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Numerous amorphous materials such as concentrated suspensions, colloidal glasses, foams or granular materials share common global features in their mechanical response to shear [1,[START_REF] Berthier | Dynamical Heterogeneities in Glasses, Colloids, and Granular Media[END_REF]. They are characterized by a yield stress below which the material appears as a solid [START_REF] Coussot | [END_REF]4]. As this behaviour is shared by so many different materials, several conceptual and theoretical frameworks emerged recently [5][6][7][8][9][10] to provide a quantitative basis for the phenomenology of soft glassy rheology (SGR) above and beyond the yield stress. Even though many parallel approaches exist, sometimes at different level of description, they all share either explicitly or implicitly, the underlying idea that mesoscopic collective processes triggered by thermal or mechanical activation, contribute to the material fluidity. The direct visualization of local plastic events and the associated complex avalanching dynamics is supported by many experimental [11][12][13][14] or numerical [15][16][17] studies. In the "solid phase" corresponding to a strong dynamical arrest, soft-glassy systems display ageing properties manifesting in a slow creep relaxation process [18][19][20][21]. Ageing properties stem from a remaining thermal activation providing the possibility to cross enthalpic or entropic barriers and progressively set the system into deeper local minima where mechanical solidity is reinforced. The existence of external mechanical noise was also proposed as a substitute for thermal activation. In this sense, the behaviour of these amorphous soft glassy solids is very close phenomenologically to molecular glass-formers obtained by thermal quenching [22]. Yet, the fact that such mechanical noise truly acts as an effective temperature is presently debated [23] and indeed, deep differences in the way thermal noise and mechanical fluctuations act in amorphous systems has been recently pointed out [24].

In the solid glassy phase, where the system never reaches thermal equilibrium at the level of experimental times, in addition to the presence of an elastic response, theories have to account for the loss of ergodicity. This is done either by introducing memory kernel in the soft-glassy rheology [8,21,[START_REF] Voigtmann | Slow dynamics in external forces: Creep and microrheology[END_REF] or by providing phenomenologically, new dynamical relations for an effective fluidity parameter [10,19] suited to render the "rheological age" of the system and its temporal evolution. Note that the two approaches, not working at the same level of representation, are not necessarily contradictory and in some simple cases, explicit connections can even be made [26]. On a practical point of view, even far from the fluidization thresholds, a lot of situations show that vanishingly small perturbations cannot be neglected in presence of a bias. Since such effects may be cumulated over long times, it becomes problematic when a solid response is expected but uncontrolled mechanical noise would eventually lead to a significant creep. For example, the effect of mechanical noise on soils is of major importance for the long-term stability of structure foundations [27]. It may also play a determinant role in the context of earthquakes triggering [28]. Controlled mechanical fluctuations can also be used as an investigation tool, as for example in superposition rheology [29]. In this instance, understanding the system response to various forcing of different forms and amplitudes and also, the importance of inherent apparatus wobbling noise, is crucial for an accurate exploitation of the system dynamics. On a theoretical point of view, it has been shown that ageing in a glass spin model is interrupted in presence of a bias [START_REF] Berthier | [END_REF]. In this letter, we propose a new conceptual picture to understand a fluidization process that a soft glassy materials may undergo in the solid phase, under external mechanical noise. This scenario differs from an activated process and does not require the introduction of an effective temperature. First, theoretical arguments are presented to describe the solid phase where ageing and shear rejuvenation processes are both present. Second, an explicit derivation is presented on a generic rheological model. Third, we present experiments on granular packing sheared below the Coulomb threshold and we show that the response to small mechanical modulations is in agreement with the generic predictions of the model. Finally, the result's generality and it application to soft glassy materials is discussed. -Model ingredients. Models aiming at describing yieldstress fluids and amorphous materials in the solid phase, need to account for two fundamental features in their dynamics [6,10]: (i) ageing of the system with time and (ii) rejuvenation due to shear rate γ. That rejuvenation can be seen microscopically as a local structural reorganizations induced by the strain. When an amorphous material is submitted to a cyclic load, after a complete cycle, the system is not back to its initial state [10], which means that the rate of evolution of the variable describing the state of the system has an even dependence on the shear rate γ. Because of the different time scales at play in the dynamics (typical time of reorganization compared to the ageing time), the description of glassy materials depends on the observation time scale. Choosing this scale can be problematic in creep experiments as the system exhibits no intrinsic time scale. In the presence of stress fluctuations, the macroscopic variables measured are averaged quantities giving the mean long-term behaviour. If the system is submitted to stress variations of typical amplitude δ, very small when compared to the yield stress σ D , and displaying a characteristic time τ vib , a pertinent observation time is given by the number of perturbations of amplitude δ necessary to accumulate an equivalent stress of order σ D : T obs = σD δ τ vib . Because of the positive non-linear dependence of the rejuvenation term, one can expect a dynamical stack-up of those perturbations, giving rise after a time of order T obs , to an equivalent stress of order σ D .

-Fluidization as a secular drift. In order to demonstrate simply how this mechanism works, we build on the macroscopic rheological model proposed by Derec et al. [10] to understand the rheology of soft glassy materials. This model was used to analyse ageing and nonlinear rheology of pastes [19] and also creeping processes in granular matter [13,20,30]. This generic model introduces a macroscopic phenomenological variable, the fluidity defined as the inverse time scale characterizing the material visco-elastic response. To provide a comprehensive analytical understanding of how a steady fluidity can appear below the dynamical yield stress σ D , we first study the response on the simplest non trivial form of the model :

. σ = G . γ -f σ (1) ḟ = -af 2 + r γ2 , (2) 
with σ the applied shear stress, γ the shear rate and G the shear elastic modulus, f (t), is the fluidity. Dimensionless parameters a and r represent respectively ageing and shear-induced rejuvenation processes and for clarity and simplicity, we consider them as constant. The stationary solutions of those equations depend on the value of the stress compared to the dynamical yield threshold, σ D = G a r . For a constant σ < σ D , the fluidity f , as well as the shear rate γ, decreases to 0 as the inverse of time, thus leading to a logarithmic creep process. We consider the case of a mean imposed stress σ 0 below the threshold σ D combined with a modulation of small amplitude δ ≪ σ 0 , leading to an imposed stress σ(t) = σ 0 + δ sin(ωt). By construction, the present flumodel has no time scale. When imposing a modulation, one can study the in-phase and out-of-phase responses [10] over a time of the order of τ vib = 2π

ω . Here we aim at understanding the long-term behaviour, given by the number of cycles of amplitude δ necessary to buildup an equivalent stress of order σ D : T obs = τ vib /ǫ, with ǫ = δ/σ D . The equations are adimensionalized using the following scales: 1/(ǫω) for time, σ D for stress and γ 0 = σ D /G for deformation. The adimensionalized variables are written with a tilde thus yielding the equations: σ = γf σ and ḟ = -a( f 2 -γ2 ), with σ = σ0 + ǫ sin t ǫ , which gives :

γ = cos t ǫ + f σ0 + ǫ f sin t ǫ (3) 
Dynamically, one obtains a two-times system with T = t, the time of observation corresponding to creep (slow time) and the modulation time τ = t/ǫ (fast time). A multiple scale perturbation analysis can be done [START_REF] Hinch | Perturbation Methods[END_REF], using

d d t = 1 ǫ ∂ ∂τ + ∂
∂T and searching a solution of the form f (τ, T ) = f (0) (τ, T ) + ǫ f (1) (τ, T ) + . . . . We then obtain for (1 -σ2 0 ) = O(1):

1 ǫ ∂ f (0) ∂τ + ∂ f (1) ∂τ + ∂ f (0) ∂T + O(ǫ) = -a - 1 -cos 2τ 2 +(1 -σ2 0 ) f (0) 2 + 2 f (0) σ0 sin τ + O(ǫ) (4) 
From the leading order O( 1 ǫ ), one obtains ∂ f (0) ∂τ = 0, so that f (0) (τ, T ) = f (0) (T ): the envelope is a function of the slow time only. The order O(1) gives:

∂ f (1) ∂τ = - d f (0) dT + a 1 2 -(1 -σ2 0 ) f (0) 2 -a 2 f (0) σ0 sin τ - cos 2τ 2 (5) 
The term

-d f (0) dT + a 1 2 -(1 -σ2 0 ) f (0) 2
in the rhs of equation 5 does not depend on τ so that its integration would give a term ∝ τ which would lead to a failure of the expansion on long time. This term, called the secular term because its effect is seen only after a very long time, thus needs to be cancelled for the perturbation analysis to hold (see e.g. [START_REF] Hinch | Perturbation Methods[END_REF]). This leads to the differential equation:

∂ f (0) ∂T = a 1 2 -(1 -σ2 0 ) f (0) 2 (6) 
This equation corresponds to the normal form of a saddlenode bifurcation ẋ = µ-x 2 . For µ > 0 the solution + √ µ is the only stable stationary solution. The dimensional expression of the stationary value for the mean fluidity,

f * , is thus: f * = ω δ σ D 2 1- σ 2 0 σ 2 D
, which is finite for nonvanishing values of δ, the stress modulation, even when σ 0 ≪ σ D . Consequently, even far below the yield threshold, the long-term behaviour tends to create a liquid-like response, with constant mean strain rate γ(0) = f * G σ 0 corresponding to a finite effective viscosity:

η = G/f * = G 2 1 - σ 2 0 σ 2 D σ D ωδ (7) 
Note that this viscous response is linearly related to the inverse of the stress modulation rate (R σ = 2ωδ/π). In Appendix we numerically show that secular drift is a robust result that can be applied to a large class of macroscopic rheological models, the essence of the phenomenon being indeed captured by the previous simple case. We also show that the secular drift do not depends on the nature of the stress modulations (see results for random forcing in Appendix).

-Stress modulation experiments. The generic theoretical outcomes are now tested experimentally on a granular packing under a confinement pressure that sets a scale for the Coulomb dynamical yield stress. Granular materials are often seen as rigorously athermal. Indeed, in most numerical approaches, granular contacts are modelled as elastic repulsive forces and a Coulomb solid friction threshold. Consequently, for infinitesimal deformations around a reference state, a granular packing should possess a true elastic response and displays no ageing [31]. Note however, in the limit of very small if not zero friction the establishment of a linear elastic response under finite shear is questionable [32]. Moreover, for real granular materials, the actual pressures at contact are generically high and contacts may creep plastically. Therefore, the contact status will be intrinsically coupled to a thermally activated process [33]. In addition, the contact status can also be extremely sensitive to the ambient mechanical noise. In fact, real granular packing in the solid phase, display ageing and shear rejuvenation that can be modelled directly by equation 2 [20]. Moreover, the fluidity variable f (t) was identified experimentally (for shear stresses not too close to the yield stress), as the rate of occurrence of local rearrangements called "hot-spots" [13], thus providing an explicit experimental connection with more mesoscopic theories describing structural relaxation processes. As a consequence, experiments on granular packing in the solid phase, can be considered as of general relevance to the class of soft-glassy materials that display similar phenomenology [START_REF] Voigtmann | Current Opinion in Colloid and Interface Science[END_REF]. An experimental key point here is to achieve shear stress modulations around a nominal value without introducing uncontrolled mechanical perturbations. Besides residual external noise, always present, even in quiet environments, a substantial source of mechanical noise comes from motorized elements. This is why we designed the experimental system as an Atwood machine. The setup is shown on Fig. 1 on a four-blade vane (R 0 = 1.27 cm, H 0 = 2.54 cm) using a mass m suspended from a pulley (see fig. 1(a), vane penetration h = 5 cm). A torque probe measures the applied torque T and the angle of rotation of the vane α is measured by an induction probe. We defined the mean stress and the mean strain as σ = T 2πR 2 0 H0 and γ = αR0 R-R0 respectively. In conditions of the present experiment, the Coulomb threshold was determined at a value σ Y = 2300P a. When a constant stress σ 0 smaller than the yield stress is applied on the granular packing, a creep behaviour is observed with a logarithmic dependence of the strain with time (red curve of Fig. 2). This behaviour was studied in [20] and the fluidity model discussed in the previous part describes accurately the ob-served response. By variation of the Archimede's forces, a modulation of the applied torque is obtained by vertical oscillatory displacements of a mass m hanging partially in a water tank. The protocol (fig. 1(b)) is then: i) stress ramp at constant stress rate ( σ = 5 P a/s) up to the desired mean stress value σ 0 ; ii) constant shear σ 0 applied during t w = 1500 s; iii) modulation of the stress around σ 0 for at least 2 hours. The modulations are triangular oscillations of amplitude δ and frequency f σ . Figure . 2 shows typical deformations for two experiments performed at the same mean stress (σ 0 = 1100P a) and oscillation amplitude (δ = 7.5P a) but for various oscillation frequencies. During the constant stress phase, a slow increase of the deformation, γ(t), is observed corresponding to the beginning of the logarithmic creep. Then, when submitted to oscillations, the system will transit to a linear creep regime characterized by a constant mean strain rate, γ∞ , which increases with the oscillation frequency. The slope of this linear creep allows to define an effective viscous response: η = σ 0 / γ∞ . Figure 3 shows the values obtained for the mean strain rate γ∞ as a function of the modulation stress rate R σ = 2ωδ/π, for a given value of the applied mean stress σ 0 . The observed linear dependences are in agreement with the normalization parameters chosen. Indeed, the finite viscosity that we expect to arise from the modulation should vary as η ∝ 1 δω (see eq. ( 7)) leading to a strain rate γ∞ ∝ ωδ. σ 0 corresponds to an applied shear stress far enough from the dynamical threshold. Experimentally, when this limit is approached one observes a strong increase of the strain rate. The results are then much less reproducible and may be quite sensitive to uncontrolled external perturbations. A collapse of the measurements done at different imposed stress σ 0 can be obtained by

plotting η * = η/ 1 - σ 2 0 σ 2 D
a function of the modulation stress rate R σ (insert of Fig. 3), in agreement with eq. ( 7). -Summary and discussion. In this letter, we propose to * (Pa.s) consider a new fluidization pathway that could apply to a large class of soft glassy materials arrested dynamically in the solid phase. The mechanism requires two generic features, memory effects and non-linear flow-induced rejuvenation. Under external shear stress and below the yield stress, small fluctuations around the mean shear, accumulate tiny irreversible strains over a long time and lead to secular drifts [START_REF] Hinch | Perturbation Methods[END_REF] that can be viewed as an effective viscous response. Even though the derivation was explicitly done on a simple macroscopic rheological model, the existence of a secular term yielding a finite material fluidity, is a generic feature coming out from any model mixing ageing and non-linear rejuvenation process [START_REF] Voigtmann | Current Opinion in Colloid and Interface Science[END_REF]. The underlying mechanism at work is in principle very different from a thermal activation or any equivalent mechanism accounting for stress fluctuations as an effective temperature [START_REF] Berthier | [END_REF]37]. In the last case, the amplitude of the fluctuations must help to overcome a barrier or a threshold. In our case, fluidization stems from a dynamical bifurcation of the rheological equations as a very general feature of a dynamical system hosting processes working at very different time scales. It would be interesting to see how in more sophisticated SGR models with memory kernels accounting for ageing [8], the equation's dynamics solved for similar driving conditions, would also give a secular drift. Evidence and quantitative assessment of the effect was brought for a granular packing submitted to controlled stress modulations be-low the Coulomb threshold. We related quantitatively the effective viscosity to the inverse of the stress modulation rate and have shown that the viscosity decreases significantly when approaching the dynamical threshold. Note that in spite of resemblances, this phenomenon is a priori different from another fluidization process occurring when a granular packing is placed in contact with a fluidized shear band [38,39]. In the last case, theoretical analysis and numerical simulations show that the induced creeping process comes from a non-local stress relaxation, from the flowing part to the material bulk [40][41][42][43]. The generality of the scenario, mixing two generic features of glassy system make it suitable to be tested experimentally on many other practical situation like colloidal glasses, pastes, clays or even glass-former molecular systems, which actually may turn out to be of practical importance to assess the stability and reliability of structures strained externally in their environment over very long time scales. Finally, an important question remains on the plastic relaxation modes involved in the material strain in the context of this scenario (localized or extented ?). For granular matter this is the scope of a future report [44].
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APPENDIX: Numerical simulations

Models comparison

In Ref. [10], a general form for the equation governing the fluidity is proposed, coming from a "Landau-type" expansion:

∂f ∂t = -a 1 - |σ|f | γ| λ | γ| ν-ǫ f ν f α (8) 
where the higher orders of f in the expansion have being dropped because we work in the pasty phase where f is small. We also only study the cases when ǫ = 0 because we want to study a yield stress fluid (see [10]).

The analytical study presented in our letter treats the case (α, λ, ν, ǫ) = (2, 0, 2, 0). Nevertheless, the underlying mechanism which leads to a sub-threshold rejuvenation of the fluidity originate from the γ| ν-λ term (ǫ = 0), so that when ν = λ, the subthreshold fluidization should always be observed. We demonstrate this using numerical integrations for different sets of exponents. Fig. 4 shows the evolution in time of f for four set of (α, λ, ν) keeping ǫ = 0. We set a = 1 and impose a sinusoidal stress (σ 0 = 0.7, δ = 0.05). We obtain a finite fluidity whenever ν = λ. On the contrary, when ν = λ (red curve of Fig. 4,case (α,λ,ν FIG. 4: Fluidity as a function of time obtained from the numerical integration of Eq. 8 for different set of exponents and subjected to a sinusoidal perturbation (σ0 = 0.7, δ = 0.05).

(2, 1, 1)), the creep remains logarithmic in presence of small perturbations because the equation becomes:

∂f ∂t = -a (1 -|σ|) f α
and we have always |σ(t)| ≪ 1 as the perturbation is well below the threshold. Consequently no fluidisation can be observe as the perturbation is not strong enough to pull the system over the threshold. Varying a or σ does not affect the general behavior of the system as long as σ(t) remains below 1.

Response to a random forcing We also test numerically the response of the model presented in the main text to a stress modulated by random fluctuation. We found that such modulation has the same overall effect than a regular perturbation. Fig. 5 shows the results of the numerical integration of eq. 1 and 2 using σ(t) = σ 0 + ξ(t) where ξ(t) is a noise presenting a uniform frequency distribution between 0 and f c and whose standard deviation equals δσ. A sub-threshold fluidization is recovered for all the set of parameters we have tested. By normalizing the strain rate obtained in the steady-state by the standard deviation of the stress rate (σ( σ)), we obtain a collapse of the data for σ 0 ≪ σ D . One can note that the collapse perfectly on our analytical solution γ∞ = Σ σ0 σD 1 -

σ 2 0 σ 2 D
in which Σ is a characteristic stress rate. Σ corresponds to ωδ/ √ 2 and the standard deviation of the stress rate for sinusoidal modulations and random modulations, respectively.

FIG. 1 :

 1 FIG. 1: (a) Experimental set-up. (b) Imposed stress during an experiment: stress ramp to reach mean stress, σ0, constant stress during tw and stress modulation characterized by a frequency fσ and an amplitude δ.

FIG. 2 :

 2 FIG. 2: Strain as a function of time for experiments performed at σ0 = 1100 Pa, and δ = 7.5 Pa, and for various oscillations frequencies. The oscillations start at t = 1500s (grey area).
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 1232 FIG. 3: Main plot: Steady state strain rate, γ∞, as a function of modulation stress rate Rσ for four different values of mean strees, σ0. The straight lines are linear fits. Inset: Normalized viscosity η * = η/ 1 -σ 2 0 σ 2 D

FIG. 5 :

 5 FIG. 5: Results of numerical simulation using noise instead of a regular oscillation as a perturbation: Strain rate in the steady state divided by the standard deviation of the stress rate (σ( σ)) as a function of the imposed mean stress normalized by σD. Results for a = 0.1 and an initial fluidity of f0 = 10s -1 .