
HAL Id: hal-01093090
https://hal.science/hal-01093090

Submitted on 16 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Event-Based Approach to Runtime Adaptation in
Communication-Centric Systems

Cinzia Di Giusto, Jorge A. Perez

To cite this version:
Cinzia Di Giusto, Jorge A. Perez. An Event-Based Approach to Runtime Adaptation in
Communication-Centric Systems. [Research Report] Laboratoire d’Informatique, Signaux, et Systèmes
de Sophia-Antipolis (I3S) / Equipe BIOINFO MDSC - Modèles Discrets pour les Systèmes Complexes;
Johann Bernoulli Institute for Mathematics and Computer Science, University of Groeningen. 2014.
�hal-01093090�

https://hal.science/hal-01093090
https://hal.archives-ouvertes.fr

An Event-Based Approach to Runtime Adaptation in

Communication-Centric Systems

Cinzia Di Giusto1 and Jorge A. Pérez2

1 Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis
2 Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen

Abstract. This paper presents a model of session-based concurrency with mech-

anisms for runtime adaptation. Thus, our model allows to specify communication-

centric systems whose session behavior can be dynamically updated at runtime.

We propose an event-based approach: adaptation requests, issued by the system

itself or by its environment, are assimilated to events which may trigger runtime

adaptation routines. Based on type-directed checks, these routines naturally enable

the reconfiguration of processes with active sessions. We develop a type system

that ensures communication safety and consistency properties: while the former

guarantees absence of runtime communication errors, the latter ensures that up-

date actions do not disrupt already established sessions.

1 Introduction

Context. Modern software systems are built as assemblies of heterogeneous artifacts

which must interact following predefined protocols. Correctness in these communica-

tion-centric systems largely depends on ensuring that dialogues are consistent. Session-

based concurrency is a type-based approach to ensure conformance of dialogues to pre-

scribed protocols: dialogues are organized into units called sessions; interaction patterns

are abstracted as session types [8], against which specifications may be checked.

As communication-centric systems operate on open infrastructures, runtime adap-

tation appears as a crucial feature to ensure continued system operation. Here we under-

stand runtime adaptation as the dynamic modification of (the behavior of) the system in

response to an exceptional event, such as, e.g., a varying requirement or a local failure.

These events are not necessarily catastrophic but are hard to predict. As such, protocol

conformance and dynamic reconfiguration are intertwined concerns: although the spec-

ification of runtime adaptation is not strictly tied to that of structured protocols, steps of

dynamic reconfiguration have a direct influence in a system’s interactive behavior.

We are interested in integrating forms of runtime adaptation into models of session-

based concurrency. As a first answer to this challenge, in previous work [7] we extended

a typed process framework for binary sessions with basic constructs from the model of

adaptable processes [2]. In this work, with the aim of extending the applicability and

expressiveness of the approach in [7], we propose adaptation mechanisms which depend

on the state of the session protocols active in a given location. As a distinctive feature, we

advocate an event-based approach: by combining constructs for dynamic type inspection

and non-blocking event detection (as put forward by Kouzapas et al. [12,10]), adaptation

requests, both internal or external to the location, can be naturally assimilated to events.

2 Cinzia Di Giusto and Jorge A. Pérez

A Motivating Example. Here we consider a standard syntax for binary session types [8]:

α, β ::= ?(T).β input a value of type T , continue as β

| !(T).β output a value of type T , continue as β

| &{n1:α1 . . . nm:αm} branching (external choice)

| ⊕{n1:α1 . . . nm:αm} selection (internal choice)

| ε | µt.α | t terminated and recursive session

where T stands for both basic types (e.g., booleans, integers) and session types α. Also,

n1, . . . , nm denote labels. To illustrate session types, consider a buyer B and a seller S

which interact as follows. First, B sends to S the name of an item and S replies back with

its price. Then, depending on the amount, B either adds the item to its shopping cart

or closes the transaction. In the latter case the protocol ends. In the former case B must

further choose a paying method. From B’s perspective, this protocol may be described

by the session type α = !item. ?amnt. αpay, where item and amnt are base types and

αpay = ⊕{addItem : ⊕{ccard : αcc , payp : αpp} , cancel : ε}.

Thus, session type α says that protocol αpay may only be enabled after sending a value

of type item and receiving a value of type amnt. Also, addItem, ccard, cc, and payp

denote labels in the internal choice. Types αcc and αpp denote the behavior of each

payment method. Following the protocol abstracted by α, code for B may be specified

as a π-calculus process. Processes P and R below give two specifications for B:

P = x(book).x(a).if a < 50 then x ⊳ addItem;x ⊳ ccard;P c else x ⊳ cancel;0

R = x(game).x(b).if b < 80 then x ⊳ addItem;x ⊳ payp;Rp else x ⊳ cancel;0

Thus, although both P and R implement α, their behavior is rather different, for they

purchase different items using different payment methods (which are abstracted by pro-

cesses P c and Rp). Let us now analyze the situation for the seller S. To ensure pro-

tocol compatibility and absence of communication errors, the session type for S, de-

noted β, should be dual to α. This is written α⊥C β. Intuitively, duality decrees that

every action from B must be matched by a complementary action from S, e.g., every

output of a string in α is matched by an input of a string in β. In our example, we let

β = ?item. !amnt. βpay, where βpay and a process implementation for S are as follows:

βpay = &{addItem : &{ccard : βcc , payp : βpp} , cancel : ε}

Q = y(i).y(price(i)).y ⊲ {addItem : y ⊲ {ccard : Qc [] ppal : Qp} [] cancel : 0}

where price stands for an auxiliary function. Also, βcc and βpp are the duals of αcc and

αpp; they are realized by processes Qc
y and Qp

y . The interaction of P and Q is defined

using session initialization constructs: process u(x:α).P denotes the request of a session

of type α; dually, u(x:α).P denotes the acceptance of a session of type α. In both cases,

u denotes a (shared) name used for synchronization. In our example, we may have

Sys = u(x:α).P | u(y:β).Q −→ (νκ)(P [κ
+

/x] | Q[κ
−

/y]) = S′

Event-Based Adaptation in Communication-Centric Systems 3

Thus, upon synchronization onu, a new sessionκ is established. Intuitively, in processS′

session κ is “split” into two session channels (or endpoints) κ+ and κ−: we write + and

− to denote their opposing polarities, which make their complementarity manifest. The

use of restriction (νκ) covers both channels, thus ensuring an interference-free medium

for executing the session protocols described by α and β.

In this work, we are interested in ways of expressing and reasoning about the dynamic

modification of session-typed processes such asP andQ above. Such modifications may

be desirable to react to exceptional runtime conditions (say, an error) or to implement

new requirements. For instance, the type below defines a new payment method for S:

βgift = &{addItem : &{giftc : βgc , ccard : βcc , payp : βpp} , cancel : ε}

Intuitively, βgift extends βpay with a new alternative on label giftc. As such, it is safe

to use a process implementing βgift wherever a process implementing βpay is required.

The safe substitution principle that connects βgift and βpay is formalized by a subtyping

relation on session types [6], denoted ≤C. In our example, we have βpay ≤C βgift.
In previous work [7] we studied how to update processes when sessions have not

yet been established; this suffices to analyze runtime adaptation for processes such as

Sys above. In this paper, we go further and address the runtime adaptation of processes

such as S′ above, which contain already established session protocols. As we would

like to guarantee that adaptation preserves overall system correctness, a key challenge

is ensuring that adaptation does not jeopardize such protocols. Continuing our example,

let S′′ be the process resulting from S′ above, after the first step stipulated by α and β
(i.e., an exchange of a value of type item). Intuitively, at that point, the buyer part of

S′ will have session type ?amnt. αpay, whereas the seller part of S′ will have session

type !amnt. βpay. Suppose we wish to modify at runtime the part of S′′ realizing the

buyer behavior. To preserve protocol correctness, a candidate new implementation must

conform, up to ≤C, to the type ?amnt. αpay; a process realizing any other type will fail to

safely interact with the part of S′′ implementing the seller. In [7] we defined the notion

of consistency to formalize the correspondence between declared session protocols and

the processes installed by steps of runtime adaptation. As we will see, consistency is still

appropriate for reasoning about runtime adaptation of processes with active sessions.

Our Approach. Having motivated the context of our contributions, we move on to de-

scribe some technical details. We rely on a process language which extends session π-

calculi with locations, located processes, and update processes [2]. We use locations as

explicit delimiters for process behavior: these are transparent, possibly nested computa-

tion sites. Given a location loc and a process P , the located process loc[P] denotes the

fact that P resides in loc (or, alternatively, that P has scope loc). This way, e.g., process

W = sys
[
buyer

[
u(x:α).P

]
| seller

[
u(y:β).Q

]]

represents an explicitly distributed variant of Sys above: the partners now reside in lo-

cations buyer and seller; location sys encloses the whole system. An update process,

denoted loc{U}, intuitively says that the behavior currently enclosed by loc should be

replaced according to the adaptation routine U . Since a location may enclose one or

more session channels, update processes allow for flexible specifications of adaptation

4 Cinzia Di Giusto and Jorge A. Pérez

routines. This way, e.g., one may specify an update on buyer that does not involve seller
(and vice versa); also, a system-level adaptation could be defined by adding a process

sys{Us} in parallel to W , given an Us that accounts for both buyer and seller behaviors.

The integration of runtime adaptation into sessions is delicate, and involves defining

not only what should be the state of the system after adaptation but also when an adap-

tation step should be triggered. To rule out careless adaptation steps which jeopardize

established protocols, communication and adaptation actions should be harmonized. As

hinted at above, in previous work [7] we proposed admitting adaptation actions only

when locations do not enclose running sessions. This is a simple solution that privi-

leges communication over adaptation, in the sense that adaptation is enabled only when

sessions are not yet active. Still, in realistic applications it may be desirable to give

communication and adaptation a similar status. To this end, in this paper we admit the

adaptation of locations with running sessions. We propose update processes loc{U} in

which U is able to dynamically check the current state of the session protocols running

in loc. In their simplest form, our update processes concern only one session channel

and are of the shape

loc
{
casex of {(x:βi) : Ui}i∈I

}

where I is a finite index set, x denotes a channel variable, each βi and Ui denotes a ses-

sion type and an alternative (process) Ui, respectively. (We assume x occurs free in Ui.)

The informal semantics for this construct is better understood by considering its inter-

action with a located process loc
[
Q
]

in which Q implements a session of type α along

channel κp. The two processes may interact as follows. If there is a j ∈ I such that types

α and βj “match” (up to ≤C), then there is a reduction to process loc
[
Uj [κ

p
/x]

]
. Oth-

erwise, if no βj validates a match, then there is a reduction to process loc
[
Q
]
, keeping

the behavior of loc unchanged and consuming the update.

In general, update processes may define adaptation for locations enclosing more than

one session channel. In the distributed buyer-seller example, the process below defines

a runtime update which depends on the current state of the two channels at location sys:

Uxy = sys

{
casex, y of

{
(x:α ; y:β) : buyer[R] | seller[Q]

(x:αpay ; y:βpay) : buyer[P
∗] | seller[Q∗]

}}
(1)

Uxy defines two possibilities for runtime adaptation. If the protocol has just been estab-

lished (i.e., current types are α and β) then only the buyer is updated—its new behavior

will be given byR above. If both item and price information have been already exchanged

then implementations P ∗ and Q∗, compliant with types αpay and βpay, are installed.

Update processes rely on the protocol state at a given location to assess the suitabil-

ity of adaptation routines. Our semantics for update relies on (a) monitors which store

the current type for each running session; and (b) a type-directed test on the monitors

enclosed in a given location. This test generalizes the typecase construct in [10].

While expressive, our typeful update processes by themselves do not specify when

adaptation should be available. Even though update processes could be embedded within

session communication prefixes (thus creating causal dependencies between communi-

cation and adaptation), such a specification style would only allow to handle exceptional

conditions which can be fully characterized in advance. Other kinds of exceptional con-

Event-Based Adaptation in Communication-Centric Systems 5

ditions, in particular contextual and/or unsolicited runtime conditions, are much harder

to express by interleaving update processes within structured protocols.

To offer a uniform solution to this issue, we propose a event-based approach to trig-

ger updates. We endow each location with a queue of adaptation requests; such requests

may be internal or external to the location. In our example, an external request could be,

e.g., a warning message from the buyer’s bank indicating that an exchange with the bank

is required before committing to the purchase with the seller.

Location queues are independent from session behavior. Their identity is visible to

processes; they are intended as interfaces with other processes and the environment. To

issue an adaptation request r for location loc, our process syntax includes adaptation

signals, written loc(r). Similar to ordinary communication prefixes, these signals are

orthogonal to sessions. Then, we may detect the presence of request r in the queue

of loc using the arrival predicate arrive(loc, r) [10]. As an example, let updE denote

an external adaptation request. To continuously check if an external request has been

queued for sys, the process below combines process Uxy in (1) with arrival predicates,

conditionals, and recursion:

U∗
xy = µX .if arrive(sys, updE) then Uxy else X (2)

We couple our process model for session-based concurrency and runtime adaptation

with a type system that ensures the following key properties:

- Safety: well-typed programs do not exhibit communication errors (e.g., mismatched

messages).

- Consistency: well-typed programs do not allow adaptation actions that disrupt already

established sessions.

Safety is the typical guarantee expected from any session type discipline, here consid-

ered in a richer setting that combines session communication with runtime adaptation.

In contrast, consistency is a guarantee unique to our setting: it connects the behavior

of the adaptation mechanisms with the preservation of prescribed typed interfaces. We

show that well-typed programs are safe and consistent (Theorem 3.6): this ensures that

specified session protocols are respected, while forbidding incautious adaptation steps

that could accidentally remove or disrupt the session behavior of interacting partners.

Organization. The rest of the paper is organized as follows. Next we present our event-

based process model of session communication with typeful constructs for runtime adap-

tation (§ 2). Then, we present our session type system, which ensures safety and consis-

tency for processes with adaptation mechanisms (§ 3). In § 4 we discuss a process model

of communication and adaptation with explicit compartments; it distills the main fea-

tures of the model in § 2. At the end, we discuss related works and draw some concluding

remarks (§ 5). The appendix gives full sets of reduction and typing rules. The appendix

collects omitted definitions and proofs.

2 The Process Model: Syntax and Semantics

Syntax. We rely on base sets for names, ranged over by u, a, b . . .; (session) channels,

ranged over by k, κp, . . ., with polarity p ∈ {+,−}; labels, ranged over by n, n′, . . .; and

6 Cinzia Di Giusto and Jorge A. Pérez

e ::= v | x, y, z | k = k | a = a expressions

| arrive(loc, r) arrival predicate

P ::= u(x : α).P | u(x : α).P | close (k).P session request / acceptance / closure

| k(e).P | k(x).P data output /input

| k ⊳ n;P | k ⊲ {ni:Pi}i∈I selection / branching

| µX .P | X recursion / rec. variable

| P | P | 0 parallel composition / inaction

| (νκ)P | (νu)P | if e then P else Q channel / name hiding / conditional

| k⌊α⌋ session monitor

| loc[P] located process

| loc
{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}
typeful update process

| loc(r) | loc⌊r̃⌋ adaptation signal / queue

Table 1. Process Syntax. Above, annotation α denotes a session type.

variables, ranged over by x, y, Values, ranged over v, v′, . . ., may include booleans

(written false and true), integers, names, and channels. We use r to range over adap-

tation messages: two instances are updI and updE , for internal and external requests.

We use ·̃ to denote finite sequences. Thus, e.g., x̃ is a sequence of variables x1, . . . , xn.

We use ǫ to denote the empty sequence.

Table 1 reports the syntax of expressions and processes. Processes include usual

constructs for input, output, and labeled choice. Common forms of recursion, parallel

composition, conditionals, and restriction are also included. As illustrated in § 1, con-

structs for session establishment are annotated with a session type α, which is useful in

derived static analyses. A prefix for closing a session, inherited from [7], is convenient

to structure specifications. Variable x is bound in processes u(x:α).P , u(x:α).P , and

k(x).P . Binding for name and channel restriction is as usual. Also, recursion variable

X is bound in process µX .P . Given a process P , its sets of free/bound channels, names,

variables, and recursion variables—noted fc(P), fn(P), fv(P), fpv(P), bc(P), bn(P),
bv(P), and bpv(P), respectively—are as expected. We always rely on usual notions

of α-conversion and (capture-avoiding) substitution, denoted [k/x] (for channels) and

[P/X] (for processes). We write [k1, . . . , kn/x1, . . . , xn] to stand for an n-ary simultane-

ous substitution. Processes without free variables or free channels are called programs.

Up to here, the language is a synchronous π-calculus with sessions. Building upon

locations loc, l1, l2, . . ., constructs for adaptation are: located processes, denoted loc[P];
update processes, denoted loc

{
casex1, . . . , xm of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}
;

(session) monitors, denoted κp⌊α⌋; location queues, denoted loc⌊r̃⌋; and adaptation sig-

nals, denoted loc(r). Moreover, expressions include the arrival predicate arrive(loc, r).

We now comment on these elements. Located processes and update processes have

been motivated in § 1. Here we just remark that update processes are assumed to refer to

at least one variable xi and to offer at least one alternativeQi. Also, variables x1, . . . , xm

are bound in loc
{
casex1, . . . , xm of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}
; this process is

often abbreviated as loc
{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}
. Update processes

Event-Based Adaptation in Communication-Centric Systems 7

generalize the typecase introduced in [10], which defines a case-like choice based

on a single channel; in contrast, to specify adaptation for locations with multiple open

sessions, our update processes define type-directed checks over one or more channels.

Update processes go hand-in-hand with monitors, runtime entities which keep the

current protocol state at a given channel. We write κp⌊α⌋ to denote the monitor which

stores the protocol state α for channel κp. In [10], a similar construct is used to store

in-transit messages in asynchronous communication. For simplicity, here we consider

synchronous communication; monitors store only the current protocol state. This choice

is aligned with our goal of identifying the core elements from the eventful session frame-

work that are central in defining runtime adaptation (cf. Remark 3.7).

Location queues, not present in [10], handle adaptation requests, modeled as a pos-

sibly empty sequence of messages r̃. Location queues enable us to give a unified treat-

ment to adaptation requests, internal and external. Given loc⌊r̃⌋, it is worth observing

that messages r̃ are not related to communication as abstracted by session types. This

represents the fact that we handle adaptation requests and structured session exchanges

as orthogonal issues. An adaptation signal loc(r) enqueues request r into the location

queue of loc. To this end, as detailed below, the operational semantics defines synchro-

nizations between adaptation signals and location queues. To connect runtime adaptation

and communication, our language allows the coupling of update processes with the ar-

rival predicate on locations, denoted arrive(loc, r). Inspired by the arrive predicate

in [10], this predicate detects if a message r has been placed in the queue of loc.
Our language embodies several concerns related to runtime adaptation: using adap-

tation signals and location queues we may formally express how an adaptation request

is issued; arrival predicates enable us to specify when adaptation will be handled; using

update processes and monitors we may specify what is the goal of an adaptation event.

Semantics. The semantics of our language is given by a reduction semantics, the small-

est relation generated by the rules in Table 2. We write P −→ P ′ for the reduction from

P to P ′. Reduction relies on a standard notion of structural congruence, denoted ≡
(see Appendix A). It also relies on evaluation and location contexts:

E ::= − | k(−).P | if − then P else Q C,D ::= − | loc[C | P]

Given C
{
−
}

(resp. E[−]), we write C
{
P
}

(resp. E[e]) to denote the process (resp.

expression) obtained by filling in occurrences of hole − in C with P (resp. in E with e).
We comment on the reduction rules below. The first four rules formalize session be-

havior within hierarchies of nested locations. Using duality for session types, denoted

⊥C (see [6] and § 3), in rule 〈r:Open〉 the synchronization on a name u leads to estab-

lish a session on fresh channels κp and κp; also, two monitors with the declared session

types are created. Duality for polarities p is as expected: + = − and − = +. Moni-

tors are local by construction: they are created in the same contexts in which the ses-

sion is established. Rule 〈r:Com〉 represents communication of a value: we require both

complementary prefixes and that the monitors support input and output actions. After

reduction, prefixes in processes and monitors are consumed. Similarly, rule 〈r:Sel〉 for

labeled choice is standard, augmented with monitors. Rule 〈r:Clo〉 formalizes session

termination, discarding involved monitors. The monitors in these three rules allow us to

track the evolution of active session protocols.

8 Cinzia Di Giusto and Jorge A. Pérez

〈r:Open〉 C
{
u(x : α).P

}
| D

{
u(y : β).Q

}
−→

(νκ)
(
C
{
P [κ

p
/x] | κp⌊α⌋

}
| D

{
Q[κ

p
/y] | κp⌊β⌋

})
(α⊥C β)

〈r:Com〉 C
{
κ p(v).P | κp⌊!(T).α⌋

}
| D

{
κ p(x).Q | κp⌊?(T).β⌋

}
−→

C
{
P | κp⌊α⌋

}
| D

{
Q[v/x] | κp⌊β⌋

}

〈r:Sel〉 C
{
κ p ⊲ {nj :Pj}j∈J |κ

p⌊&{nj :αj}j∈J⌋
}
|D

{
κ p ⊳ ni;Q | κp⌊⊕{nj : βj}j∈J⌋

}

−→ C{Pi | κ
p⌊αi⌋} | D{Q | κp⌊βi⌋} (i ∈ J)

〈r:Clo〉 C
{
close (κ p).P | κp⌊ε⌋

}
| D

{
close (κ p).Q | κp⌊ε⌋

}
−→ C

{
P
}
| D

{
Q
}

〈r:Eva〉 if e −→ e′ then E[e] −→ E[e′]

〈r:Par〉 if P −→ P ′ then P | Q −→ P ′ | Q

〈r:ResN〉 if P −→ P ′ then (νa)P −→ (νa)P ′

〈r:ResC〉 if P −→ P ′ then (νκ)P −→ (νκ)P ′

〈r:Str〉 if P ≡ P ′, P ′ −→ Q′, andQ′ ≡ Q then P −→ Q

〈r:Rec〉 recX .P −→ P [recX .P/X]

〈r:IfTrue〉 if true then P else Q −→ P

〈r:IfFalse〉 if false then P else Q −→ Q

〈r:UReq〉 C
{
loc⌊r̃1⌋

}
| D

{
loc(r)

}
−→ C

{
loc⌊r̃1 · r⌋

}
| D

{
0
}

〈r:Arr1〉
r̃ = r1 · r̃0

C
{
E[arrive(loc, r1)]

}
| D

{
loc⌊r̃⌋

}
−→ C

{
E[true]

}
| D

{
loc⌊r̃0⌋

}

〈r:Arr2〉
(r̃ = r2 · r̃0 ∧ r1 6= r2) ∨ r̃ = ǫ

C
{
E[arrive(loc, r1)]

}
| D

{
loc⌊r̃⌋

}
−→ C

{
E[false]

}
| D

{
loc⌊r̃⌋

}

〈r:Upd〉

fc(P) = {κp
1, . . . , κ

p
m} ∀j ∈ [1, ..,m].(κp

j ⌊αj⌋ ∈ P)

(V = P)
∨

∃l.
(
matchI(l, {α1, . . . , αm}, {βi

1, . . . , β
i
m}i∈I) ∧

V = Ql [κ
p
1, . . . , κ

p
m/ x1, . . . , xm]

)

C
{
loc[P]

}
| D

{
loc

{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}}
−→

C
{
loc[V]

}
| D

{
0
}

Table 2. Reduction Semantics: Full Set of Rules. Above, α and β denote session types.

The remaining rules in Table 2 define our event-based approach to runtime adap-

tation. Rule 〈r:UReq〉 treats the issue of an adaptation request r as a synchronization

between a location queue and an adaptation signal. The queue and the signal may be in

different contexts; this enables “remote” requests. Rules 〈r:Arr1〉 and 〈r:Arr2〉 resolve

arrival predicates by querying the (possibly remote) queue r̃. Rule 〈r:Upd〉 defines the

typeful update of the current protocol state at loc, which is given by an indexed set of

open sessions with their associated monitors. The rule attempts to match such protocol

state with the first suitable option offered by an update process for loc. If there is no

matching alternative the current protocol state at loc is kept unchanged. By an abuse of

notation, we write P1 ∈ P to indicate that P1 occurs in P , i.e., if P = C[P1] for some

C. Formally, given an index set I over the update process, suitability with respect to the

Event-Based Adaptation in Communication-Centric Systems 9

behavior at loc is defined by predicate matchI in Definition 2.1 below. Using subtyping

≤C (see [6] and § 3), the predicate holds for an l ∈ I which defines a new protocol state.

In addition, our semantics includes standard and/or self-explanatory treatments for

reduction under evaluation contexts, parallel composition, located context, and restric-

tion. Also, it accounts for applications of structural congruence, recursion and condi-

tionals.

Definition 2.1 (Matching). Given an index set I , session types α1, . . . , αm, an indexed

sequence of session types {βi
1, . . . , β

i
m}i∈I , and an l ∈ I , we write

matchI(l, {α1, . . . , αm}, {βi
1, . . . , β

i
m}i∈I)

if and only if ∀n < l.(∃j ∈ [1..m]. βn
j 6≤C αj) ∧ (

∧
h∈[1..m] β

l
h ≤C αh).

Example 2.2. Recall process W given in the Introduction. According to our semantics:

W −→ (νκ)
(
sys

[
buyer

[
P [κ

p
/x] | κp⌊α⌋

]
| seller

[
Q[κ

p
/y] | κp⌊β⌋

]])

−→2 (νκ)
(
sys

[
buyer

[
P ′ | κp⌊αpay⌋

]
| seller

[
Q′ | κp⌊βpay⌋

]])

Suppose that following an external request the seller must offer a new payment method.

(a gift card). Precisely, we would like S to act according to the type βgift given in §1.

Let αgift be the dual of βgift. We then may define the following update process R1
xy:

sys
{
casex, y of {(x:αpay ; y:βpay) : buyer

[
P ′ | x⌊αgift⌋

]
| seller

[
Q′′ | y⌊βgift⌋

]
}
}

Thus, R1
xy keeps the expected implementation for the buyer (P ′), but updates its asso-

ciated monitor. For the seller, both the implementation and monitor are updated; above,

Q′′ stands for a process offering the three payment methods. We may then specify the

whole system as: W | µX .if arrive(sys, updE) then R1
xy else X . The type system in-

troduced next ensures, among other things, that updates such as R1
xy consider both a

process and its associated monitors, ruling out the possibility of discarding the monitors

that enable reduction.

3 Session Types for Eventful Runtime Adaptation

This section introduces a session type system for the process language of § 2. Our main

result (Theorem 3.6) is that well-typed programs enjoy both safety (absence of runtime

communication errors) and consistency properties (update actions do not disrupt estab-

lished sessions). Our development follows the lines of the typed framework in [7].

The syntax of session types (ranged over by α, β, . . .) has been already presented in

the Introduction. We consider basic types (ranged over by τ, σ, . . .) and write T, S, . . .
to range over τ, α. Therefore, although our process language copes with runtime adap-

tation, our type syntax is standard and retains the intuitive meaning of session types [8],

which we now briefly recall. Type ?(τ).α (resp. ?(β).α) abstracts the behavior of a chan-

nel which receives a value of type τ (resp. a channel of type β) and then continues as

α. Dually, type !(τ).α (resp. !(β).α) represents the behavior of a channel which sends

10 Cinzia Di Giusto and Jorge A. Pérez

a value of type τ and then continues as α. Type &{n1 : α1 . . . nm : αm} describes a

branching behavior: it offers m behaviors, and if the j-th alternative is selected then it

behaves as described by type αj (1 ≤ j ≤ m). In turn, type⊕{n1 : α1 . . . nm : αm} de-

scribes the behavior of a channel which may select a single behavior among α1, . . . , αm

and then continues as αj . We use ε to type a channel with no communication behav-

ior. Type µt.α describes recursive behavior; as usual, we consider recursive types under

equi-recursive and contractive assumptions.

Along the paper we have informally appealed to duality and subtyping over session

types (denoted ⊥C and ≤C, resp.). For the sake of space, we omit their full definitions;

we just remark that since our session type structure is standard, we may rely on the (coin-

ductive) definitions given by Gay and Hole [6], which are standard and well-understood.

Our typing judgments generalize usual notions with an interface I. Based on the

syntactic occurrences of session establishment prefixes a(x:α), and a(x:α), the inter-

face of a process describes the services appearing in it. We annotate services with a

qualification q, which may be ‘lin’ (linear) or ‘un’ (unrestricted). Thus, the interface of

a process gives an “upper bound” on the services that it may execute. The typing system

uses interfaces to control the behavior contained by locations after an update. We have:

Definition 3.1 (Interfaces). We define an interface as the multiset whose underlying

set of elements is I = {qu:α | q ∈ {lin, un}} (i.e., a set of assignments from names to

qualified session types). We use I, I ′, . . . to range over interfaces. We write dom(I) to

denote the set {u | u : αq ∈ I} and #I(a) = h to mean that a occurs h times in I.

The union of two interfaces is essentially the union of their underlying multisets. We

sometimes write I ⊎a : αlin and I ⊎a : αun to stand for I ⊎{lin a:α} and I ⊎{un a:α},

respectively. Moreover, we write Ilin (resp. Iun) to denote the subset of I involving

only assignments qualified with lin (resp. un). We now define an ordering relation over

interfaces, relying on subtyping:

Definition 3.2 (Interface Ordering). Given interfaces I and I ′, we write I ⊑ I ′ iff

1. ∀(lin a:α) such that #Ilin
(lin a:α) = h with h > 0, then one of the following holds:

(a) there exist h distinct elements (lin a:βi) ∈ I ′
lin such that α ≤C βi for i ∈ [1..h];

(b) there exists (un a:β) ∈ I ′
un such that α ≤C β.

2. ∀(un a:α) ∈ Iun then (un a:β) ∈ I ′
un and α ≤C β, for some β.

We now define our typing environments. We write q to range over qualifiers lin and un.

∆ ::= ∅ | ∆, k : α | ∆, k : ⌊α⌋ typing with active sessions

Γ ::= ∅ | Γ, e : τ | Γ, u : 〈αq, βq〉 first-order environment (with αq ⊥C βq)

Θ ::= ∅ | Θ,X : ∆; I | Θ, loc : I higher-order environment

We consider typings ∆ and environments Γ and Θ. Typing ∆ collects assignments from

channels to session types; it describes currently active sessions. In our system,∆ also in-

cludes bracketed assignments, denoted κp : ⌊α⌋, which represent the type for monitors.

Subtyping extends to these assignments (⌊α⌋ ≤C ⌊β⌋ if α ≤C β) and thus to typings. We

write dom(∆) to denote the set {kp | kp : α ∈ ∆ ∨ kp : ⌊α⌋ ∈ ∆}. We write ∆, k : α

Event-Based Adaptation in Communication-Centric Systems 11

Θ, loc : I ⊢ loc ⊲ I
〈t:LocEnv〉

Γ ; Θ ⊢ k⌊α⌋ ⊲ k : ⌊α⌋; ∅
〈t:Que〉

Γ ⊢ r1 ⊲ msg
〈t:msg〉

Γ ⊢ r̃ ⊲ msg Γ ⊢ r1 ⊲ msg

Γ ⊢ r1; r̃ ⊲ msg
〈t:locQ〉

Θ ⊢ loc ⊲ I Γ ⊢ r ⊲ msg

Γ ; Θ ⊢ arrive(loc, r) ⊲ bool
〈t:arrive〉

Γ ⊢ r ⊲ msg

Γ ; Θ ⊢ loc(r) ⊲ ∅; ∅
〈t:Sig〉

Θ ⊢ loc ⊲ I Γ ; Θ ⊢ P ⊲ ∆; I′ I′ ⊑ I

Γ ; Θ ⊢ loc[P] ⊲ ∆; I′
〈t:Loc〉

Γ ⊢ r̃ ⊲ msg

Γ ; Θ ⊢ loc⌊r̃⌋ ⊲ ∅; ∅
〈t:QLoc〉

α⊥C β Γ ⊢ u ⊲ 〈αlin, βlin〉 γ ≤C α Γ ; Θ ⊢ P ⊲ ∆, x : γ; I

Γ ; Θ ⊢ u(x : γ).P ⊲ ∆; I ⊎ u : γlin
〈t:Accept〉

α⊥C β Γ ⊢ u ⊲ 〈αq, βlin〉 γ ≤C β Γ ; Θ ⊢ P ⊲ ∆, x : γ; I

Γ ; Θ ⊢ u(x : γ).P ⊲ ∆; I ⊎ u : γlin
〈t:Request〉

Γ ; Θ ⊢ P ⊲ ∆; I k /∈ dom(∆)

Γ ; Θ ⊢ close (k).P ⊲ ∆, k : ε; I
〈t:Clo〉

Γ ; Θ ⊢ P ⊲ ∆1; I1 Γ ; Θ ⊢ Q ⊲ ∆2; I2

Γ ; Θ ⊢ P | Q ⊲ ∆1 ∪∆2; I1 ⊎ I2

〈t:Par〉

Θ ⊢ loc ⊲ I ∀j ∈ J, fv(Qj) \ {x1, . . . , xm} = ∅
Γ ; Θ ⊢ Qj ⊲ x1:〈〈β

j
1〉〉; · · · ;xm:〈〈βj

m〉〉; Ij Ij ⊑ I

Γ ; Θ ⊢ loc
{
case x̃ of {(x1:β

j
1; · · · ;xm:βj

m) : Qj}j∈J

}
⊲ ∅; ∅

〈t:Adapt〉

Γ ; Θ ⊢ P ⊲ ∆, κp : 〈〈α1〉〉, κ
p : 〈〈α2〉〉; I α1 ⊥C α2

Γ ; Θ ⊢ (νκ)P ⊲ ∆; I
〈t:CRes〉

Γ ; Θ ⊢ P ⊲ ∆; I ∆ ≤C ∆
′ I ⊑ I′

Γ ; Θ ⊢ P ⊲ ∆′; I′
〈t:sub〉

Γ ; Θ ⊢ P ⊲ ∆; I ∪ Iu u /∈ dom(I)

Γ ; Θ ⊢ (νu)P ⊲ ∆; I
〈t:NRes〉

Table 3. Well-Typed Processes: Selected Rules.

where k 6∈ dom(∆). Furthermore, we write ∆, k : 〈〈α〉〉 to abbreviate ∆, k : α, k : ⌊α⌋.
That is, k : 〈〈α〉〉 describes both a session and its associated monitor.

Γ is a first-order environment which maps expressions to basic types and names to

pairs of qualified session types. As motivated earlier, a session type is qualified with ‘un’

if it is associated to a unrestricted/persistent service; otherwise, it is qualified with ‘lin’.

The higher-order environment Θ collects assignments of typings to process variables

and interfaces to locations. While the former concerns recursive processes, the latter con-

cerns located processes. As we explain next, by relying on the combination of these two

pieces of information the type system ensures that runtime adaptation actions preserve

the behavioral interfaces of a process. We write vdom(Θ) = {X | X : I ∈ Θ} to denote

the variables in the domain of Θ. Given these environments, a type judgment is of form

Γ ; Θ ⊢ P ⊲ ∆; I

meaning that, under environments Γ and Θ, process P has active sessions declared in

∆ and interface I. Selected typing rules are shown in Table 3; remaining rules can be

found in Table 5 (Appendix A.3). Below we comment on some of the rules in Table 3:

the rest are standard and/or self explanatory. Rule 〈t:Adapt〉 types update processes.

12 Cinzia Di Giusto and Jorge A. Pérez

Notice that the typing rule ensures that each process Qi has exactly the same active ses-

sions that those declared in the respective case. Also, we require that alternatives contain

both processes and monitors. With Ij ⊑ I we guarantee that the process behavior does

not “exceed” the expected behavior within the location. Rule 〈t:sub〉 takes care of sub-

typing both for typings ∆ and interfaces. Rule 〈t:CRes〉 types channel restriction that

ensures typing duality among partners of a session and their respective queues. Typing

of queues is given by rule 〈t:Que〉 that simply assigns type k : ⌊α⌋ to queue k⌊α⌋.
Finally, rule 〈t:NRes〉 types hiding of service names, by simply removing their declara-

tions from the interface I of the process. In the rule, Iu contains only declarations for

u, i.e., ∀v 6= u, v /∈ dom(Iu).
Our type system enjoys the standard subject reduction property. We rely on balanced

typings: ∆ is balanced iff for all κp : α ∈ ∆ (resp. κp : ⌊α⌋ ∈ ∆) then also κp : β ∈ ∆
(resp. κp : ⌊β⌋ ∈ ∆), with α⊥C β. The proof detailed in the Appendix, proceeds by

induction on the last rule applied in the reduction; it adapts the one given in [7].

Theorem 3.3 (Subject Reduction). If Γ ; Θ ⊢ P ⊲∆; I with∆ balanced andP −→ Q
then Γ ; Θ ⊢ Q ⊲ ∆′; I ′, for some I ′ and balanced ∆′.

We now define and state safety and consistency properties. While safety guarantees

adherence to prescribed session types and absence of runtime errors, consistency ensures

that sessions are not jeopardized by careless runtime adaptation actions. Defining both

properties requires the following notions of κ-processes, κ-redexes, and error process.

Definition 3.4 (κ-processes, κ-redexes, errors). A process P is a κ-process if it is a

prefixed process with subject κp, i.e., P is one of the following:

κ p(x).P ′ κ p(v).P ′ close (κ p).P ′ κ p ⊲ {ni:Pi}i∈I κ p ⊳ n.P ′

Process P is a κ-redex if it contains the composition of exactly two κ-processes with

opposing polarities. P is an error if P ≡ (νκ̃)(Q | R) where, for some κ, Q contains

either exactly two κ-processes that do not form a κ-redex or three or more κ-processes.

Informally, a process P is called consistent if whenever it has a κ-redex then update

actions do not destroy such a redex. Below, we formalize this intuition. Let us write

P −→upd P ′ for any reduction inferred using rule 〈r:Upd〉. We then define:

Definition 3.5 (Safety, Consistency). Let P be a process. We say P is safe if it never

reduces into an error. We say P is update-consistent if and only if, for all P ′ and κ such

thatP −→∗ P ′ andP ′ contains a κ-redex, ifP ′ −→upd P ′′ thenP ′′ contains a κ-redex.

We now state our main result; it follows as a consequence of Theorem 3.3.

Theorem 3.6 (Typing Ensures Safety and Consistency). If Γ ; Θ ⊢ P ⊲∆; I with ∆
balanced then program P is update consistent and safe.

Remark 3.7 (Asynchronous Communication). We have focused on synchronous com-

munication: this allows us to give a compact semantics, relying on a standard type struc-

ture. To account for asynchrony, we would require a runtime syntax for programs with

queues for in-transit messages (values, sessions, labels). The type system must be ex-

tended to accommodate these new runtime processes. In our case, an extension with

asynchrony would rely on the machinery defined in [10].

Event-Based Adaptation in Communication-Centric Systems 13

4 Discussion: A Compartmentalized Model of Communication

and Adaptation

Given that the process model in § 2 enables the interplay of communication and adapta-

tion, how can we organize specifications to reflect a desirable separation of concerns? In

ongoing work, with the aim of specifying systems at a high-level of abstraction, we have

developed a model which defines compartments to isolate communication behavior and

adaptation routines. Here we briefly describe this model, which is given in Table 4.

In a nutshell, programs of § 2 are now organized into systems. A systemG is the com-

position of a set of applications A1, . . . , An each comprising three elements: a behavior

R, a state S, and a manager M. As a simple example of a system, we may consider the

operating system of a smartphone, which is meant to manage a number of applications

that may interact among them. Applications in our model can communicate between

each other or exhibit intra-application communication. The behavior R is specified as a

process; we distinguish between located processes representing service definitions from

located processes which make use of such definitions. A reduction semantics (omitted)

ensures that locations enclosing service definitions do not contain open (active) sessions.

This may be convenient for defining adaptation strategies, since updates to service def-

initions may now be performed without concerns of disruption of active sessions. The

state S collects session monitors and location queues and it is kept separate from R. As

a simple example, the buyer-seller scenario given in § 1 can be casted in our model as

byr
〈
buyer

[
u@slr(x : α).P

]
; Sb ; Mb

〉
‖ slr

〈
seller

[
∗ u(y:β).Q

]
; Ss ; Ms

〉

That is, buyer and seller are implemented as separate applications, named byr and slr,

respectively. Above, we have Sb = buyer⌊ǫ⌋ and Ss = seller⌊ǫ⌋.
While the manager M implements adaptation at the application (local) level, a han-

dler H defines adaptation at the system (global) level. As we wish to describe commu-

nication behavior separately from adaptation routines, update processes are confined to

handlers and managers. A manager is meant to react upon the arrival of an internal adap-

tation message updI . As in § 2, managers may act upon the issue of an internal update

request updI for some location, whereas handlers may act upon the arrival of an external

update request or an application upgrade request (denoted updE and upg, respectively).

A handler may either update or upgrade the behavior at some location loc within ap-

plication a; this is written loc@a. Upgrades are denoted l1
{{
P
}}

; they are a particular

form of update intended for service definitions only. In Table 4 we write ∗if e then P
and∗u(x:α).P as shorthands for persistent conditionals and services, respectively.

Our compartmentalized model induces specifications in which communication, run-

time adaptation, and state (as in, e.g., asynchronous communication) are jointly ex-

pressed, while keeping a desirable separation of concerns. Notice that the differences

between “plain” processes (as given in § 2) and systems (as defined in Table 4) are

mostly conceptual, rather than technical. In fact, the higher level of abstraction that is

enforced by our model does not result in additional technicalities. We conjecture that a

reduction-preserving translation of application-based specifications into processes does

not exist—a main difficulty being, unsurprisingly, properly representing the separation

between behavior and state. This difference in terms of expressiveness does not appear

14 Cinzia Di Giusto and Jorge A. Pérez

G ::= A | H | (νκ)A | G1 ‖ G2 | 0 A ::= a
〈
R ; S ; M

〉

H ::= ∗ if arrive(l1@a, updE) then l1
{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}

| ∗ if arrive(l1@a, upg) then l1
{{
P
}}

R ::= loc
[
u(x:α).P

]
| loc

[
∗ u(x:α).P

]
| loc

[
P−

]
| R1 | R2

S ::= κp⌊α⌋ | loc⌊r̃⌋ | S1 ⋄ S2 | 0

M ::= ∗ if arrive(l1, updI) then l1
{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}
|M1 ◦M2 | 0

Table 4. A Compartmentalized Model of Communicating Systems: Syntax.

to affect the type system. In future work we plan to extend the typing discipline in § 3

(and its associated safety and consistency guarantees) to systems.

5 Related Work and Concluding Remarks

Related Work. The combination of static typing and type-directed tests for dynamic re-

configuration is not new. For instance, Seco and Caires [13] study this combination for

a calculus for object-oriented component programming. To the best of our knowledge,

ours is the first work to develop this combination for a session process language. As al-

ready discussed, we build upon constructs proposed in [9,11,12,10]. The earliest works

on eventful sessions, covering theory and implementation issues, are [9,11]. Kouzapas’s

PhD thesis [10] provides a unified presentation of the eventful framework, with case

studies including event selectors (a building block in event-driven systems) and trans-

formations between multithreaded and event-driven programs. At the level of types, the

work in [10] introduces session set types to support the typecase construct. We use dy-

namic session type inspection only for runtime adaptation; in [10] typecase is part of

the process syntax. This choice enables us to retain a standard session type syntax. Run-

time adaptation of session typed processes—the main contribution of this paper—seems

to be an application of eventful session types not previously identified.

Previous works on runtime adaptation for session types (binary and multiparty) in-

clude [7,1,3]. We have already commented on how our current approach enhances that in

our previous work [7]. Both [1] and [3] study adaptation for multiparty communications,

which already sets a substantial difference with respect to our work. In [3], a set of mon-

itors which govern the behavior of participants are derived from a global specification.

Self-adaptation for monitored processes is triggered by an external adaptation function,

which is often left unspecified. As in our work, the operational semantics for adaptation

in [3] uses (local) types and monitors; key differences include the use of type-directed

checks for selecting adaptation routines that preserve consistency, and the use of events

and queues to handle adaptation requests. The work [1] studies dynamic update for mes-

sage passing programs; a form of consistency for updates over threads is ensured using

multiparty session types, following an asynchronous communication discipline.

Event-Based Adaptation in Communication-Centric Systems 15

Concluding Remarks. Building upon [10], we have introduced an eventful approach to

runtime adaptation of session typed processes. We identified the strictly necessary event-

ful process constructs that enhance and refine known mechanisms for runtime adapta-

tion. Adaptation requests, both internal and external, are handled via event detectors and

queues associated to locations. Our approach enables us to specify rich forms of updates

on locations with running sessions; this represents a concrete improvement with respect

to previous works [7]. We notice that expressing both internal and external exceptional

events is useful in practice; for instance, both kinds of events coexist in BPMN 2.0 (see,

e.g., [5, Chap.4]). To rule out update steps that jeopardize running session protocols, we

also introduced a type system that ensures communication safety and update consistency

for session programs. We have also outlined a high-level model of structured interaction

which organizes communication and adaptation components into a sensible structure.

Adaptation in our framework is “monotonic” or “incremental” in that changes always

preserve/extend active session protocols, exploiting subtyping for enhanced flexibility.

Interestingly, our framework can be modified so that arbitrary protocols are installed as a

result of an update. One needs to ensure that the endpoints of a session are present in the

same location: arbitrary updates are safe as long as both endpoints are simultaneously

updated with dual protocols. To relax our framework in this way, we would need to

modify definitions for session matching (Def. 2.1) and interface ordering (Def. 3.2).

In future work, we plan to further validate the constructs in our framework by re-

visiting the model of supervision trees (a mechanism for fault-tolerance in Erlang) that

we gave in [4]. Other interesting topics for further development include accounting for

asynchronous communication (cf. Remark 3.7) and extending our event-based approach

to choreographic protocols; the framework in [3] may provide a good starting point.

Acknowledgments. We are grateful to Ilaria Castellani, Mariangiola Dezani-Ciancaglini,

and the anonymous reviewers for useful remarks. This research was partially supported

by COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems.

References

1. G. Anderson and J. Rathke. Dynamic software update for message passing programs. In

R. Jhala and A. Igarashi, editors, APLAS, volume 7705 of Lecture Notes in Computer Science,

pages 207–222. Springer, 2012.

2. M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro. Adaptable Processes. Logical

Methods in Computer Science, 8(4), 2012.

3. M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Self-adaptive monitors for multiparty

sessions. In PDP’14, pages 688–696. IEEE, 2014.

4. C. Di Giusto and J. A. Pérez. Session types with runtime adaptation: Overview and examples.

In PLACES, volume 137 of EPTCS, pages 21–32, 2013.

5. M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers. Fundamentals of Business Process

Management. Springer, 2013.

6. S. J. Gay and M. Hole. Subtyping for session types in the pi calculus. Acta Inf., 42(2-3):191–

225, 2005.

7. C. D. Giusto and J. A. Pérez. Disciplined structured communications with disciplined runtime

adaptation. Sci. Comput. Program., 97:235–265, 2015.

16 Cinzia Di Giusto and Jorge A. Pérez

8. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for

structured communication-based programming. In ESOP, volume 1381 of LNCS, pages 122–

138. Springer, 1998.

9. R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-safe eventful sessions in

java. In ECOOP, volume 6183 of LNCS, pages 329–353. Springer, 2010.

10. D. Kouzapas. A Study of Bisimulation Theory for Session Types. PhD thesis, Imperial College

London, 2012.

11. D. Kouzapas, N. Yoshida, and K. Honda. On asynchronous session semantics. In

FMOODS/FORTE, volume 6722 of LNCS, pages 228–243. Springer, 2011.

12. D. Kouzapas, N. Yoshida, R. Hu, and K. Honda. On asynchronous eventful session semantics.

Math. Struct. in Comp. Science, 2013. To appear.

13. J. C. Seco and L. Caires. Types for dynamic reconfiguration. In P. Sestoft, editor, ESOP,

volume 3924 of Lecture Notes in Computer Science, pages 214–229. Springer, 2006.

A Supplementary Definitions

A.1 Structural Congruence

Definition A.1 (Structural Congruence). Structural congruence is the smallest con-

gruence relation on processes that is generated by the following laws:

P |Q≡Q |P (P |Q) |R≡P |(Q |R)
P |0≡P P ≡Q if P ≡αQ
(νs)0≡0 (νs)(νs′)P ≡(νs′)(νs)P

(νs)P |Q≡(νs)(P |Q) (if s 6∈ fc(Q) ∪ fn(Q)) (νs)loc[P]≡ loc[(νs)P]

with s, s′, . . . ranges over both names and session channels. The extension of ≡ to con-

texts is as expected.

A.2 Coinductive Subtyping and Duality

For all types, define unfold(T) by recursion on the structure of T :

unfold(µt.T) = unfold(T [µt.T/t])

and unfold(T) = T otherwise. The following definitions are used by Definition A.4.

Given an index set I = {1, . . . ,m}, we use &{ni : Ti}i∈I and ⊕{ni : Ti}i∈I to

abbreviate &{n1 : T1, . . . , nm : Tm} and ⊕{n1 : T1, . . . , nm : Tm}, respectively.

Definition A.2. A relation R ⊆ T × T is a duality relation if (T, S) ∈ R implies the

following conditions:

1. If unfold(T) = τ then unfold(S) = σ and τ ≤C σ and σ ≤C τ .

2. If unfold(T) = ε then unfold(S) = ε.
3. If unfold(T) =?(T2).T1 then unfold(S) =!(S2).S1 and (T1, S1) ∈ R

and T2 ≤C S2 and S2 ≤C T2.

4. If unfold(T) = !(T2).T1 then unfold(S) = ?(S2).S1 and (T1, S1) ∈ R
and T2 ≤C S2 and S2 ≤C T2.

Event-Based Adaptation in Communication-Centric Systems 17

5. If unfold(T) =?(τ1, . . . , τn).T1 then unfold(S) =?(σ1, . . . , σn).S1 then for all

i ∈ [1..n], we have that (T1, S1) ∈ R and τi ≤C σi and σi ≤C τi.
6. If unfold(T) =!(τ1, . . . , τn).T1 then unfold(S) =?(σ1, . . . , σn).S1 then for all

i ∈ [1..n], we have that (T1, S1) ∈ R and τi ≤C σi and σi ≤C τi.
7. If unfold(T) = &{n1 : T1 . . . nm : Tm} then unfold(S) = ⊕{n1 : S1 . . . nm :

Sm} and for all i ∈ [1..m], we have that (Ti, Si) ∈ R.

8. If unfold(T) = ⊕{n1 : T1 . . . nm : Tm} then unfold(S) = &{n1 : S1 . . . nm :
Sm} and for all i ∈ [1..m], we have that (Ti, Si) ∈ R.

Definition A.3. A relation R ⊆ T × T is a type simulation if (T, S) ∈ R implies the

following conditions:

1. If unfold(T) = τ then unfold(S) = σ and τ ≤B σ.

2. If unfold(T) = ε then unfold(S) = ε.
3. If unfold(T) =?(T2).T1 then unfold(S) =?(S2).S1 and (T1, S1) ∈ R

and (T2, S2) ∈ R.

4. If unfold(T) = !(T2).T1 then unfold(S) = !(S2).S1 and (T1, S1) ∈ R
and (S2, T2) ∈ R.

5. If unfold(T) =?(τ1, . . . , τn).T1 then unfold(S) =?(σ1, . . . , σn).S1 then for all

i ∈ [1..n], we have that (τi, σi) ∈ R and (T1, S1) ∈ R.

6. If unfold(T) =!(τ1, . . . , τn).T1 then unfold(S) =!(σ1, . . . , σn).S1 then for all

i ∈ [1..n], we have that (σi, τi) ∈ R and (T1, S1) ∈ R.

7. If unfold(T) = ⊕{ni : Ti}i∈I then unfold(S) = ⊕{nj : Sj}j∈J and I ⊆ J for

all i ∈ I , we have that (Ti, Si) ∈ R.

8. If unfold(T) = &{ni : Ti}i∈I then unfold(S) = &{nj : Sk}j∈J and J ⊆ I for

all j ∈ J , we have that (Tj , Sj) ∈ R.

Definition A.4. Let T, S be types.

– The coinductive duality relation, denoted ⊥C , is defined by T ⊥C S if and only if

there exists a duality relation R such that (T, S) ∈ R.

– The coinductive subtyping relation, denoted ≤C, is defined by T ≤C S if and only if

there exists a type simulation S such that (T, S) ∈ S .

The extension of ≤C to typings, written ∆ ≤C ∆
′, arises as expected.

A.3 Additional Typing Rules

Table 5 gives additional typing rules for the system in § 3.

B Omitted Proofs

The following auxiliary result concerns substitutions for channels, expressions, and pro-

cess variables. Observe how the case of process variables has been relaxed so as to allow

substitution with a process with “smaller” interface (in the sense of ⊑). This extra flex-

ibility is in line with the typing rule for located processes (rule 〈t:Loc〉), and will be

useful later on in proofs.

18 Cinzia Di Giusto and Jorge A. Pérez

Γ ⊢ true, false ⊲ bool
〈t:bool〉

Γ ⊢ u ⊲ name
〈t:name〉

Γ, x : bool ⊢ x ⊲ bool
〈t:bVar〉

Γ, x : name ⊢ x ⊲ name
〈t:nVar〉

d = u ∨ d = κp ∨ d = x
Γ ⊢ d = d ⊲ bool

〈t:eq〉
α⊥C β

Γ, u : 〈αq, βq〉 ⊢ u ⊲ 〈αq, βq〉
〈t:Ser〉

Γ ; Θ ⊢ 0 ⊲ ∅; ∅
〈t:Nil〉

Γ ; Θ ⊢ P ⊲ ∆, k : β; I

Γ ; Θ ⊢ k(k′).P ⊲ ∆, k :!(α).β, k′ : α; I
〈t:Thr〉

Γ ; Θ ⊢ P ⊲ ∆, k : β, x : α; I

Γ ; Θ ⊢ k(x).P ⊲ ∆, k :?(α).β; I
〈t:Cat〉

Γ, x : τ ; Θ ⊢ P ⊲ ∆, k : α; I

Γ ; Θ ⊢ k(x).P ⊲ ∆, k :?(τ).α; I
〈t:In〉

Γ ; Θ ⊢ P ⊲ ∆, k : α; I Γ ⊢ e ⊲ τ

Γ ; Θ ⊢ k(e).P ⊲ ∆, k :!(τ).α; I
〈t:Out〉

Γ ; Θ ⊢ P ⊲ ∆; I κ+, κ− /∈ dom(∆)

Γ ; Θ ⊢ (νκ)P ⊲ ∆; I
〈t:Weakc〉

Γ ; Θ ⊢ P ⊲ ∆; I u /∈ dom(I)

Γ ; Θ ⊢ (νu)P ⊲ ∆; I
〈t:Weakn〉

Γ ; Θ ⊢ e ⊲ bool Γ ; Θ ⊢ P ⊲ ∆; I Γ ; Θ ⊢ Q ⊲ ∆; I

Γ ; Θ ⊢ if e then P else Q ⊲ ∆; I
〈t:If〉

Γ ; Θ ⊢ P1 ⊲ ∆, k : α1; I1 · · · Γ ; Θ ⊢ Pm ⊲ ∆, k : αm; Im I = I1 ⊎ ... ⊎ Im

Γ ; Θ ⊢ k ⊲ {n1:P1 [] · · · []nm:Pm} ⊲ ∆, k : &{n1:α1, . . . , nm:αm}; I
〈t:Bra〉

Γ ; Θ ⊢ P ⊲ ∆, k : αi; I 1 ≤ i ≤ m

Γ ; Θ ⊢ k ⊳ ni;P ⊲ ∆, k : ⊕{n1 : α1, . . . , nm : αm}; I
〈t:Sel〉

Table 5. Additional Typing Rules.

Lemma B.1 (Substitution Lemma).

1. If Γ ; Θ ⊢ P ⊲ ∆, x : α; I then Γ ; Θ ⊢ P [κ
p
/x] ⊲ ∆, κp : α; I

2. If Γ, x : τ ; Θ ⊢ P ⊲ ∆; I and Γ ⊢ e ⊲ τ then Γ ; Θ ⊢ P [e/x] ⊲ ∆; I.

Proof. Easily shown by induction on the structure of P .

As reduction may occur inside contexts, in proofs it is useful to have typed contexts.

These are contexts in which the hole has associated typing information—concretely,

the typing for processes which may fill in the hole. Defining context requires a simple

extension of judgments, in the following way:

H;Γ ; Θ ⊢ C ⊲ ∆; I

Intuitively, H contains the description of the type associated to the hole in C. Typing

rules are extended in the expected way. Because contexts have a single hole, H is either

empty of has exactly one element. When H is empty, we write Γ ; Θ ⊢ P ⊲∆; I instead

Event-Based Adaptation in Communication-Centric Systems 19

of · ;Γ ; Θ ⊢ P ⊲ ∆; I. Two additional typing rules are required:

〈t:Hole〉
•Γ ;Θ⊢∆;I ;Γ ; Θ ⊢ • ⊲ ∆; I

〈t:Fill〉
•Γ ;Θ⊢∆;I ;Γ ; Θ ⊢ C ⊲ ∆1; I1 Γ ; Θ ⊢ P ⊲ ∆; I

Γ ; Θ ⊢ C{P} ⊲ ∆1; I1

Axiom 〈t:Hole〉 allows us to introduce typed holes into contexts. In rule 〈t:Fill〉, P is a

process (it does not have any holes), and C is a context with a hole of type Γ ;Θ ⊢ ∆; I.

The substitution of occurrences of • in C with P , noted C{P} is sound as long as the

typings of P coincide with those declared in H for C. We introduce some convenient

notation for typed holes.

Notation B.2 Let us use S,S ′, . . . to range over judgments attached to typed holes. This

way, •S denotes the valid typed hole associated to S = Γ ;Θ ⊢ ∆; I.

Lemma B.3. Let P and C be a process and a typed context such that

Γ ; Θ ⊢ C{P} ⊲ ∆; I

is a derivable judgment. There exist ∆1, I1 such that (i) Γ ; Θ ⊢ P ⊲ ∆1; I1 is a well-

typed process, and (ii) ∆1 ⊆ ∆ and I1 ⊑ I.

Lemma B.4. Let C be a context. Suppose •S ;Γ ; Θ ⊢ C ⊲ ∆C ∪ ∆S ; IC ⊎ IS with

S = Γ ;Θ ⊢ ∆S ; IS is well-typed. Let S ′ = Γ ;Θ ⊢ ∆S′ ; IS′ . Then

•S′ ;Γ ; Θ ⊢ C ⊲ ∆C ∪∆S′ ; IC ⊎ IS′

is a derivable judgment.

Theorem B.5 (Subject Congruence). If Γ ; Θ ⊢ P ⊲ ∆; I and P ≡ Q then Γ ; Θ ⊢
Q ⊲ ∆; I.

Proof. The proof proceeds by induction on the derivation ofP ≡ Q, with a case analysis

on the last applied rule. ⊓⊔

Theorem (3.3 Subject Reduction). If Γ ; Θ ⊢ P ⊲∆; I with ∆ balanced and P −→ Q
then Γ ; Θ ⊢ Q ⊲ ∆′; I ′, for some I ′ and balanced ∆′.

Proof. By induction on the last rule applied in the reduction. We assume that e ↓ c is a

type preserving operation, for every e. We examine only a few interesting cases, namely

those for session establishment, runtime update, and intra-session communication; re-

maining cases are similar or simpler.

20 Cinzia Di Giusto and Jorge A. Pérez

Case 〈r:Open〉 From Table 2 we have:

C{u(x : α).P1} | D{u(y : β).P2} −→

(νκ)
(
C{P1[κ

+

/x] | κ+⌊α⌋} | D{P2[κ
−

/y] | κ−⌊β⌋}
)

with α⊥C β. By assumption Γ ; Θ ⊢ C{u(x : α).P1} | D{u(y : β).P2} ⊲ ∆; I with

balanced ∆. Then, by inversion on typing, using rules 〈t:Accept〉, 〈t:Request〉, and

〈t:Par〉 we infer there exist ∆′, I ′ such that

(4) (6)

Γ ; Θ ⊢ C{u(x : α).P1} | D{u(y : β).P2} ⊲ ∆; I (3)

where, letting ∆ = ∆′
1 ∪∆′

2, subtree (4) is as follows:

•S1
;Γ ; Θ ⊢ C ⊲ ∆′

1; I
′
1 ⊎ u : αlin

α ≤C α
′ α′ ⊥C β

′

Γ ⊢ u ⊲ 〈α′
lin, β

′
lin〉

Γ ; Θ ⊢ P1 ⊲ ∆1, x : α; I1

Γ ; Θ ⊢ u(x : α).P1 ⊲ ∆1; I1 ⊎ u : αlin

Γ ; Θ ⊢ C{u(x : α).P1} ⊲ ∆
′
1; I

′
1 ⊎ u : αlin (4)

with

S1 = Γ ;Θ ⊢ ∆1; I1 ⊎ u : αlin (5)

Then, subtree (6) is as follows:

•S2
;Γ ; Θ ⊢ D ⊲∆′

2; I
′
2 ⊎ u : βlin

β ≤C β
′ α′ ⊥C β

′

Γ ⊢ u ⊲ 〈αlin, βlin〉
Γ ; Θ ⊢ P2 ⊲ ∆2, y : β; I2

Γ ; Θ ⊢ u(y : β).P2 ⊲ ∆2; I2 ⊎ u : βlin

Γ ; Θ ⊢ D{u(y : β).P2} ⊲ ∆
′
2; I

′
2 ⊎ u : βlin (6)

with

S2 = Γ ;Θ ⊢ ∆2; I2 ⊎ u : βlin (7)

By Lemma B.3 we have that ∆1 ⊆ ∆′
1 and ∆2 ⊆ ∆′

2. We also infer I1 ⊑ I ′
1, I2 ⊑ I ′

2,

and I ′ ⊑ I. Now, using Lemma B.1(1) on judgments for P1 and P2, we obtain:

(a) Γ ; Θ ⊢ P1[κ
+

/x] ⊲ ∆1, κ
+ : α; I1.

(b) Γ ; Θ ⊢ P2[κ
−

/y] ⊲ ∆2, κ
− : β; I2.

We may now reconstruct the derivation given in (4) using Lemma B.4 and rule 〈t:Par〉:

(9)

Γ ; Θ ⊢ P1[κ
+

/x] ⊲ ∆1, κ
+ : α; I1 Γ ; Θ ⊢ κ+⌊α⌋ ⊲ κ+ : ⌊α⌋; ∅

Γ ; Θ ⊢ P1[κ
+

/x] | κ+⌊α⌋ ⊲ ∆1, κ
+ : α, κ+ : ⌊α⌋; I1

Γ ; Θ ⊢ C{P1[κ
+

/x] | κ+⌊α⌋} ⊲ ∆′
1, κ

+ : α, κ+ : ⌊α⌋; I ′
1 (8)

with

•S3
;Γ ; Θ ⊢ C ⊲ ∆′

1, κ
+ : α, κ+ : ⌊α⌋ ; I ′

1 (9)

Event-Based Adaptation in Communication-Centric Systems 21

and

S3 = Γ ;Θ ⊢ ∆1, κ
+ : α, κ+ : ⌊α⌋; I1 (10)

For D, we proceed analogously from (6) and infer:

•S4
;Γ ; Θ ⊢ D ⊲∆′

2, κ
− : β, κ− : ⌊β⌋; I ′

2

Γ ; Θ ⊢ P2[κ
−

/y] | κ−⌊β⌋ ⊲ ∆2, κ
− : β, κ− : ⌊β⌋; I2

Γ ; Θ ⊢ D{P2[κ
−

/y] | κ−⌊β⌋} ⊲ ∆′
2, κ

− : β, κ− : ⌊β⌋; I ′
2 (11)

with

S4 = Γ ;Θ ⊢ ∆2, κ
− : β, κ− : ⌊β⌋; I2 (12)

We may finally derive the type for the result of the reduction: using rules 〈t:Par〉 and

〈t:CRes〉 we obtain:

(8) (11)

Γ ; Θ ⊢ C{P1[κ
+

/x] | κ+⌊α⌋} | D{P2[κ
−

/y] | κ−⌊β⌋}⊲ ∆, κ+ : α, κ− : β,
κ+ : ⌊α⌋, κ− : ⌊β⌋;
I ′
1 ⊎ I ′

2

Γ ; Θ ⊢ (νκ)C{P1[κ
+

/x] | κ+⌊α⌋} | D{P2[κ
−

/y] | κ−⌊β⌋} ⊲ ∆; I ′
1 ⊎ I ′

2

This concludes this case.

Case 〈r:Upd〉 From Table 2 we have:

C
{
loc[P]

}
| D

{
loc

{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}}
−→

C
{
loc[V]

}
| D

{
0
}

By assumption we have

Γ ; Θ ⊢ C
{
loc[P]

}
| D

{
loc

{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}}
⊲ ∆; I

with ∆ balanced. Then, by inversion on typing, using rules 〈t:Fill〉, 〈t:Par〉, 〈t:Adapt〉,
and 〈t:Loc〉 we infer:

(14) (15)

Γ ; Θ ⊢ C
{
loc[P]

}
| D

{
loc

{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}}
⊲ ∆; I

(13)

Let ∆ = ∆′
1 ∪∆′

2 and I = I ′
1 ⊎ I ′

2, subtree (14) is as follows:

•S1
;Γ ; Θ ⊢ C ⊲ ∆′

1; I
′
1

I1 ⊑ I∗
1 Θ ⊢ loc ⊲ I∗

1 Γ ; Θ ⊢ P1 ⊲ ∆1; I1

Γ ; Θ ⊢ loc[P] ⊲ ∆1; I1

Γ ; Θ ⊢ C
{
loc[P]

}
⊲ ∆′

1; I
′
1 (14)

22 Cinzia Di Giusto and Jorge A. Pérez

with S1 = Γ ;Θ ⊢ ∆1; I1, and I1 ⊑ I ′
1 (by Lemma B.3). Subtree (15) is as follows:

•S2
;Γ ; Θ ⊢ D ⊲∆′

2; I
′
2

Θ ⊢ loc ⊲ I
∀j ∈ J, Ij ⊑ I

Γ ; Θ ⊢ Qi ⊲ 〈x1:β
j
1〉; · · · ; 〈xm:βj

m〉; Ij

Γ ; Θ ⊢ loc
{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}
⊲ ∅; ∅

Γ ; Θ ⊢ D
{
loc

{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}}
⊲ ∆′

2; I
′
2

(15)

with S2 = Γ ;Θ ⊢ ∅; ∅. We now consider the two cases for V and reconstruct the

derivation after the reduction, using rules 〈t:Par〉, 〈t:Fill〉 and Lemma B.4. The case

for V = P is trivial as everything is left unchanged and thus

Γ ; Θ ⊢ C
{
loc[V]

}
| D

{
0

}
⊲ ∆; I

Next suppose V = Ql[κ
p
1, . . . , κ

p
m/x1, . . . , xm]. By derivation (15) we know that

Γ ; Θ ⊢ Ql ⊲ 〈x1:β
l
1〉; · · · ; 〈xm:βl

m〉; Il

thus applying Lemma B.1(1) we have:

(17)

•S4
;Γ ; Θ ⊢ D ⊲∆′

2; I
′
2 Γ ; Θ ⊢ 0 ⊲ ∅; ∅

Γ ; Θ ⊢ D{0} ⊲ ∆′
2; I

′
2

Γ ; Θ ⊢ C{V } | D{0} ⊲ ∆′′
1 ∪∆′

2; I
′′
3 ⊎ I ′

2 (16)

•S5
;Γ ; Θ ⊢ C ⊲ ∆′′

1 ; I
′
l Γ ; Θ ⊢ V ⊲ 〈x1:β

l
1〉; · · · ; 〈xm:βl

m〉; Il

Γ ; Θ ⊢ C{V } ⊲ ∆′′
1 ; I

′
l (17)

with S5 = Γ ;Θ ⊢ 〈x1:β
l
1〉; · · · ; 〈xm:βl

m〉; Il. By Lemma B.3 we know Il ⊑ I ′
l . More-

over by Lemma B.4, and following by application of rule 〈r:Upd〉 we have ∆′′
1 ≤C ∆

′′
1 .

This concludes the analysis for this case.

Case 〈r:I/O〉 From Table 2 we have:

C
{
κ p(v).P1 | κp⌊!(τ).α⌋

}
| D

{
κ p(x).P2 | κp⌊?(τ).β⌋

}
−→

C
{
P1 | κp⌊α⌋

}
| D

{
P2[v/x] | κ

p⌊β⌋
}

(α⊥C β)

By assumption, we haveΓ ; Θ ⊢ C
{
κ p(v).P1 | κp⌊!(τ).α⌋

}
| D

{
κ p(x).P2 | κp⌊?(τ).β⌋

}
⊲

∆; I, with ∆ balanced. By inversion on typing, using rules 〈t:Fill〉, 〈t:Par〉, 〈t:In〉, and

〈t:Out〉, we infer:

(20) (22)

Γ ; Θ ⊢ C{κ p(v).P1 | κp⌊!(τ).α⌋} | D{κ p(x).P2 | κp⌊?(τ).β⌋} ⊲ ∆′; I ′
1 ⊎ I ′

2

where:

∆ = ∆′
1 ∪∆′

2, κ
p :!(τ).α, κp : ⌊!(τ).α⌋, κp :?(τ).β, κp : ⌊?(τ).β⌋ (18)

I = I ′
1 ⊎ I ′

2 (19)

Event-Based Adaptation in Communication-Centric Systems 23

We have that subtree (20) is as follows:

(21)

Γ ; Θ ⊢ κp⌊!(τ).α⌋ ⊲ κp : ⌊!(τ).α⌋; ∅

Γ ; Θ ⊢ P1 ⊲ ∆1, κ
p : α; I1 Γ ⊢ v : τ

Γ ; Θ ⊢ κp(v).P1 ⊲ ∆1, κ
p :!(τ).α; I1

Γ ; Θ ⊢ κp(v).P1 | κp⌊!(τ).α⌋ ⊲ ∆1, κ
p :!(τ).α, κp : ⌊!(τ).α⌋; I1

Γ ; Θ ⊢ C{κp(v).P1 | κp⌊!(τ).α⌋} ⊲ ∆′
1, κ

p :!(τ).α, κp : ⌊!(τ).α⌋; I ′
1

(20)

with

•S1
;Γ ; Θ ⊢ C ⊲ ∆′

1, κ
p :!(τ).α, κp : ⌊!(τ).α⌋I ′

1; (21)

and

S1 = Γ ;Θ ⊢ ∆1, κ
p :!(τ).α, κp : ⌊!(τ).α⌋; I1

Similarly, for subtree (22) we obtain (we show only the last step of the derivation):

(23) Γ ; Θ ⊢ κp(x).P2 | κp⌊?(τ).β⌋ ⊲ ∆2, κ
p :?(τ).β, κp : ⌊?(τ).β⌋; I2

Γ ; Θ ⊢ D{κp(x).P2 | κp⌊?(τ).β⌋} ⊲ ∆′
2, κ

p :?(τ).β, κp : ⌊?(τ).β⌋; I ′
2 (22)

with

•S2
;Γ ; Θ ⊢ D ⊲∆′

2, κ
p :?(τ).β, κp : ⌊?(τ).β⌋; I ′

2 (23)

and

S2 = Γ ;Θ ⊢ ∆2, κ
p :?(τ).β, κp : ⌊?(τ).β⌋; I2

where Lemma B.3 ensures ∆1 ⊆ ∆′
1, ∆2 ⊆ ∆′

2.

Now, by Lemma B.1(2) we know Γ ; Θ ⊢ P2[v/x] ⊲ ∆2, κ
p : β; I2. Moreover by

Lemma B.4(3) and rules 〈t:Par〉 and 〈t:Fill〉 we obtain the following type derivations:

•S3
;Γ ; Θ ⊢ C ⊲ ∆′

1, κ
p : α, κp : ⌊α⌋; I ′

1 Γ ; Θ ⊢ P1 | κp⌊α⌋ ⊲ ∆1, κ
p : α, κp : ⌊α⌋; I1

Γ ; Θ ⊢ C{P1 | κp⌊α⌋} ⊲ ∆′
1, κ

p : α, κp : ⌊α⌋; I ′
1

(24)
•S4

;Γ ; Θ ⊢ D ⊲∆′
2, κ

p : β, κp : ⌊β⌋; I ′
2 Γ ; Θ ⊢ P2[v/x] | κ

p⌊β⌋ ⊲ ∆2, κ
p : β, κp : ⌊β⌋; I2

Γ ; Θ ⊢ D{P2[v/x] | κ
p⌊β⌋} ⊲ ∆′

2, κ
p : β, κp : ⌊β⌋; I ′

2

(25)

(24) (25)

Γ ; Θ ⊢ C{P1} | D{P2[v/x]} ⊲ ∆
′
1 ∪∆′

2, κ
p : α, κp : β, κp : ⌊α⌋, κp : ⌊β⌋; I ′

1 ⊎ I ′
2

with
S3 = Γ ;Θ ⊢ ∆1, κ

p : α, κp : ⌊α⌋; I1
S4 = Γ ;Θ ⊢ ∆2, κ

p : β, κp : ⌊β⌋; I2
S5 = Γ ;Θ ⊢ ∆′

1 ∪∆′
2, κ

p : α, κp : β, κp : ⌊α⌋, κp : ⌊β⌋; I ′
1 ⊎ I ′

2

Since by inductive hypothesis ∆′
1 and ∆′

2 are balanced, we infer that ∆′
1 ∪∆′

2, κ
p :

α, κp : β is balanced as well; this concludes the proof for this case. ⊓⊔

Theorem (3.6 Typing Ensures Safety and Consistency). If Γ ; Θ ⊢ P ⊲ ∆; I with ∆
balanced then P is update consistent and safe.

24 Cinzia Di Giusto and Jorge A. Pérez

Proof. Safety is a direct consequence of Theorem 3.3. For consistency, we assume, to-

wards a contradiction, that there exist P1, P2, and κ1 such that

1. P −→∗ P1,

2. P1 has a κ1-redex,

3. P1 −→upd P2, and

4. P2 does not have a κ1-redex.

Without loss of generality, we suppose that the reduction P1 −→upd P2 is due to a

synchronization on location l1 ∈ Θ. Since the κ1-redex is destroyed by the update action

from P1 to P2, the κ1-redex in P1 must necessarily be a located κ1-redex, i.e., in P1,

one or both κ1-processes are contained inside l1. Now, our reduction semantics (rule

〈r:Upd〉) decrees that for such an update action to be enabled, the type of the process

located in l1 must be preserved. We also know, by Theorem 3.3 (Subject Reduction),

that P1 is well-typed under a balanced typing ∆1. Hence, update steps which destroy a

κ-redex (located and unlocated) can never be enabled from a well-typed process with

a balanced typing (such as P) nor from any of its derivatives (such as P1). We thus

conclude that well-typedness implies update consistency. ⊓⊔

C A Compartmentalized Model of Communication and

Adaptation: extended discussion

Given that the process model in § 2 describes the interplay of both communication and

adaptation concerns, how should specifications be organized in order to reflect a desir-

able separation of concerns? Here we propose to organize specifications using compart-

ments which isolate communication behavior and adaptation routines.

Our model offers an alternative for specifying systems at a high-level of abstrac-

tion. It defines systems in a two-level scheme: from a global perspective, a system is

the composition of applications. There are handler processes, which are responsible for

adaptation at the system (global) level: a handler may update a location at some spe-

cific application or upgrade a service definition. Applications comprise three elements:

behavior, state, and a manager. While the first concerns session processes, the second

comprises monitors and location queues. Managers implement adaptation policies at the

application (local) level. As we wish to isolate communication behavior from adaptation

routines, the presence of update processes is confined to handlers and managers.

Our model of compartmentalized communication is defined in Table 4. The process

syntax that we use in this section is a subset of that introduced in Table 1:

P,Q ::= u@a(x : α).P | u(x : α).P | loc@a(r)

| k(e).P | k(x).P | k ⊳ n;P | k ⊲ {n1:P1 [] · · · []nm:Pm} | close (k).P
| µX .P | X | if e then P else Q | P | P | (νκ)P | (νa)P | 0

Our set of processes is thus comparable to most session π-calculi, only extended with

the (possibly remote) adaptation request loc@a(r), which refers to location loc in appli-

cation a. Similarly, our notation for session requests refers to a service u at application a.

We shall write ∗if e thenP to stand forµX .if e thenP elseX , and∗u(x:α).P to stand for

Event-Based Adaptation in Communication-Centric Systems 25

〈c:LUpd〉

fc(P) = {κp
1, . . . , κ

p
m} S ≡ S1 ⋄ κ

p
1⌊α1⌋ ⋄ · · · ⋄ κ

p
m⌊αm⌋ ⋄ S2

(V = P ∧ S
′ = S)

∨
∃l.

(
matchI(l, {α1, . . . , αm}, {βi

1, . . . , β
i
m}i∈I) ∧

V = Ql [κ
p
1, . . . , κ

p
m/ x1, . . . , xm] ∧

S
′ = S1 ⋄ κ

p
1⌊β1⌋ ⋄ · · · ⋄ κ

p
m⌊βm⌋ ⋄ S2

)

a
〈
l1
[
P
]
| R ; S ; M | l1

{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}〉
7−→

a
〈
l1
[
V
]
| R ; S′ ; M | 0

〉

Table 6. Reduction Rule for Managers in the Compartmentalized Model

µX .u(x:α).(P | X). Also, we write P− to denote the sublanguage of processes without

service definitions u(x:α).P .

A system G is the composition of finite sets of applications A and handlers H; this

composition is denoted ‖. Given Ai = ai
〈
Ri ; Si ; Mi

〉
, we refer to ai as the name of

Ai. A handler is a persistent process which spawns an adaptation strategy as soon as

a request arrives to an appropriate queue. Handlers may either update or upgrade the

behavior at some location loc within application a; this is written loc@a. Upgrades are

denoted l1
{{
P
}}

; they are a particular form of update intended for service definitions

only. We use R to denote the communication behavior of an application. As before,

locations are transparent; for simplicity, here we rule out their nesting. We distinguish

between located processes representing service definitions from the located processes

which make use of such definitions. Our operational semantics (motivated below) en-

sures that locations enclosing service definitions do not contain open (active) sessions.

This may be convenient for organizing adaptation strategies, since updates to service def-

initions may now be performed without concerns of disruption of active sessions. The

state S of an application collects session monitors and location queues. A manager M is

meant to react upon the arrival of an internal adaptation message updI . We use S1 ⋄ S2
and M1 ◦M2 to denote the composition of S1 and S2 and M1 and M2, respectively.

Appendix D illustrates the use of compartments in the buyer-seller example.

Even if the syntax in Table 4 already induces useful structuring principles for sys-

tems, we find it desirable to give the following well-formedness conditions. Recall that

we write P1 ∈ P if P1 occurs in P . First, all applications in G should have pairwise

distinct names. Second, for each ai
〈
Ri ; Si ; Mi

〉
∈ G, we have: (a) Processes in Mi

only refer to locations occurring in Ri. (b) For each location locj occurring in Ri there

is exactly one queue locj⌊r̃⌋ ∈ Si. We now comment on the reduction semantics for

well-formed systems. We illustrate how such a semantics builds upon the principles em-

bodied by the semantics for “plain” processes (cf. § 2) but propagating the structural

organization introduced above.

Our semantics enables remote session establishment in which a request for service u
in application a2 is served by a definition in application a1 (below we assume α⊥C β):

a1
〈
l1
[
u(x:α).P | R

]
; S1 ; M1

〉
‖ a2

〈
l2
[
u@a1(y:β).Q

]
; S2 ; M2

〉
7−→

(νκ)
(
a1
〈
l1
[
R
]
; S1 ; M1

〉
‖ a2

〈
l2
[
(P [κ

+

/x] | Q[κ
−

/y])
]
; S2 ⋄ κ

+⌊α⌋ ⋄ κ−⌊β⌋ ; M2

〉)

Above, it is worth observing how the instance of the service is deployed at the caller lo-

cation (denoted l2). Since we would like to impose a certain degree of isolation between

applications, this will be the only rule admitted at the application level. Local session

26 Cinzia Di Giusto and Jorge A. Pérez

establishment takes place between services and clients inside a certain application a:

a
〈
l1
[
u(x:α).P | R

]
| l2

[
u(y : β).Q

]
; S1 ; M1

〉
7−→

(νκ)
(
a
〈
l1
[
R
]
| l2

[
P [κ

+

/x] | Q[κ
−

/y]
]
; S1 ⋄ κ

+⌊α⌋ ⋄ κ−⌊β⌋ ; M1

〉)

Here again the instantiated service “moves” from l1 to l2. Let us consider rules for adap-

tation. At the application level, the semantics of managers relies on rule 〈c:LUpd〉, given

in Table 6. Such a rule strictly refines rule 〈r:Upd〉 in Table 2. Observe how having the

state S allows us to precisely specify the elements that have influence on (and are mod-

ified by) dynamic reconfiguration. At the level of systems, the semantics of handlers is

given by two rules: one for update (similar to the rule above) and the following rule for

service upgrade:

a
〈
l1
[
P
]
| R ; S ; M

〉
‖ l1

{{
Q
}}

7−→ a
〈
l1
[
Q
]
| R ; S ; M

〉
‖ 0

Tables 7 and 8 show some of the reduction rules for systems G, denoted 7−→. For

all entities (processes, managers, applications, etc.) we assume a structural congruence

relation ≡ that validates the usual properties for their associated parallel composition

operator, with neutral element 0. Similarly as process reduction, 7−→ relies on an eval-

uation relation on expressions, denoted e ↓ v (where v is a value). Also, it relies on

the definition of evaluation contexts E[−] given before. Furthermore, we assume a rule

〈c:GUpd2〉 which is very similar to 〈c:LUpd〉.
Our model induces specifications in which requirements of communication, run-

time adaptation, and state (as useful in, e.g., asynchronous communication) are jointly

expressed, while keeping a desirable separation of concerns. Notice that the differences

between “plain” processes (as given in § 2) and well-formed systems are mostly con-

ceptual, rather than technical. In fact, the higher level of abstraction that is enforced by

well-formed systems does not result in additional technicalities. Although our compart-

mentalized model builds upon plain processes, we conjecture that a reduction-preserving

translation of application-based specifications into processes does not exist—a main dif-

ficulty being, unsurprisingly, properly representing the separation between behavior and

state. This difference in terms of expressiveness does not appear to affect the type sys-

tem. We are confident that the typing discipline developed in § 3 (and its associated

guarantees) extend to well-formed systems without major technical difficulties. We plan

to address this conjecture in future work.

D An Example of the Compartmentalized Model

We now illustrate how the buyer-seller scenario discussed in the Introduction can be

casted in the compartmentalized model given in § C. Buyer B and seller S are imple-

mented as two separate applications, named byr and slr, respectively:

sys ::= byr
〈
Rb ; Sb ; Mb

〉
‖ slr

〈
Rs ; Ss ; Ms

〉
‖ Hs

Rb ::= buyer
[
u@slr(x : α).P 50

x

]

Sb ::= buyer⌊ǫ⌋

Rs ::= seller
[
∗ u(y:β).Qy

]

Ss ::= seller⌊ǫ⌋

Event-Based Adaptation in Communication-Centric Systems 27

〈c:ROpen〉 a1

〈
l1
[
u(x:α).P | R

]
; S1 ; M1

〉
‖ a2

〈
l2
[
u@a1(y:β).Q

]
; S2 ; M2

〉

7−→
(νκ)

(
a1

〈
l1
[
R
]
; S1 ; M1

〉
‖

a2

〈
l2
[
(P [κ

+
/x] | Q[κ

−

/y])
]
; S2 ⋄ κ

+⌊α⌋ ⋄ κ−⌊β⌋ ; M2

〉)

〈c:LOpen〉 a1

〈
l1
[
u(x : α).P | R

]
| l2

[
u(y : β).Q

]
; S1 ; M1

〉

7−→

(νκ)
(
a1

〈
l1
[
R
]
| l2

[
P [κ

+
/x] | Q[κ

−

/y]
]
; S1 ⋄ κ

+⌊α⌋ ⋄ κ−⌊β⌋ ; M1

〉)

〈c:Com〉 a
〈
l1
[
κ p(v).P | κ p(x).Q

]
; S ⋄ κp⌊!(T).α⌋ ⋄ κp⌊?(T).β⌋ ; M

〉

7−→
a
〈
l1
[
P | Q[v/x]

]
; S ⋄ κp⌊α⌋ ⋄ κp⌊β⌋ ; M

〉

〈c:Sel〉 a
〈
l1
[
κ p ⊲ {nj :Pj}j∈J | κ p ⊳ nj ;Q

]
; S ⋄ κp⌊&{nj :αj}j∈J⌋ ⋄ κ

p⌊⊕{nj : βj}j∈J⌋ ; M
〉

7−→
a
〈
l1
[
Pj | Q

]
; S ⋄ κp⌊αj⌋ ⋄ κp⌊βj⌋ ; M

〉
(j ∈ J)

〈c:Clo〉 a
〈
l1
[
close (κ p).P | close (κ p).Q

]
; S ⋄ κp⌊ε⌋ ⋄ κp⌊ε⌋ ; M

〉
7−→ a

〈
l1
[
P | Q

]
; S ; M

〉

〈c:LUpd〉

fc(P) = {κp
1, . . . , κ

p
m} S ≡ S1 ⋄ κ

p
1⌊α1⌋ ⋄ · · · ⋄ κ

p
m⌊αm⌋ ⋄ S2

(V = P ∧ S
′ = S)

∨
∃l.

(
matchI(l, {α1, . . . , αm}, {βi

1, . . . , β
i
m}i∈I) ∧

V = Ql [κ
p
1, . . . , κ

p
m/ x1, . . . , xm] ∧

S
′ = S1 ⋄ κ

p
1⌊β1⌋ ⋄ · · · ⋄ κ

p
m⌊βm⌋ ⋄ S2

)

a
〈
l1
[
P
]
| R ; S ; M | l1

{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}〉
7−→

a
〈
l1
[
V
]
| R ; S′ ; M | 0

〉

〈c:GUpd1〉
fc(P) = ∅

a
〈
l1
[
P
]
| R ; S ; M

〉
‖ l1

{{
Q
}}

7−→ a
〈
l1
[
Q
]
| R ; S ; M

〉
‖ 0

Table 7. Selected Reduction Rules for Compartmentalized Processes (I). We assume α⊥C β.

Notice that the service offered by S is given as a service definition. Since applications

are intended to be distributed containers of communication behavior, we slightly refor-

mulate the adaptation discussed in the Introduction as follows. We will assume that the

seller may receive an update request from its environment. Upon reception of such a

request, its associated handler Hs will not only spawn an update process but will also

issue an adaptation request for the buyer. From the perspective of the buyer such a re-

quest is internal, for it comes from the seller. That is, the seller acts an an intermediate

manager for the buyer. As soon as the buyer receives the internal request, its (local)

manager Mb may spawn an update process at the local level. More precisely, letting

gs = arrive(seller@slr, updE) and gb = arrive(buyer, updI), we have:

28 Cinzia Di Giusto and Jorge A. Pérez

〈c:GCRes〉

A 7−→ A′

(νκ)A 7−→ (νκ)A′

〈c:LCRes〉

R 7−→ R′

(νs)R 7−→ (νs)R′

〈c:Str〉

if P ≡ P ′, P ′ 7−→ Q′, andQ′ ≡ Q then P 7−→ Q

〈c:Rec〉

recX .P 7−→ P [recX .P/X]

〈c:IfTrue〉

if true then P else Q 7−→ P

〈c:IfFalse〉

if false then P else Q 7−→ Q

〈c:LPar1〉

P 7−→ P ′

a
〈
l1
[
P | R1

]
| R2 ; S ; M

〉
7−→ a

〈
l1
[
P ′ | R1

]
| R2 ; S ; M

〉

〈c:LPar2〉

M 7−→ M′

a
〈
R ; S ; M◦M1

〉
7−→ a

〈
R ; S ; M′ ◦M1

〉

〈c:GPar1〉

G 7−→ G′

G ‖ G1 7−→ G′ ‖ G1

〈c:UReq1〉

a
〈
l1
[
loc@a(r) | R

]
; S ⋄ loc⌊r̃1⌋ ; M

〉
7−→ a

〈
l1
[
R
]
; S ⋄ loc⌊r̃1 · r⌋ ; M

〉

〈c:UReq2〉

a1

〈
l1
[
loc@a2(r) | R

]
; S1 ; M1

〉
‖ a2

〈
R2 ; S2 ⋄ loc⌊r̃1⌋ ; M2

〉
7−→

a1

〈
l1
[
R
]
; S1 ; M1

〉
‖ a2

〈
R2 ; S2 ⋄ loc⌊r̃1 · r⌋ ; M2

〉

〈c:GArr1〉

a
〈
R ; S ⋄ loc⌊r · r̃1⌋ ; M

〉
‖ E[arrive(loc@a, r)] 7−→ a

〈
R ; S ⋄ loc⌊r̃⌋ ; M

〉
‖ E[true]

〈c:GArr2〉

a
〈
R ; S ⋄ loc⌊r̃⌋ ; M

〉
‖ E[arrive(loc@a, r)] 7−→ a

〈
R ; S ⋄ loc⌊r̃⌋ ; M

〉
‖ E[false] ((r̃ = r1 · r̃0 ∧ r1 6= r) ∨ r̃ = ǫ)

〈c:LArr1〉

a
〈
R ; S ⋄ loc⌊r · r̃1⌋ ; M | E[arrive(loc, r)]

〉
7−→ a

〈
R ; S ⋄ loc⌊r̃1⌋ ; M | E[true]

〉

〈c:LArr2〉

a
〈
R ; S ⋄ loc⌊r̃⌋ ; M | E[arrive(loc, r)]

〉
7−→ a

〈
R ; S ⋄ loc⌊r̃⌋ ; M | E[false]

〉
((r̃ = r1 · r̃0 ∧ r1 6= r) ∨ r̃ = ǫ)

Table 8. Selected Reduction Rules for Compartmentalized Processes (II).

Hs = ∗ if gs then seller

{
case y of

{
(y:β) : Qy | buyer@byr(updI)

(y:βpay) : Q
∗
y | buyer@byr(updI)

}}

Mb = ∗ if gb then buyer

{
casex of

{
(x:α) : P 100

x

(x:αpay) : P
∗
x

}}

For simplicity, in Hs we use the same message updI for both alternatives of the update.

A more flexible specification could be obtained by defining different classes of internal

messages for the buyer (say, indexed requests upd1I and upd2I) and then adapting Mb to

react differently depending on the class of the received internal request.

	 An Event-Based Approach to Runtime Adaptation in Communication-Centric Systems

