
HAL Id: hal-01093031
https://hal.science/hal-01093031v1

Submitted on 10 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of Global Sensitivity Analysis of Model
Output to Building Thermal Simulations

Thierry A. Mara, Stefano Tarantola

To cite this version:
Thierry A. Mara, Stefano Tarantola. Application of Global Sensitivity Analysis of Model Output to
Building Thermal Simulations. Building Simulation, 2008, 1 (4), pp.290-302. �10.1007/s12273-008-
8129-5�. �hal-01093031�

https://hal.science/hal-01093031v1
https://hal.archives-ouvertes.fr


Application of Global Sensitivity Analysis of Model Output to

Building Thermal Simulations

 

Thierry Alex MARA (1) , Stefano TARANTOLA(2)

 

(1) University  of  Reunion  Island,  L.P.B.S.  (EA  4076),  Faculty  of  Human  and  Environmental

Sciences, 117 Rue General Ailleret, 97430 Tampon, La Réunion – France.

Tel : +262 262 93 82 12

Fax : +262 262 93 86 65

corresponding author, email : mara@univ-reunion.fr

(2) Institute  for  the  Protection  and  Security  of  the  Citizen, Joint  Research  Centre,  European

Commission, TP361, IPSC, Via E. Fermi 2749, 21027 Ispra (VA), Italy.

email stefano.tarantola@jrc.it 

1



ABSTRACT

 

 

 

In this  paper  is  exposed a  set  of  applications  of  global  sensitivity analysis  to  building thermal

modelling. The aim is to demonstrate the interest of such tools for model analysis and to encourage

their use. Indeed, since the last ten years important improvements have been made in the field of

sensitivity analysis and especially in ANOVA-based computational methods. Yet, their use in the

field of building performance modelling is uncommon.  After recalling the concept of ANOVA-

based sensitivity analysis and the associated sensitivity indices, we describe some computational

methods to compute the global sensitivity indices of model input factors. The emphasis is put on the

methodology that is computationally cheapest but provides the more information. For illustration,

they are applied to an actual test-cell thermal model.

 

Keywords:  global  sensitivity  analysis,  analyse  of  variance,  design  of  experiments,  generalized

additive model, model calibration, building thermal model
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 1 Introduction

With the increasing power of computers and their low cost, the 90's have favoured the development

of computer models. In building physics, numerous computer-aided programs have been proposed

to professional and engineers for improving building energy efficiency. Indeed, computer models

can help the designer in the choice of the optimal designs and appropriate materials as well as sizing

devices in order to improve the occupants comfort or minimize the electrical consumption. Their

intensive use has encouraged the community of building physics to derive standard procedures to

increase confidence in the softwares results.

The aim of this paper is to demonstrate that global sensitivity analysis (GSA) of model output can

help both the users and modellers. GSA aims at establishing how the variation in the model output

can  be  apportioned  to  different  sources  of  variation.  Although  great  improvements  have  been

brought to the computational methods for GSA since the last decade, their use remains rare in the

field of building energy simulation [1,2,3,4]. Conversely, local sensitivity analysis and the one-at-a-

time  approach are  mostly employed even though,  to  our  point  of  view,  such  analyses  are  less

reliable [5,6,7]. 

After recalling some general concepts of GSA and the basis of ANOVA-based sensitivity analysis,

we describe some computational methods to estimate the sensitivity indices. Then, we apply them to

the building thermal model of an existing test cell by investigating the test cell components that are

responsible of the variation of the indoor air temperature. On a second phase, we show that GSA is

very useful for diagnosis of modelling errors when an empirical validation work is undertaken.

 2 Generality about sensitivity analysis

Computer models are generally employed for decision-making purposes or to have a deeper insight

of the process of interest. They may be used to predict future outcomes under different assumptions

or to characterize a process once measurements are available. So without loss of generality, we can
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state that a model is composed of a set of inputs that govern the model responses and relies on a set

of equations and assumptions. Whatever the objective, it is crucial to account for uncertainties in the

model inputs (including alternative assumptions and different ways to model the underlying system)

and assessing their impact on the output of interest. This is the role of uncertainty and sensitivity

analysis of model output. It is important to note that the latter should not be necessarily the model

response per se but the question that the model has been employed to answer [8].

Let us denote by  F(X) the response of a computational model and  X = {X1,  X2…,  Xk} the set of

uncertain model inputs, i.e. all the uncertain quantities in the system under analysis that can have an

influence on the model response. This may include model parameters (scalar or functions of time

and  space),  sub-models  (when  alternative  modelling  structures  or  equations  are  plausible),

alternative assumptions or forcing functions, and so on. Consequently, each uncertain model input

can have continuous or discrete values, and can be a scalar or a function of time and/or space. 

Given the uncertainty of the inputs, one can be interested in assessing the uncertainty in the model

response (uncertainty analysis) and eventually identify the inputs that contribute the most to that

uncertainty (sensitivity analysis). Uncertainty analysis is useful to investigate the reliability of the

model. Indeed, the model is useful (i.e. reliable) only if the uncertainty interval of the response is

narrow enough. On the other hand, sensitivity analysis allows to point out the inputs that contribute

the most  to  the model  response variation.  Priority should then be given to the reduction of the

uncertainty  of  those  inputs  for  which  uncertainty  can  be  reduced  (epistemic uncertainty)  by

gathering more data for that input, if possible, or through estimation via indirect measurements.

This will finally improve the accuracy of the predictions. Such analysis is known as model input

prioritization [9,10], as it establishes priorities for future research.

Sensitivity analysis can also be used for model simplification, to identify the inputs to which the

model  response  is  insensitive.  The  identified  inputs  can  then  be  fixed  at  any value  over  their

uncertainty  range  without  any  effect  on  the  model  response.  One  can  also  be  interested  in

investigating the inputs that are mainly responsible for producing model responses within some
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specified range (see [10] for a review of settings that can be addressed with SA).

 3 Global sensitivity analysis

 3.1 ANOVA-based sensitivity analysis

Local sensitivity analysis evaluates the influence of uncertain inputs around a point in the input

space and generally relies on the estimation, at this point, of the partial derivatives of the output

with  respect  to  the  inputs.  This  is  known as  a  one-at-a-time  measure  of  sensitivity because  it

measures the effect on the response of varying one input  alone by a fixed fraction of its  value

(assumed known).  As a  consequence,  if  the model  is  non-linear,  the relative importance of the

model inputs depends on the chosen point. Several investigators tried to get around this limitation

by evaluating averages of  the  partial  derivatives  at  different  points  in  the  input  space  (see for

example the screening method proposed by [11], and later optimized by [12]).

Conversely, global sensitivity analysis of model output evaluates the relative importance of inputs

when they are varied generously, i.e. when their uncertainty is acknowledged over a wide range.

One approach to GSA is the ANalysis Of VAriance of the model response [13]. In the ANOVA-

based sensitivity analysis non-linearity in the model is not an issue, the approach can capture the

fraction of the model response variance explained by a model input on its own or by a group of

model inputs. In addition, it can also provide the total contribution to the output variance of a given

input, that is its marginal contribution and its cooperative contribution. 

Using ANOVA for sensitivity analysis may fail if the density distribution of the output is far from

normality. In such case, indeed, the second-order moment alone is not able to describe the model

output uncertainty. Sensitivity analysis methods based on the whole distribution of the model output

have also been proposed [14] and are object of ongoing research [15], but they are computationally

expensive. So in the following, we will exclusively discuss the ANOVA-based methods for models

with independent inputs, assuming that the uncertainty of a model response is fully described by its

variance.  There  are  different  computational  techniques  to  perform  sensitivity  analysis  using
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ANOVA: we will focus on those based on the work of Sobol’ later extended by Saltelli [13,16]. The

reader interested in the other approaches is invited to read Saltelli et al. 1999, Rabitz et al. 1999,

Morris 2006, Oakley 2004, Sudret 2008 and Tarantola et al. 2007 ([17,18,19,20,21,22] resp.).

GSA treats the model under consideration as a black-box. The investigation is performed by the

following steps:

1) Select the model and the question of interest ,

2) Select the uncertain model inputs (k) and set their probability density functions,

3) Generate a sample of the model input space of size N (i.e. an Nxk matrix),

4) Run the model for each sample point and save the responses,

5) Perform UA/SA on the response of interest and interpret the results.

In step one, the selection of the question of interest should allow the analyst to answer the problem

at hand properly. In step two, all inputs that are subject to uncertainty are selected. Assigning a

density distribution to unknown inputs is not an easy task and may require expert involvement. Yet,

the wider the uncertainty associated to a model input, the more likely its influence on the model

output. Generally, when no a-priori information is available, the uncertainty range is selected large

enough so  as  to  be  plausible  and  a  uniform density distribution is  assumed.  In step  three,  the

different combinations of input values are generated accordingly with their density distribution and

the sample matrix  is  stored in a file.  This task can be more challenging when model  input  are

correlated.  In step four,  the different  trials  are then employed to run the model.  This step may

require large computational time, depending on the complexity of the model under analysis. So, in

general  the affordable  number  N of  model  simulations  is  derived from the  total  computational

budget available. The computer code has to be designed so that the model is executed N times in a

loop where, each time, a new point of the input space is fed into the model. Developers of end-users

programs in building energy simulation are encouraged to include a sensitivity analysis module in

their codes (Fürbringer et al. [23]). Finally, UA and SA are performed in the fifth step (see next

sections for details on UA and SA). Note that the response to analyze in the UA and SA is not
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necessarily the model output per-se, but a function of it. For instance, the program may predict the

indoor air humidity, temperature and air velocity. These predictions may allow the evaluation of the

thermal comfort of occupants, which can be the response of interest.

A variety of software packages exist for the generation of input samples as well as to perform both

UA and SA. While in this paper we employ SimLab (see [24]), a comprehensive list of such tools is

available in [25]. For UA, the density distribution or the cumulative distribution can be plotted as

well as the estimated confidence bounds. As far as SA is concerned, quantitative sensitivity indices

of the inputs are estimated as we see in the next section.

 3.2 ANOVA-based sensitivity indices

Sobol' [13] proves that any square integrable mathematical function can be decomposed as follows: 

F X = f 0∑
i=1

k

f i X i∑
ji

k

f ij X i , X j... f 12... k X 1, X 2, ... , X k  (1)

with, E [ f i1 ... i s
X i1

, ... , X i s
]=0 ∀{i1 ... i s}⊆{1,2 , ... , k } ,

where E[.] is the expectation operator.

This decomposition is unique only if the functions are pairwise orthogonal, that is,

E [ f iq ... it
X iq

, ... , X i t
 f i r ... i s

X ir
, ... , X i s

]=0 ∀ ir ... i s≠iq ... it

which is ensured by the assumption of independence among the inputs . As a consequence,

E [F X ]= f 0 ,

E [F X ∣ X i ]= f 0  f i X i ,

and E [F X ∣ X i , X j ]= f 0  f i X i f j X j f ij X i , X j , ...

E[.|.] is the conditional expectation.

It comes that the variance of F can be decomposed in a sum of fractional variances:

D=∑
i=1

k

Di∑
ji

k

Dij...D12... k

where  D =  V[F(X)]  is  the total  variance of  F,  Di =  V[fi(Xi)]  is  the marginal variance of  Xi and
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Di1 ... i s
=V [ f i1 ... i s

X i1
, ... , X i s

]  is the cooperative fractional variance of {X i1
, ... , X i s

} and is induced

by interactions  between  the  inputs {X i1
, ... , X i s

} .  For  convenience,  the  previous  equivalence  is

rewritten as follows: 

1 =∑
i=1

k

S i∑
ji

k

S ij...S 12... k (2)

where S i1 ... i s
=Di1 ... is

/D is the so-called global sensitivity index (also called main effect) .

S i=
V [E [F X ∣ X i ]]

V [F X ]
=

Di

D
is  the  first-order  sensitivity  index  that  measures  the  amount  of  the

response variance explained by Xi alone,

S ij=
Dij

D
is the second-order sensitivity index that measures the amount of the response variance

explained by the interaction between Xi and Xj and so on. It is sometimes convenient to introduce

the closed-sensitivity index defined by:

S ij
c=

V [E [F X ∣ X i , X j ]]
V [F X ]

=
DiD jDij

D
=S iS jS ij  that measures the main effect of the group

of factors {Xi, Xj}.

A sensitivity index that has an important role in factor fixing setting (see [10]) is the total sensitivity

index defined by:

ST i=
E [V [F X ∣X−i ]]

V [F X ]
=

Di1
∑

i2i1

k

Di1 i2
 ∑

i3i2i1

k

Di1 i2 i3
...D12... k

D

where X-i = {X1, X2, ..., Xi-1, Xi+1, ..., Xk}.

This index accounts for all contributions of Xi to the variance of F(X) so that if STi is close to zero,

Xi can be deemed as non significant.  Consequently, the input  can be  fixed  at  any value in  its

uncertainty range without changing the response (model reduction).

The computational cost of evaluating all the sensitivity indices (i.e. 2k-1) is prohibitive. In practice,

only Si and STi are estimated because they summarize the essential information. Eq. (2) yields the
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following classification of input/output relationships in a model: if ∑i=1

k
S i=1 , then Si = STi for

all  i in [1,k] and the model is said additive (linear models are special cases of additive models);

otherwise, the model is said non-additive and STi ≥ Si.

 3.3 Design of experiments and ANOVA

The methodology of  the  designs  of  experiments  (DOE) is  probably at  the  origin  of  sensitivity

analysis of computer models. Even though it was originally introduced for laboratory experiments

[26], it has been extended to the analysis of computers [27-28] and was widely used for this purpose

[29,30,1,3,19]. Different designs of experiments are proposed in the literature, like the full factorial

designs, fractional factorial designs, supersaturated designs and so on ...

For example,  the two-levels full  factorial  design relies on the approximation of the model by a

polynomial expansion of the form:

F X =0∑
i=1

k

i xi∑
ji

k

ij xi x j...12... k x1 x2  ... xk (3)

where the xi's are the standardized inputs and the 2k coefficients bi's are unknown. To determine the

bi's, the input factors are assigned two discrete values (levels), usually -1 and +1. Then, the model

response is evaluated for all the 2k possible combinations of the input levels and the polynomial

coefficients  are estimated straightforwardly by solving the system of 2k equations.  The two-level

full factorial design assumes that the density distribution of the xi's is :

p  xi=
1 
2 
 xi−11 

2 
 xi1 (4)

where, d(x) is the Dirac distribution and xi=
X i – E [ X i ]

V [X i ]
is the standardized variable.

Eq.(3) is an ANOVA-decomposition because,

E [ x i1
... x i s

]=0 ∀{i1 ... i s}⊆{1,2 , ... , k } , E [F X ]=0
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and E [ xiq
... xit

 xir
... xi s

]={0 if, ir ... i s≠iq ... it

1 if, ir ... i s=iq ... it
.

Then, it is straightforward to prove that Di1 ... i s
=i1 ... i s

2 from which can deduce the link between the

bi's and the ANOVA-based sensitivity indices. Because of the assumed density distribution of the

inputs, DOE is generally employed for screening purposes, thanks to their low computational cost

and  capability  to  estimate  qualitative  measures  of  importance.  For  this  exercise,  the  iterated

fractional factorial design, introduced by Andres, is particularly efficient [29]. 

 4 Numerical methods for UASA

 4.1 Latin hypercube sampling for uncertainty analysis 

UA of model output is achieved with Monte Carlo analysis, which is based on multiple evaluations

of the model for random sets of inputs. This requires that the input values be randomly sampled

accordingly with their respective probability density function. The accuracy of the analysis strongly

depends on the sampling technique that must ensure a good coverage of the input space. The latin

hypercube sampling technique (LHS) covers better the input space than random sampling [31].

LHS is based on the following steps, for each input (see Fig. 1):

– compute their cumulative distribution,

– divide their uncertainty ranges into r contiguous intervals of equal probability,

– for each input, randomly select a value in each interval (r values per input),

– randomly create r combinations with the selected factors values,

– restart the procedure until N trials are obtained.

Such a procedure guarantees independence between the inputs as well as the respect of the marginal

probability distribution and the good coverage of the input space. Besides, the procedure of Iman &

Conover coupled with LHS allows to generate correlated samples (see [32,33]).

The  uncertainty  analysis  of  the  response  of  interest  is  achieved  by  plotting  either  its  density
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distribution or its  cumulative distribution.  The former provides, for instance,  the most  probable

response whereas with the latter makes easy to estimate confidence intervals (see Fig. 2).

[Insert Fig. 1 about here]

[Insert Fig. 2 about here]

 4.2 Computing the first-order sensitivity indices

A variety of techniques is available to evaluate the first-order sensitivity measures, among which we

find one derived from the generalized additive model (Hastie and Tibshirani [34]). This technique

provides estimates of first-order sensitivity indices using a single sample of inputs (see Mara et al.

[4]), and consists in approximating fi(Xi) in the ANOVA-decomposition by a polynomial or some

other function. For each input, the approximation is achieved by fitting the model response Y on a

polynomial of the form:

P i X i=a i ,0ai ,1 X iai ,2 X i
2 ⋯ai , M X i

M , ∀ i=1,2 , ... , k  where  M is  the  polynomial  order

(usually less than 5) and the  ai,j's are estimated by least squares. Then, the first-order sensitivity

indices are computed as follows:

S i=
V P i X i
V F X 

(4)

where V . is the variance best unbiased estimate.

The sensitivity indices for the other inputs are estimated independently using the same sample. Note

that, if a first-order polynomial is chosen (M = 1), then S i would represent the fractional variance of

the model response explained by its linear relationship with Xi, i.e. it would equal the square of the

correlation coefficient between  Xi and F(X), which is the same as the square of the standardized

regression coefficient (SRC). This result explains why the SRC is so popular for SA. However,

SRCs are not reliable when the model is non monotonic.
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 4.3 Computing higher-order sensitivity indices

To compute ANOVA-based sensitivity indices, Sobol’ [13] proposed a general sampling strategy

that later, was improved, in terms of computational cost, by Saltelli [16] and, in terms of accuracy,

by Sobol’ et al. [35]. The procedure of Sobol’ relies on the generation of two samples of size N. The

first  one  X(1) is the reference matrix ,  the second one  X(2) is generated from the reference and

depends on the sensitivity index to be estimated. Fig. 3 sums up the different possibilities. Note the

specificity of the Sobol' strategy, which enables groups of inputs to be treated as individual inputs.

The two sample matrices produce two vectors of model responses, respectively noted as F(X(1)) and

F(X(2)), from which one of the following sensitivity indices can be estimated as:

S i=F X 2 , F X 1 ,

ST i=1 −F X 2 , F X 1 , (5)

S ij
c=F X 2 , F X 1 , ... (6)

where . , . is the estimated correlation coefficient (or standardized regression coefficient). The

original numerical computation of the sensitivity indices differs from the one proposed here. But, it

has been tested (not shown) that,  for the estimate of STi,  the proposed numerical calculation is

particularly accurate and has the advantage to only requires one sample set per index (given the

reference set).

[Insert Fig. 3 about here]

 5 Applications to a test-cell thermal model

 5.1 The test-cell and its thermal model

In this section, ANOVA-based GSA is employed for a better characterization and understanding of

the thermal behaviour of an actual test cell. The latter is set on an experimental platform at the
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University  of  Reunion  Island.  It  was  built  for  model  validation  and  device  testing  purposes.

Experiments have been performed in the past to calibrate the thermal model and to validate a model

of HVAC system (see [36,37]).  Here, the model calibration is revisited by applying GSA and the

building components  that  are  mainly responsible  of  the  variation of  indoor  air  temperature are

identified. 

The studied test cell is a 22.50 m3 cubic-shaped building with a single window on the south wall

and a door on the north side. All vertical walls are identical and are composed of cement fibre and

polyurethane,  the  roof  is  constituted  of  steel,  polyurethane  and  cement  fibre  and  the  floor  of

concrete  slabs,  polystyrene  and  concrete  (see  Fig.  4  for  more  details  concerning  the  walls

constitution). The building under consideration is highly insulated. 

The thermal model of the test cell is derived from a lumped approach. A number of assumptions are

generally made in order to keep the computational cost of the simulations affordable. The validity of

such assumptions will be verified later during the model validation process, when predictions and

measurements are compared. The set of assumptions made are enumerated hereafter.

Thermal  transfer  through  walls  is  deemed  unidirectional.  Indoor  convective  heat  transfers  are

represented by the Newton law with a constant exchange coefficient that depends on whether the

wall is vertical or horizontal. Short wave indoor radiation is linearized and is also characterized by a

constant  radiative  coefficient.  These  assumptions  seem  reasonable  when  indoor  surface

temperatures are similar. The indoor air temperature is assumed uniform (this has been confirmed

by measurements, given the high insulation of walls, floor and roof). Thermal bridges are neglected

and  the  heat  transfer  through  the  floor  is  also  assumed  unidirectional  with  a  null  flux  at  the

boundaries. 

The  outdoor  convective  heat  transfer  is  modelled  by  a  linear  relationship  proportional  to  the

difference  between  the  surface  and  outdoor  air  temperatures.  The  proportional  coefficient  (the

outdoor convective heat transfer) is a function of the wall or window, wind speed and direction.

Two  types  of  short  wave  radiations  are  considered,  direct  and  diffuse  solar  irradiance  on  a
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horizontal surface. They are supposed to be absorbed and reflected by walls and also transmitted by

the windows. Long-wave heat transfer exchanges are linearized and characterized by a constant

radiative heat transfer coefficient. The walls are assumed to interact with the surroundings and the

sky.  The  temperature  of  the  first  one  is  fixed  to  outdoor  air  temperature  and  the  fictive  sky

temperature is either measured or modelled as a function of outdoor air temperature.

The set of equations that governs the energy balance of a building are of the general form :

{d T
dt

=F T t  ,U t  , ,t 

Y t =G T t  ,U t  , ,t 

where Y is the output vector, T the state vector, U the solicitation vector that perturbs the system, q

is a vector of parameters that characterize the building (see Table 1 for a description of the test cell

thermal model parameters),  e is a vector of unmeasurable stochastic inputs and  x is a vector of

measurement noise.

The outdoor solicitations are generally measured or simulated.  In the following, they have been

measured  using a  weather  station  located  on  the  test  cell  site  that  recorded every ten  seconds

outdoor  air  temperature,  relative  humidity,  global  and  diffuse  solar  radiations,  wind speed  and

direction (see Fig. 5). Then, the data, obtained from a 14-day experiment, are under-sampled at one-

hour time step. The uncertainty of the measured weather data is neglected in the rest of the paper.

Short wave radiation is not measured but modelled as : Fswr = hr(Tsout – Tsky) where, Fswr is the net

short  wave  flux  (W/m²),  hr  the  radiative  heat  transfer  coefficient  (W/m²°C),  Tsout (°C)  the

temperature of the outdoor surface and the fictive sky temperature Tsky is set equal to the outdoor

dry-air temperature minus a constant parameter K as follows Tsky = Taout – K.

[Insert Fig. 4 about here]

[Insert Fig. 5 about here]
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 5.2 Problem 1 : Identification of the most influential walls

A first survey is undertaken to investigate the components (i.e. walls, roof, ground and window) that

contribute mostly to the variation of the indoor air temperature. The thermal characteristics of the

building are summarized in table  1,  by means of the base case values for the parameters.  The

response of interest is the predicted indoor dry-air temperature, and eigth factors are analyzed: the

walls on the four different sides, the window, the door, the roof and the ground. These are analyzed

using a two-level full factorial design which assigns two values to each factor: +1 assumes that the

component  is  present  with  the  thermal  characteristics  defined  in  table  1  (base  values);  and  -1

assumes that the component is considered perfectly adiabatic, with null indoor and outdoor heat

transfer coefficients. 

The full factorial design evaluates the model for all possible combinations of factors values. To

explore the eight factors,  N = 28 model runs are required. Once the simulations are performed, at

each time step, the model  responses  Yr(t)  (r = 1,2, ...,256) are analyzed to compute the hourly

polynomial coefficients (see Eq. (3)) from which the hourly ANOVA-based sensitivity indices are

obtained. We recall the formulas to estimate the polynomial coefficients:

0t = E [F X ]= 1 
N ∑r=1

N

Y r t  ,

i t = E [ xi F X ]= 1 
N ∑r=1

N

xri Y r t  , i = 1,2,...8,

ij t = E [ xi x j F X ]= 1 
N ∑r=1

N

xri xrj Y r t  , j>i ...

where  xki is the kth value of  xi, the standardized variable, and the  b t 
i1 ... i r

's are the computed hourly

polynomial  coefficients  at  timestep  t.  Because  all  the  factors  combinations  are  considered,  the

coefficients so computed are unbiased.

The  first-order  and  total  sensitivity  indices  are  plotted  in  Fig.  6  for  the  last  two  days  of  the

simulation  (day 13  and  14,  when transient  effects  have  disappeared).  The  ground  is  the  most
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responsible  for  the  variation  of  indoor  air  temperature  in  the  nighttime.  The  ground  is  also

influential, yet to a lesser extent, in the day time together with the door (in the mornings), the roof

and the  west  side  wall  in  the afternoon.  The  window is  relatively involved in the temperature

variation but only in the daytime. This is explained by the fact that diffuse solar radiation passing

through the window warms up the indoor air. Consequently, its effect decreases quickly at nightfall.

The influence of the window is much higher the 13th day because it is a cloudy day. The factors

contributions are almost additive except at times 298 (10 a.m.) and 305 (5 p.m.). At ten a.m., the

door  and  the  window  are  the  most  important  factors  (and  they  highly  interact  as  their  total

sensitivity index is  much higher than their  marginal  effect).  At five p.m.,  the dynamics is very

complex as the window, the roof and the west wall interact with the ground and the door, while also

marginally contributing to the variation of the indoor air temperature. 

The importance of the ground is due to the thermal storage capacity of the concrete slabs. Indeed,

energy provided by outdoor solicitations are stored by the thermal capacitance of this material in the

daytime and released during the night. This fact is confirmed by the analysis of the marginal effect

of this factor (see Fig. 7). 

At two time points, 10 a.m. and 5 p.m.., there are strong interactions between the factors. This can

be explained by change in direction of the heat flux in the test cell. The concrete slabs on the ground

start to store energy (10 a.m.) or to release it (5 p.m.). As a consequence, the heat exchange between

the ground and the indoor air is almost null putting forward interactions between the walls.

The sensitivity analysis of the daily mean indoor air  temperature (Fig. 8) still  puts forward the

preponderance  of  the  floor,  yet  it  also  highlights  its  thermal  inertia  on  the  ten  first  days  of

simulation. However, this transient is low (less than 0.4°C). In the rest of the paper, only the four

last days of simulations are considered.

[Insert Fig. 6 about here]
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[Insert Fig. 7 about here]

 5.3 Problem 2 : Model calibration under uncertainty

 5.3.1 The suited model response

The base values for the thermal properties of the material used in the previous section are those

found in a former experiment in which the model predictions were fitted to the measurements. But it

could be possible that other combinations of parameters make this fit work anyway. Therefore, in

this second survey we consider the thermal properties of the materials as affected by uncertainty. To

characterize their uncertainty we used the review of existing data-sets of thermo-physical properties

of building materials [38],  produced by the Building Environmental Performance Analysis Club

(BEPAC) in the 90’s. For a given parameter, different values were proposed in this review because

of  difference  in  the  material  conceptions  and  also  because  there  were  no  standardized  testing

procedures for their determination. Parameters that are not reported in the document are assumed

uniformly  distributed  over  a  generous  uncertainty range  proposed  by  one  of  the  authors.  The

uncertainty ranges  are,  in  some cases,  overestimated  to  ensure  that  the  parameters’  values  are

plausible.

The choice of the parameters intends to account for different modes of heat transfer. For instance,

the density of a material characterizes is thermal mass whereas the thermal conductivity represents

the  thermal  conductance.  In  the  same  way,  the  indoor  convective  heat  transfer  coefficient  is

supposed  to  account  for  both  indoor  convective  heat  exchange  and  long-wave  radiative  heat

transfer. The outdoor long-wave heat exchanges modelled by a linear relationship also takes into

account heat transfer with the surroundings.

In the approach used here, the generalized likelihood uncertainty estimate (GLUE) [39,40], we aim

at  identifying  the  values  of  the  parameters  that  produce  predictions  close  to  empirical

measurements. The term close to can be defined either in terms of a likelihood measure Eq. (7) or as

a threshold Eq. (8) :
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Y = 1 
Ln

with L =∑t=1

N obs

T mt – T p t ,2 or, (7a)

Y =e
−

L
2 2 (7b)

Y ={1 if ∣T mt −T pt ,∣ ,∀ t∈[1, N obs]
0 otherwise

(8)

with n>0 is a positive integer, Nobs is the number of observations, Tm(t), Tp(t) are respectively the

measured  and predicted  temperature,  s²,  a are  given constraint  hyperparameters.  The  two first

model responses are continuous whereas the last one is binary. In the next, we use Eq. (7a) with n =

1 as response of interest, given that the choice of the output impacts on the sensitivity indices and

not on the conclusion of the analysis.

 5.3.2 Results and discussion

A LHS sample matrix of size  N = 500 has been generated and propagated through the test cell

thermal model.  For each trial,  the predicted indoor air  and surfaces temperatures as well  as the

outdoor surfaces temperatures were saved for a total of 10 model outputs. The computation lasted

52 minutes on a 1.30 GHz processor computer for 14 days hourly simulations. Then, the likelihood

measures were computed and the first-order sensitivity indices estimated using Eq. (4) (the order M

of the polynomial was set to 4).

We decided that, for a given model output, if a parameter has sensitivity index below 5% for the ten

likelihood  measures,  then  the  parameter  is  non  significant.  We  found  that  ten  parameters  are

responsible for the goodness of fit between the model predictions and the measurements. They are

listed  in  table  2  as  well  as  their  sensitivities.  Note  that  the  model  is  non  additive

0.35≤∑
i=1

35
S i≤0.78 with respect to all the 10 model outputs. This is a consequence of the model

overparametrization, well-known in inverse problems, and termed as equifinality by Beven [41]. In
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other  words,  different  combinations  of  parameters  values  can  yield  the  same  predictions.

Consequently,  modellers  can  hardly find  one  single  set  of  parameters  to  reproduce  the  system

behaviour.  Instead,  they will  find a  set  of  parameters  combinations  that  result  from a  conjoint

probability density function with a complex correlation structure (see [42] for a simple illustration).

To check whether the remaining twenty-five parameters are not involved in the good behaviour of

the model, the total sensitivity indices of the group Xg1 = {X14,X15,X16,X24,X26,X27,X28,X29,X30,X34}

are computed. To this purpose, the factors set are split into two groups. Then, an input sample of

size 500 has been generated by only modifying the factors values of Xg1 according to the scheme of

Fig. 3. Then, the total sensitivity index of the group has been estimated (with Eq. (5)). Table 2

shows that the former is closed to unity regardless of the output confirming that  Xg1 contains the

inputs that are mostly responsible of the variation of the likelihoods. These parameters are referred

to as behavioral. Among these the most important is X16 (i.e. absorptivity of outdoor surfaces). This

indicates  that  the  uncertainty  of  the  outdoor  absorptivity  should  be  reduced  or  the  radiation

processor improved or that better measurements of solar irradiance should be obtained.

[Insert Table 1 about here]

[Insert Table 2 about here]

The model is capable to simulate the underlying phenomenon if the input values can produce model

responses  in  a  small  range  that  contains  the  measurements.  For  each  output,  we  estimate  the

smallest relative uncertainty bound for which the model is able to provide responses that remain

inside the bound at each timestep. The results show that the model is able to predict indoor air

temperatures accurately (the highest discrepancy is lower than 5%, refer to table 2 and figures 9-10)

but performs worse as far as outdoor surface temperature of the roof are concerned (i.e., the smallest

relative uncertainty bounds is 29%). In particular, the model is unable to describe the heat transfers

upon the roof and it  fails  to reproduce the entire thermal  behaviour of the test  cell.  SA results
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indicate that the way convective and solar radiation heat transfers are accounted for in the model for

the roof should be revised.

Results of the previous application (see section 5.3.1) have highlighted the preponderance of the

thermal mass of the ground and the heat transfers through the window and the door on indoor air

temperature. The good performance of the model for indoor temperatures prediction means that the

former is able to reproduce the thermal mass of the slabs as well as the heat transfer by conduction

through the door and the amount of diffuse solar radiation passing through the window.

[Insert Fig. 8 about here]

[Insert Fig. 9 about here]

 5.3.3 Further improvements of the model

The previous analysis highlighted that the model predicts the outdoor surface temperature of the

roof with poor accuracy and that, for this response, the parameters involved in the modelling of

outdoor convective heat transfer coefficient are preponderant. So, the former has been modified as

follows (for all outdoor surfaces) :

hci = ai|DT|ni + biVci (instead of hci = ai + biVci)

where the term DT = (Taout-Tsout) is introduced to account for the variability of natural convection.

The exponent n is an additional uncertain input labeled X36 with uncertainty range set to [0,2]. The

uncertainty range of {X22,X25,X28,X31} is set to [0,10] as compared to the previous analysis (see table

1). The uncertainty ranges of the  ai's have been reduced in order to ensure that the values of the

outdoor convective heat transfer coefficient vary in a plausible range. Indeed, |DT| reach 10°C for

some surfaces. A new SA based on a LHS sample of size 500 has been generated and executed for

all model outputs. The same inputs as in the previous analysis are identified as important as well as

the new input X36 for the roof temperature. The main interesting result is an improvement of the
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model response for outdoor surface temperature of the roof without modifying the accuracy of the

other responses (see the last row of table 1). Indeed, the model is now able to predict the output in

the 15% uncertainty bounds of measurements.

Conclusion

We encourage modellers to perform sensitivity analysis during the phase of model building, and

developers of thermal models for edifices in particular. Indeed, they can get better insight on the

model at hand, understanding the relationships that link inputs and predictions. This can in turn help

to identify weak parts of the model when predictions are tested again available measurements. In

section 4, two methods to estimate first-order sensitivity measures are described: the one using

generalized additive models and that of Sobol'. This latter method is also available in the SimLab

package [24]. 

In a case study proposed in the paper, the calibration of the model is undertaken using thirty five

parameters  and  ten  outputs.  In  the  multi-output  calibration  adopted  here  different  inputs  are

simultaneously activated that have an effect on the various outputs. The sensitivity analysis pointed

out the few active model inputs and the interactions that produce predictions close to measurements.

Although  the  model  was  able  to  predict  the  indoor  temperatures  rather  accurately,  sensitivity

analysis was helpful in showing that the model was unable to provide satisfactory outcomes for

outdoor surfaces temperatures and that outdoor convective heat transfers had to be modelled better.

Additional improvements in the model can be done by further exploiting sensitivity analysis results. 
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List of Figures

Fig. 1 : Example of latin hypercube sampling for two independent random variables X1 and X2.

The  probability distribution  of  X1 is  N(0,1)  and  of  X2  is  U(-1,1).  On  the  left,  is  plotted  the

cumulative distribution of the normal distribution and it  is  shown how the uncertainty range is

divided into five contiguous intervals of equal probability. On the right, are plotted the sampled

points in the factors space.

Fig. 2 : Uncertainty representations of a random variable. The density distribution represented by

the  histogram on  the  left  gives  the  most  probable  value  of  the  variable.  With  the  cumulative

distribution (on the right) one can determine the uncertainty range for different quantiles.

Fig. 3 : Sobol' sampling strategies to compute the global sentivity indices of individual input factors

or groups of factors. X(r) is a sample matrix of N rows and p columns. Each row is a set of input

factors value and each column is a vector of values assigned to the factor. X(r)ki is the kth value of

Xi in the rth sample matrix.

Fig. 4 : Scheme of the thermal test cell, its constitution and instrumentation.

Fig. 5 : The hourly weather data during the fourteen days of experimentation.

Fig. 6 : Hourly influence of the test cell's surface on indoor air temperature. The most influence one

is the ground. It is particularly preponderant in the nighttime and less influent during the day. At

times 298 and 305 (10hr and 17hr) its marginal influence is null but its interactions with the other

components are not negligible. Interactions at any other timestep are less important.

Fig. 7 : Hourly linear effects of the test cell components. The thermal capacitance of the ground is

particularly highlighted.  The  concrete  slabs  absorb  energy in  the  daytime and release  it  in  the

nighttime. This explains its negative effect in the daytime and positive effect during the night. The

linear effect of the other components appears in the daytime and almost negligible in the nighttime

as confirmed by the global sensitivity indices.

Fig. 8 : Daily linear effects of the test cell components on the indoor air temperature. The thermal

mass of the ground slightly perturbs the predictions at the beginning of the simulation.

Fig.  9  :  The  best  predicted  indoor  air  temperatures  belong  to  the  3.5%  interval  bounds  of

measurements.

Fig. 10 : The best predicted outdoor surface temperatures of the roof belong to the 29% interval

bounds of measurements. The initial model is not accurate. The problem occurs in the nighttime of

the second day (around time 265).
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Fig. 1 : Example of latin hypercube sampling for two independent random variables X1 and X2. The

probability distribution of X1 is  N(0,1) and of X2 is U(-1,1). On the left, is plotted the cumulative

distribution of the normal distribution and it is shown how the uncertainty range is divided into five

contiguous intervals of equal probability. On the right, are plotted the sampled points in the factors

space.
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Fig.  2 : Uncertainty representations of a random variable. The density distribution represented by

the  histogram on  the  left  gives  the  most  probable  value  of  the  variable.  With  the  cumulative

distribution (on the right) one can determine the uncertainty range for different quantiles.
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Fig.  3 :  Sobol' sampling strategies to  compute the global sensitivity indices  of individual  input

factors or groups of factors. X(r) is a sample matrix of N rows and k columns. Each row is a set of

input factors value and each column is a vector of values assigned to the factor. X(r)
ni is the nth value

of Xi in the rth sample matrix.
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Fig. 4 : Scheme of the thermal test cell, its constitution and instrumentation.
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Fig.  5 :  The hourly weather  data  during the  fourteen  days of  experimentation.  Taout stands  for

outdoor  air  temperature,  WS  and  WD  for  wind  speed  and  wind  direction  respectively.  The

convention for the latter is WD = {0,90,180,270} are the wind blows respectively from the south,

the west, the north and the east.
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Fig. 6 : Hourly influence of the test cell's surface on indoor air temperature. The most influence one

is the ground. It is particularly preponderant in the nighttime and less influent during the day. At

times 298 and 305 (10hr and 17hr) its marginal influence is null but its interactions with the other

components are not negligible. Interactions at any other timestep are less important.
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Fig. 7 : Hourly linear effects of the test cell components. The thermal capacitance of the ground is

particularly highlighted.  The  concrete  slabs  absorb  energy in  the  daytime and release  it  in  the

nighttime. This explains its negative effect in the daytime and positive effect during the night. The

linear effect of the other components appears in the daytime and almost negligible in the nighttime

as confirmed by the global sensitivity indices.
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Fig. 8 : Daily linear effects of the test cell components on the indoor air temperature. The thermal

mass of the ground slightly perturbs the predictions at the beginning of the simulation.
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Fig.  9 :  The  best  predicted  indoor  air  temperatures  belong  to  the  3.5%  interval  bounds  of

measurements.
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Fig.  10 : The best predicted outdoor surface temperatures of the roof belong to the 29% interval

bounds of measurements. The initial model is not accurate. The problem occurs in the nighttime of

the second day (around time 265).
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the ten factors. The last line indicates the accuracy to which the model is able to predict

the output of interest.
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Flag Factors Base values Assigned pdf

X1 Thermal conductivity of polyurethane 0.024 U(0.02, 0.029) W/m²°C

X2 Density of polyurethane 31 U(24, 37) kg/m3

X3 Thermal conductivity of cement fibre 0.287 U(0.08, 0.722) W/m²°C

X4 Density of cement fibre 965 U(350, 1856) kg/m3

X5 Thermal conductivity of heavyweight concrete 0.85 U(0.6, 1.1) W/m²°C

X6 Density of heavyweight concrete 1850 U(1649, 2100) kg/m3

X7 Thermal conductivity of polystyrene 0.036 U(0.025, 0.044) W/m²°C

X8 Density of polystyrene 23.2 U(11, 41.6) kg/m3

X9 Thermal conductivity of aluminium 209 U(200, 230) W/m²°C

X10 Density of aluminium 2728 U(2700, 2800) kg/m3

X11 Thermal conductivity of wood panel 0.15 U(0.10, 0.23) W/m²°C

X12 Density of wood panel 624 U(530, 800) kg/m3

X13 Windows transmittance at normal incidence 0.85 U(0.7, 0.9)

X14 Air infiltration rate 0 U(0, 2) vol/hr

X15 Outdoor albedo 0.2 U(0, 0.4)

X16 Absorptivity of outdoor surfaces 0.35 U(0.2, 0.5)

X17 Absorptivity of indoor surfaces (except the floor) 0.6 U(0.5, 0.9)

X18 Absorptivity of the floor 0.6 U(0.5, 0.9)

X19 Indoor vertical surfaces convective heat transfer coefficient 5 U(2, 7) W/m2 °C

X20 Indoor convective heat transfer coefficient of the roof 6.5 U(2, 9) W/m2 °C

X21 Indoor convective heat transfer coefficient of the floor 0.5 U(0.5, 5) W/m2 °C

X22

X23

X24

Outdoor  convective  heat  transfer  coefficient  for  leeward

surfaces : hc1 = a1 + b1Vc1

where V (m/s) stands for winspeed.

a1 = 0

b1 = 5.7

c1 = 1

U(0,6) SI

U(3,9) SI

U(0.5,1.5) SI

X25

X26

X27

Outdoor  convective heat  transfer  coefficient  for  windward

surfaces : hc2 = a2 + b2Vc2

a2 = 11.4

b2 = 5.7

c2 = 1

U(10,24) SI

U(2,9) SI

U(0.5,2) SI

X28

X29

X30

Outdoor convective heat transfer coefficient for roof :

hc3 = a3 + b3Vc3

a3 = 16.5

b3 = 2.5

c3 = 1.2

U(10,24) SI

U(2,9) SI

U(0.5,2) SI

X31

X32

X33

Outdoor convective heat transfer coefficient for window :

hc4 = a4 + b4Vc4

a4 = 5.8

b4 = 4.1

c4 = 1

U(0,6) SI

U(3,9) SI

U(0.5,1.5) SI

X34 Outdoor long-wave radiative heat transfer coefficient : hr 4.7 U(4,9) W/m2 °C

X35 Fictive sky temperature : Tsky = Tao - K K = 6 U(-10,20) °C

Table 1: List of the factors with their base case value and their assigned pdf for SA. 
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S i
Taind TDind TGind TCind TNout TDout TEout TWout TSout TRout

X14 0.094 - 0.094 - - - - - - -
X15 0.14 0.064 0.128 0.16 - - - - - -
X16 0.175 0.162 0.17 0.27 0.175 0.18 0.155 0.143 0.12 0.175

X24 - - - - - - - 0.053 - -
X26 - - - - 0.09 0.054 0.06 - - -
X27 - 0.084 - - 0.172 0.165 0.069 - - -
X28 - - - - - - - - - 0.232

X29 - - - - - - - - - 0.06
X30 - - - - - - - - - 0.245

X34 0.093 0.077 0.088 0.098 - - - - 0.451 -

∑
i=1

35
S i 0.62 0.48 0.61 0.69 0.64 0.61 0.54 0.35 0.78 0.61

ST group
0.99 0.91 0.98 0.97 0.96 0.95 0.92 0.99 0.92 1

accuracy of the

initial model 3.5% 4.5% 3% 3.5% 8.5% 5.5% 10% 10% 9% 29%

modified model 4% 4.5% 3% 3.5% 7.5% 5.5% 10% 10% 9.5% 15.5%

Table 2: Factors that have been detected as important for model calibration. The absorptivity of

outdoor surfaces (X16) is a critical parameter. The model is highly non additive and, because the

total sensitivity of the group is closed to unity, the interactions mainly concern the ten factors. The

last lines indicates the accuracy to which the model is able to predict the output of interest. Taind is

the indoor air temperature, TDind, TCind, TGind are respectively the indoor surfaces temperature of

the door, the ceiling and the ground. TNout, TEout, TSout, TWout, are respectively the outdoor surfaces

temperature of the north, east, south and west walls whereas TDout and TRout are those of the door

and the roof.
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