flexible to represent both atom­based

structures and fragment­based structures. Diagonal hydrogen­

suppressed atomic elements of the matrix were described with a

novel coding of four indexes describing the atom number, the high­

est bond type, the atom neighbouring context and the number of

hydrogen atoms. The coding was also devised for  the identification

of chemical groups or descriptors necessary to evaluate proper­

ties with models from various authors. A complex group describing

polyatomic structures was created to represent polyatomic chem­

ical functions and synthons. It  enabled to keep intact bio­sourced

synthons during the search and promote their occurrence in the

final solution if their performance was deemed high enough.

A  genetic algorithm was selected to optimize simultaneously the

mixture elements, its composition and additional operating con­

ditions. It  was made capable to  perform a  multilevel search with

different objective functions. Modification operators were adapted

to cope with the mixture search context and with the aforemen­

tioned molecular representation. Classical crossover and mutation

operators were used, while insertion and deletion operators were

adapted to insert or delete side branch. A new substitution opera­

tor was proposed to maintain cyclic molecules through the genetic

algorithm generations. The building of fragments from basic or

complex groups was made more efficient by using a vector group

classification inventorying building groups on the basis of their

external connections.



The mixture performance is  calculated through a sum of

weighted property performance that can be  penalized if specific

molecular patterns occur, like those found in toxic molecules.

The tool was implemented as a  set of three independent soft­

ware components, namely a MMI component, a CAPD search

component and a property library component; associated to a

database of basic and complex functional groups. To cope with

the difficulty for some users of expressing requirements in terms

of numerical target values, we distinguished product requirement

(better suitable to basic user) vs calculable properties (for expert

users).

Future work is  ongoing to set the CAPD tool within a  virtual lab­

oratory decision­making framework as  described by Heintz et al.

(2014).  We also intend to benefit from the flexible tool archi­

tecture, first by adding alternative solving methods other than

genetic algorithm, and by testing the suitability of the molecular

graph representation for novel property models based on  higher

dimensionality which are useful to handle conformation dependent

properties.
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