
HAL Id: hal-01093036
https://hal.science/hal-01093036

Submitted on 10 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extension of the RBD-FAST method to the
computation of global sensitivity indices

Thierry A. Mara

To cite this version:
Thierry A. Mara. Extension of the RBD-FAST method to the computation of global sensitivity indices.
Reliability Engineering and System Safety, 2009, 94, pp.1274-1281. �10.1016/j.ress.2009.01.012�. �hal-
01093036�

https://hal.science/hal-01093036
https://hal.archives-ouvertes.fr


1 

 

 

Extension of the RBD-FAST method to the computation of global 

sensitivity indices 

 

Thierry Alex MARA 

 

University of Reunion Island, LPBS (E.A. 4076), Faculty of Human and Environmental 

Sciences, 117 Rue General Ailleret, 97430 Tampon, Reunion Island – France. 

Tel : +262 262 93 82 12 

Fax : +262 262 93 86 65 

email : mara@univ-reunion.fr 



2 

Abstract 

 

This paper deals with the sensitivity analysis method named Fourier amplitude sensitivity test 

(FAST). This method is known to be very robust for the computation of global sensitivity 

indices but their computational cost remains prohibitive for complex and large dimensional 

models. Recent developments in the implementation of FAST by use of the random balance 

designs (RBD) technique have allowed significant reduction of the computational cost. The 

method is now called RBD-FAST. The drawback of this improvement is that only individual 

first-order sensitivity indices can be computed. In this article, an extension of RBD is derived 

for the estimation of any global sensitivity indices of individual factor or group of factors. 

Several tests are proposed to compare the performances of classical FAST and RBD-FAST. 
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Introduction 

Let us denote by Y a random vector function of a set of k independent input factors X = 

{X1,X2,…,Xi,…,Xk}. Sensitivity analysis of model output is especially an issue when the 

model at hand is non linear, high dimensional and the uncertain input factors vary generously. 

Global sensitivity analysis (GSA) is usually employed to compute the sensitivity measures. 

The latter are generally derived from the analysis of the model response variance (ANOVA). 

Indeed, it is expected that an influential factor contributes to the variation of the model 

response. ANOVA-based sensitivity indices (also known as Sobol’ indices) can be defined 

from the following variance decomposition: 

V[Y] = V[E[Y|Xi]] + E[V[Y|Xi]]        (1) 

where Y is the model response of interest, 

Xi is either an individual factor or a subset of factors, 

V[.] is the mathematical variance (the centred second-order moment) and V[.|.] the 

conditional variance, 

E[.] is the mathematical expectation (the first-order moment) and E[.|.] the conditional 

expectation. 

V[E[Y|Xi]] is the partial variance of Y explained by Xi alone. This means that the remaining 

factors are not involved in this partial variance. In the following, X-i denotes the 

complementary subset so that the entire set of factors (assumed independent) is X = {Xi, X-i}. 

For convenience, Eq.(1) is rewritten as follows : 

1 = Si + ST-i            (2) 

with Si = V[E[Y|Xi]] / V[Y] is the first-order sensitivity index of Xi that represents the amount 

of the model response variance explained by Xi alone. ST-i = E[V[Y|Xi]] / V[Y] is the total 

sensitivity index of X-i and provides its total contribution to the model response variance that 
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is, its marginal as well as its cooperative contributions with Xi. Eqs. (1-2) are general in the 

sense that no particular assumption is required so that they hold even for dependent factors. In 

the literature, many affordable model free computational methods are proposed to estimate 

the first-order sensitivity indices of individual factor (RBD-FAST [1-2], regression-based 

methods [2,3], cut-HDMR [4]). There is less as far as group of factors are considered or when 

higher-order sensitivity indices are investigated (e.g. Sobol’ method [5], EFAST [6]). Besides, 

it has to be noticed that, for models with strictly continuous (or discrete) input\output values, 

the polynomial chaos expansion is an interesting approach to estimate the Sobol’ indices at 

low computational cost (see [7]). 

Originally, RBD-FAST has been proposed to overcome the curse of dimensionality inherent 

to classical FAST (see [1]). The method remains computationally cheap for the estimation of 

first-order sensitivity indices even for models with many factors. Other authors have extended 

RBD-FAST to models with correlated factors [8]. In the present paper, exclusively models 

with independent inputs are discussed. The author proposes different strategies to compute 

Sobol’indices. Then, some numerical tests are undertaken including comparisons to the so-

called extended FAST method (EFAST, see [6]) for the computation of total sensitivity 

indices. 

1. The Fourier amplitude sensitivity test 

1.1 Computation of the first-order indices 

FAST was originally proposed by Cukier et al. in the 70’s to perform sensitivity analysis of a 

chemical computer model [9]. Later on, the sensitivity measure computed with the classical 

FAST has been identified as the first-order Sobol’ index. FAST exploits Parseval’s 

relationship to decompose the variance of a model response in the frequencies space. For this 

purpose, the factor values are sampled from a periodic curve with a different frequency wi 
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assigned to each factor. Let us set, 
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D  is an estimate of the marginal partial variance V[E[Y|Xi]], 

M is a given integer called interference factor (generally < 6), 

and Λp = Ap² + Bp². 

The Fourier coefficients are numerically estimated by projection, 
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The estimated total variance is given by Parseval’s theorem: 
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Combining Eqs.(3-4) yields to: 

^ ^ ^

i i
S D D=            (5) 

The drawbacks of this approach are obvious: the choice of the frequency set must be done 

with great care to avoid aliasing (or interferences that biased the Fourier coefficients 

estimates) and the highest frequency is proportional to the number of factors (i.e. k). As a 
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consequence, the computational cost N dramatically increases with k. Indeed, for a set of 

frequencies free of interferences to order M = 4, Cukier et al. in [10] showed that the 

computational cost is about 2.6k
2.5

. When the model is additive (i.e. ΣSi = 1), the classical 

FAST is suited for factors fixing setting (see [11] for details about settings in SA). Otherwise, 

the computation of higher-order sensitivity indices is necessary. 

 

1.2 Computation of a total sensitivity index 

In FAST, non linearities generate other frequencies that are linear combinations of the 

interacting factors frequencies (see [12]). To compute the total sensitivity index of a factor, 

say Xi, Saltelli et al. in [6] have proposed to isolate its assigned frequency in the Fourier 

spectrum (wi is high as compared to w-i) so that the frequencies generated by its interactions 

with the other factors remain in the high frequencies of the spectrum (i.e. in the vicinity of 

wi). Then, the total sensitivity index is computed as follows: 

2
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n Mw

DT
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= Λ∑ , 

where 
^

i
DT  is an estimate of the total partial variance E[V[Y|X-i]], 

wmax = max(w-i), 

the estimate total variance of Y is still given by Eq.(4) and 

^ ^ ^

i i
ST DT D=            (6) 

The authors proposed the following steps for the generation of the frequency set: 

- fix the interference factor M, 

- fix a frequency step Δ, 

- generate the k-1 first frequencies: w-i = {1,1+Δ,1+2Δ,…,1+(k-2)Δ}, 

- compute the highest frequency : wi = 2M(1+(k-2)Δ) 
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The frequency step is a strictly positive integer that serves to generate the set of low 

frequencies. The simplest is to choose Δ = 1 even though it produces interferences. But for 

fast run models or low dimensional models, it is advised to choose a higher step. The Nyquist 

limit leads to the expression of the sample size N = 2Mwi +1= 4M²(1+(k-2)Δ)+1. The 

computational cost can be prohibitive even for the lowest step in the case of models with 

many factors (Δ = 1, M = 4, w-i = {1,2,…,k-1}, wi = 8(k-1) and N = 64(k-1)). 

 

2. Random balance designs and FAST 

2.1 Illustration on a trivial function 

To reduce the computational cost of the classical FAST, Tarantola et al. [1] employed 

Satterthwaite’s random balance designs technique [13]. In order to introduce the method, let 

us consider the following simple polynomial function, 

Y = X1 + X2 + 2X1X2, 

where X1 and X2 are identically, independently and uniformly distributed over [-1,1]. The 

computation of the first-order sensitivity indices with the classical FAST requires the 

sampling of the variables values along with a periodic curve of different frequencies. Let us 

assign the frequencies {11,35} to X1 and X2 respectively. In order to uniformly sample the 

input values, the following search curve is employed (see [6] for proof): 

( ) ( )( )
2

i j i j
X s arcsin sin w s ,=

π
 i = 1,2, 

2

j
s j

N

π
= −π+  and j = 1,…,N. 

In the present numerical application, N is fixed to 256. Once propagated through the function 

the resulting spectrum of Y is plotted in Fig. 1a. As expected, the spectrum contains the 

marginal contribution of the variables (at frequencies 11 and 35, the harmonics are negligible) 

as well as their interactions at frequencies 24 and 46 (i.e. 35±11). The other contributions are 
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null. Now, if instead of sampling X1 periodically one randomly generates its values, then in 

the spectrum of Y (see Fig. 1b), its fundamental and interaction frequencies vanish and are 

replaced by a white noise spread all along the spectrum. The level of the noise multiplied by 

twice the length of the spectrum provides the total partial variance of X1. 

Let us notice that the random sampling can be achieved by simply permuting the values 

periodically sampled. This randomization procedure is the basis of the RBD technique. 

Indeed, let us assume that the two variables are first periodically sampled and then their 

values independently randomized. The spectrum of Y will be a white noise. If Y
(1)

 denotes the 

response Y re-ordered so that X1 describes the original periodic curve then the spectrum of 

Y
(1)

 will show some peaks at frequency 11 and its harmonics (see Fig. 1c). The former 

provide the marginal partial variance of the variable. The same procedure can be applied to 

compute the first-order sensitivity index of X2 and so without extra evaluations of the 

function. 

 

[Insert Fig. 1 about here] 

 

2.2 Estimation of the first-order sensitivity indices 

The steps to perform RBD-FAST in order to compute the entire first-order sensitivity indices 

are the following: 

- select N design points over a periodic curve in the factor space, 

- randomly permute the coordinates of the points to generate a set of scrambled points 

that cover the factor space, 

- run the model at each design point, 

- for each factor, re-order the model output such that the design points are in increasing 
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order with respect to Xi and compute the first-order sensitivity index from Eqs. (3-5) 

A sample of N points is generated using the parametric equation:  

( )( ) ( )( ) 1 2
i i

i i
X s G sinws , i , ,...,k= ∀ = .       (7) 

where s
(i)

 denotes the i-th random permutation vector of the N points {-π + 2π/N, …,-π + 

2πj/N ,….,π}. For each factor Xi, Eq.(7) provides a different random permutation. Note that, 

in Eq.(7) one single frequency can be employed and only the estimate of the Si’s of individual 

factor can be computed with one single sample of size N. The advantage as compared to the 

classical FAST method is that N is no longer dependent of the number of inputs and 

interference factor.  

Xu and Gertner generalized RBD-FAST to the case of model with correlated factors defined 

by a correlation matrix C [8]. For this purpose, they use the Iman & Conover’s algorithm for 

generating rank correlated samples (which is in fact a special permutation procedure, see [14]) 

instead of randomly permuting the design points (in step 2 above). 

 

2.3 Computation of closed-order sensitivity indices 

In [1], the authors also proposed a hybrid version of RBD-FAST that consists in dividing the 

factor set into two subsets of equal cardinality. Then, with two frequencies, RBD was applied 

independently within each group of factors. Let us suppose, for instance, that k = 2n, then, X 

= {X1,X2} where X1 = {X1,…,Xn} and X2 = {Xn+1,…,X2n}. Let us denote by w1 and w2 the 

two frequencies and {s
(1)

, s
(2)

,…, s
(n)

} the set of random paths. Let us denote by Y
(1)

 the 

response Y re-ordered so that s
(1)

 is sorted in increasing order. Then, Y
(1)

 provides the first-

order sensitivity index of X1 and Xn+1 by considering the Fourier coefficients at frequencies 

Mw1 and Mw2 respectively, and so on for the computation of (S2,Sn+2),… (Sn,S2n). But 

actually, the interactions between Xj and Xn+j also generate frequencies that are linear 

combinations of w1 and w2. So, to compute an estimate of the closed-sensitivity index of the 
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couplets, one also has to account for the frequencies pw1 ± qw2 where (p,q) are integers such 

that p+q ≤ M. Thus, if the assigned frequencies are {11,35} and M = 4, Xj alone will generate 

at least the frequency set {11,22,33,44} while Xn+j {35,70,105,140} and their interactions up 

to the fourth-order will generate {46,24,53,13,68,2,81,59,92,48,116,94}. In other words, n 

closed second-order sensitivity indices can be computed simultaneously with only one single 

sample. The approach can be extended to higher-order sensitivity indices. But, by so doing, 

the number of subsets is increased and one may also need to increase the sample size because 

of the Nyquist limit. Besides, the determination of the generated frequencies is not a simple 

task especially when more than two subsets are considered. 

 

2.4 Computation of total sensitivity indices 

Let us note that, in the RBD-FAST strategy described previously, re-ordering the model 

response such that the design points are in increasing order with respect to factor Xi is the 

same as running the model by randomly generating the values of X-i and periodically those of 

Xi. To compute, for instance, the total sensitivity index of Xi one must generate the Xi’s 

randomly and the X-i’s periodically with distinct low frequencies. The spectrum of Y will then 

show different peaks in the low frequencies (due to X-i alone) and a white noise in the high 

frequencies (due to Xi alone and its interactions with X-i). Normally, it is expected that the 

white noise spreads all along the spectrum and is stationary that is, its mean remains 

unchanged all along the spectrum (see Fig. 1b-c). Consequently, by estimating the mean of 

the spectrum in the high frequencies, one can have an estimate of E[V[Y|X-i]]. The steps to 

compute the total sensitivity indices are: 

- fix the interference factor M, 

- generate k frequencies : the simplest choice is w-i = {1,2,3,…,k} but if possible avoid 

frequencies that are harmonics of an already chosen frequency, 
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- for each factor, generate the N design points over a periodic curve (with its assigned 

frequency) in the factor space, N = 2(Mk + L) where L (>100) is an arbitrary integer, 

so that [Mk+1,N/2] delimits the high frequencies, 

- randomly permute the coordinates of the points of the Xi’s, 

- run the model and, for each output, compute Λp, p = 1,2,…,N/2, 

- compute 
2

1

N /^

i n

n kM

N
DT

L = +

= Λ∑ , 
2

1

2

N /^

n

n

D

=

= Λ∑ and
^ ^ ^

i i
ST DT D= . 

Note that, random balance designs can treat group of factors. For this purpose, in step 4 

above, all the factors values of the subset shall be subject to the same permutation. Besides, 

the lowest computational cost of the proposed design (N = 2Mk + 200) is significantly cheaper 

than the one of the extended FAST method, N = 4M²(k-1). But the question is, are the results 

more accurate? The numerical tests in the next section try to answer this question. 

3. Numerical tests 

The performance of RBD-FAST for Si’s estimates of individual factor has already been tested 

in several articles (see [1,2,15]). So, in the following, only the performance of RBD-FAST for 

higher order sensitivity indices estimate is tested. The g-function of Sobol’ is employed in 

order to check the accuracy of the methods. Indeed, one interesting features of this function is 

that analytical sensitivity indices are available (see e.g. [16]). 

The g-function is defined by: ( )
1

k

i
i

Y g X
=

=∏ , where g(Xi) are given by, ( )
4 2

1

i i

i

i

X a
g X

a

− +
=

+
. 

The Xi’s are independent variables defined on the unit hypercube and the ai’s are positive 

integers that condition the importance of the Xi’s; the smaller ai, the higher the effect of Xi on 

the function. 

To test the robustness of the methods, the bootstrap technique is employed. It consists in 
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computing the sensitivity indices estimates by resampling the factor space. For this purpose, 

the factor space is explored with the following search curve: 

( )( )
1 1

2
G( s ) arcsin sin ws ,= + + φ

π
        (8) 

Eq.(8) ensures a uniformly distributed sample in the range [0,1]. EFAST requires one single 

sample path s and a frequency set w. So, when replicating the sampling procedure, a set of 

phase-shifts φ  is uniformly sampled over (-π,π). It results that the starting point of the search 

curve can be anywhere within the factor space. As far as RBD-FAST is concerned, the 

random permutation of the design points ensures a different random path in the factor space. 

So, for RBD, φ  is set to zero. 

 

3.1 Computation of the second-order sensitivity indices 

For this first application, the g-function of Sobol’ is analyzed and six factors are considered, a 

= {0, 0.5,3,9,99,99}. There are 
6

15
2

 
= 

 
 couplets. To compute all the 15 second-order 

sensitivity indices with RBD-FAST, the factor set is partitioned in two groups of three factors. 

The frequency set is w = {11,35} (already discussed in subsection 2.3) and 15/3 = 5 sample 

sets are necessary. For instance, if the two groups are {X1,X2,X3},{X4,X5,X6} the factors of 

the couplets (X1,X4), (X2,X5) and (X3,X6) are assigned different frequencies (11 and 35 resp.) 

but the same random design points. 

For M = 4, the maximal frequency expected in the spectrum is 140 (4x35). So a minimum of 

280 function evaluations are necessary. The accuracy of the method is tested for N = 512, 

1024, 2048, 4096. One hundred estimates of the S
c
ij’s are computed for each sample size. 

Finally, the arithmetic mean and the range of the estimated sensitivity indices are computed. 

The results are gathered in Fig. 2. As it can be seen, for increasing sample sizes, the estimates 
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converge to the analytical values. The method is able to compute the closed-sensitivity indices 

of order 2. Yet, for such a design, the values are biased especially for small sensitivity indices. 

This result has already been noticed in the case of first-order sensitivity indices estimate [1]. 

 

[Insert Fig. 2 about here] 

 

3.2 EFAST versus RBD-FAST 

In this application, the design described in subsection 2.4 is compared to the Extended FAST 

as described in subsection 1.2. For this purpose, the same mathematical functions employed 

by Saltelli et al. [6] are used: the g-function of Sobol’ and the Legendre polynomial. 

The g-function is employed with a number of factors set to eight. Four test cases are selected: 

test case A, a very complex model as interactions among factors are preponderant (ai = 0, for 

all i), test case B, is also a case where all the factors have the same importance but the 

input/output relationship is additive (ai = 99, for all i), in case C, the coefficients ai’s are set as 

{0,1,4.5,9,99,99,99,99}, so that only the three first factors are important and at last, for test 

case D, the important factors are randomly ranked, a = {99,0,9,0,99,4.5,1,99}. 

The robustness of the two methods is investigated by repeating the computation of the STi’s 

100 times for each of the four cases and for different sample sizes. For each replicate, a total 

of 8xN function evaluations are performed to compute all the STi’s. For EFAST, the 

frequency set is obtained from the algorithm described in subsection 1.2. As far as RBD-

FAST is concerned, the frequency set {1,2,3,…,8} is chosen and the design points of one of 

the factor are randomly permuted (note that L = N/2-32).  

The results of EFAST and RBD-FAST are plotted on Figs. 3 and 4 respectively. Both 

methods have the same accuracy for STi’s estimates especially at large sample sizes. The lack 
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of accuracy at low sizes is due to a poor exploration of the factor space. Contrarily to EFAST, 

RBD-FAST may provide total sensitivity indices greater than 1. Yet, for complex models 

(case A and B) RBD-FAST seem to give better results. Besides, RBD-FAST is able to 

compute small STi’s accurately at small sample sizes (see case C and D on Fig. 4). The poor 

performance of EFAST at small sample sizes is explained by the fact that, for N = 128, 256, 

identical frequencies for some of the X-i’s are used. 

 

[Insert Fig. 3 about here] 

[Insert Fig. 4 about here] 

 

The second analytical test function is the Legendre polynomials of order d, denoted by Ld(x), 

also used by Saltelli et al. [6] to compare EFAST and the Sobol’ method [5]. Mackay in [17], 

applied the replicated latin hypercube SA method to compute the first-order sensitivity indices 

of this function. There are two factors, x uniformly distributed in [-1,+1] and d = {1,2,…,5} a 

discrete uniformly distributed variable. The analytical values of the sensitivity indices are: Si 

= {0.2,0.0}, STi = {1.0,0.8} for {x,d} respectively. The calculations are performed for M = 4 

and M = 10 successively. 

The results of EFAST are biased for M = 4 and the estimates converge accurately to the 

analytical values when M = 10 (see Fig. 5). One can infer that because of the complexity of 

the function (non linearities) an interference factor of order 4 is not sufficient to capture the 

factors’ total effect. Besides, for M = 10, EFAST requires a minimum of 400 (4M²) function 

executions. This explains its poor performance at small sample sizes (N = 128, 256). 

Conversely, RBD-FAST provides lower biased estimates but the variance is higher than 

EFAST. Besides, it gives sensitivity indices estimates greater than 1 which is not possible. 
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Nevertheless, it provides satisfactory estimate of total sensitivity indices. 

 

[Insert Fig. 5 about here] 

 

3.3 Computation of the total sensitivity indices for group of factors 

One interesting feature of the proposed RBD-FAST approach is that group of factors can be 

dealt with. Let us consider the group of factors Xi = {X1,X2,…,Xr}. The first-order sensitivity 

index of Xi is also called the closed effect of order r of {X1,X2,…,Xr}. Eq.(2) shows the 

relationship between a closed effect and the total effect of the complementary subset X-i. For 

instance, for r = 3 we have, 

S
c
123 = 1 - ST567 = S1+S2+S3+S12+S13+S23+S123 

To compute the total sensitivity index of a group of factors, one must proceed as follows: 

select a frequency set (the simplest is {1,2,…,k}), then sample the factors values accordingly 

with a periodic curve, randomly permute the values of the factors of the same group (use 

either a different random permutation per factor or the same one), finally run the model and 

compute the total sensitivity index of the group (as for an individual factor). 

For illustration, let us use again the g-function with six factors where a = {0,0.5,3,9,99,99}. 

The aim is to estimate all the total second-order sensitivity indices (STij). The chosen 

frequency set is {1,2,3,..,6} and bootstrapping is again employed to test the robustness of the 

calculation at different sample sizes. The results are plotted in Fig. 6. One can infer that RBD-

FAST provides very good estimates of the sensitivity indices. They converge to the analytical 

values. In fact, the accuracy is identical to the one obtained for individual total sensitivity 

indices. Non-significant groups of factors can be detected accurately with the method. This is 

particularly interesting for model reduction (dimensionality).  
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[Insert Fig. 6 about here] 

 

In summary, it was shown in the previous tests that RBD-FAST can either provide an 

estimate of V[E[Y|Xi]] or E[V[Y|Xi]]. But the computation of the first quantity is less 

accurate than the second one. This is explained by the fact that the computation of 

V[E[Y|Xi]], for closed or first-order sensitivity indices estimate, is parametric. Indeed, prior to 

the calculation of this quantity, one needs to provide a value of the interference factor M. The 

latter is directly involved in the calculation of V[E[Y|Xi]] since it indicates the frequencies to 

account for. As a consequence, aliasing effects inherent to RBD-FAST slightly biase the 

calculation. On the other hand, for the computation of E[V[Y|Xi]] with RBD-FAST, the 

interference factor only serves to distinguish the boundary between high and low frequencies. 

 

 

Conclusion 

Recent previous works have shown that RBD-FAST is efficient to compute the first-order 

sensitivity indices of computer model factors. In the present paper, RBD-FAST has been 

extended so that any global sensitivity indices can be evaluated. Numerical tests have 

demonstrated its efficiency. In particular, compared to the Extended FAST method, RBD-

FAST seems to be more efficient at small sample sizes. To sum up, two strategies can be 

adopted: the first one allows the computation of closed-order sensitivity indices (or first-order 

sensitivity indices in the case of individual factor) that computes n (the number of inputs in 

the group) sensitivity indices with only one single sample. Its drawback is that sensitivity 
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estimates of non-important inputs are biased at small sample sizes. The second strategy 

provides accurate estimates of the total sensitivity index of group of factors (or individual 

factor). The method is efficient and allows the identification of non-important inputs at small 

sample sizes. Its drawback is that only one sensitivity measure can be evaluated with one 

single sample. Finally, it has to be noticed that the RBD technique employed here with the 

Fourier amplitude sensitivity test can also be extended to the sampling-based strategy of 

Sobol’ [5,18] to evaluate any ANOVA-based sensitivity index as already undertaken in [2] for 

Si’s estimates. 
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Figures Captions 

 

Fig. 1: Illustration of the impact of RBD-FAST on the spectrum of a trivial function. (a) plot 

of the spectrum when x1 and x2 are varied periodically, (b) and (c) are the plots of the 

spectrum when only x2 (resp. x1) is varied periodically. In the first plot, the spectrum has 

peaks at frequencies {11,35,24,46} and is null elsewhere. The frequency set {24,36} is 

generated by the interaction between the two variables. When one of the two variables is 

randomized with RBD its interaction and fundamental frequencies are replaced by a noise in 

the spectrum (b-c). The level of the noise is related to the total contribution of the random 

variable to the response variance. 

Fig. 2: Bootstrap for the closed second-sensitivity indices estimates of the g-function (k=6) 

with RBD-FAST. The error bars represent the ranges of the computed indices for 100 

bootstraps estimates and the point (.) is the arithmetic mean. The results are biased especially 

for small indices. 

Fig. 3: Estimation of the total sensitivity indices for the four g-functions with the EFAST 

method. * is the analytical values. The error bars represent the ranges of the computed indices 

for 100 bootstraps estimates and the point (.) is the arithmetic mean. Five sample sizes have 

been considered: N = 128, 256, 512, 1024, 2048 respectively from the left to the right. The 

results for case A are less accurate due to the complexity of the model. The method starts to 

be accurate from N = 512 because of the frequency dependence of EFAST. 

Fig. 4: Same as previously except that the RBD-FAST method is employed. The results for 

case B at small sample sizes are more accurate than EFAST. RBD-FAST is robust and 

performs as well as EFAST in general. 

Fig. 5: Estimation of the total sensitivity indices of the two input factors of the Legendre 
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polynomial with the RBD-FAST and EFAST. The dashed lines represent the analytical 

values. The robustness of the method is investigated by use of bootstrapping. The sample 

sizes employed are : N=128, 256, 512,1024 and 2048. When the interference factor is 

underestimated, the methods give biased results (see M=4). The impact is particularly 

important for EFAST. 

Fig. 6: Bootstrap for the total sensitivity indices of couple of factors (k=6) estimated with 

RBD-FAST. The results are unbiased and RBD-FAST is especially accurate for small indices, 

even at small sample sizes. 
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Fig. 1: Illustration of the impact of RBD-FAST on the spectrum of a trivial function. (a) plot of the spectrum 

when x1 and x2 are varied periodically, (b) and (c) are the plots of the spectrum when only x2 (resp. x1) is varied 

periodically. In the first plot, the spectrum has peaks at frequencies {11,35,24,46} and is null elsewhere. The 

frequency set {24,36} is generated by the interaction between the two variables. When one of the two variables is 

randomized with RBD its interaction and fundamental frequencies are replaced by a noise in the spectrum (b-c). 

The level of the noise is related to the total contribution of the random variable to the response variance. 
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Fig. 2: Bootstrap for the closed second-sensitivity indices estimates of the g-function (k=6) with RBD-FAST. The 

error bars represent the ranges of the computed indices for 100 bootstraps estimates and the point (.) is the 

arithmetic mean. The results are biased especially for small indices. 
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Fig. 3: Estimation of the total sensitivity indices for the four g-functions with the EFAST method. * is the 

analytical values. The error bars represent the ranges of the computed indices for 100 bootstraps estimates and 

the point (.) is the arithmetic mean. Five sample sizes have been considered: N = 128, 256, 512, 1024, 2048 

respectively from the left to the right. The results for case A are less accurate due to the complexity of the model. 

The method starts to be accurate from N = 512 because of the frequency dependence of EFAST. 
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Fig. 4: Same as previously except that the RBD-FAST method is employed. The results for case B at small 

sample sizes are more accurate than EFAST. RBD-FAST is robust and performs as well as EFAST in general. 
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Fig. 5: Estimation of the total sensitivity indices of the two input factors of the Legendre polynomial with the 

RBD-FAST and EFAST. The dashed lines represent the analytical values. The robustness of the method is 

investigated by use of bootstrapping. The sample sizes employed are : N=128, 256, 512,1024 and 2048. When 

the interference factor is underestimated, the methods give biased results (see M=4). The impact is particularly 

important for EFAST. 
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Fig. 6: Bootstrap for the total sensitivity indices of couple of factors (k=6) estimated with RBD-FAST. The 

results are unbiased and RBD-FAST is especially accurate for small indices, even at small sample sizes. 

 


