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– Abstract –

Partial differential equations in one space dimension and time,
which are gradient-like in time with Hamiltonian steady part, are
considered. The interest is in the case where the steady equation
has a homoclinic orbit, representing a solitary wave. Such homo-
clinic orbits have two important geometric invariants: a Maslov
index and a Lazutkin invariant. A new relation between the two
has been discovered and is moreover linked to transversal construc-
tion of homoclinic orbits: the sign of the Lazutkin invariant deter-
mines the parity of the Maslov index. A key tool is the geometry
of Lagrangian planes. All this geometry feeds into the linearization
about the homoclinic orbit in the time dependent system, which
is studied using the Evans function. A new formula for the sym-
plectification of the Evans function is presented, and it is proved
that the the derivative of the Evans function is proportional to the
Lazutkin invariant. A corollary is that the Evans function has a
simple zero if and only if the homoclinic orbit of the steady problem
is transversely constructed. Examples from the theory of gradient
reaction-diffusion equations and pattern formation are presented.

— February 21, 2022—
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1 Introduction

The starting point is partial differential equations in one space dimension and time
where the time-independent part is a finite-dimensional Hamiltonian system. In par-
ticular, systems of the following form,

Mut + Jux = DH(u, p) , u ∈ V , (1.1)

where V is a finite-dimensional normed vector space, p ∈ R is a parameter, and
H : V×R→ R is a smooth Hamiltonian function with DH(u, p) the derivative with
respect to the first component. The matrix J is a symplectic operator associated with
the symplectic form, denoted by Ω , and M is in general an arbitrary matrix acting
on V . However, in this paper two restrictions will be operational: the matrix M is
assumed to be symmetric and the vector space V is taken to be four-dimensional. The
former assumption gives the time dependence a gradient-like structure. The latter
assumption can be relaxed: the theory presented here extends to dimension greater
than four but the formulas can get unwieldy [4].

Examples of PDEs that can be represented in the form (1.1) are the Swift-
Hohenberg equation

φt + φxxxx + pφxx + φ− φ2 = 0 , (1.2)

where p is a real parameter, which is widely used as a model in pattern formation,
and coupled gradient reaction-diffusion equations

vt = d1 vxx + Fv(v, w) and wt = d2wxx + Fw(v, w) , (1.3)

where F (v, w) is a given smooth function, and d1, d2 are positive constants, which is
a model for coupled nerve fibers [3].

Suppose that the steady equation, Jux = DH(u, p) , has a homoclinic orbit,
denoted û(x, p) . This homoclinic orbit has two important characteristics: a Maslov
index and a Lazutkin invariant. Since V has dimension four the stable and unstable
subspaces, in the linearization of the steady system about the homoclinic orbit, are
of the form span{ûx, a±} , for each x . The Lazutkin homoclinic invariant, which is
independent of x , is defined by

T(û) = Ω(a−, a+) . (1.4)

It was first used by Lazutkin [20] to study the distance between the stable and
unstable separatrices in area preserving mappings. It has been a valuable tool to study
the case where the distance between the stable and unstable manifolds is exponentially
small (e.g. [17, 16, 18]) (the formula (1.4) is given explicitly in part C of §2.3 of [17]
and an explicit example is given in [18]). In this paper three new results about
this invariant are proved. Firstly, we give a new proof that a homoclinic orbit is
transversely constructed if and only if T(û) 6= 0. Secondly we prove that it determines
the parity of the Maslov index of the homoclinic orbit,

(−1)Maslov = sign
(
T(û)

)
, (1.5)
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where Maslov = Ihom(û) + 1
2

, and Ihom(û) is the Maslov index of the homoclinic
orbit. The addition of 1

2
in the definition assures that Maslov is an integer.

Thirdly, the Evans function, constructed from the linearization about the homo-
clinic orbit in the time-dependent system (1.1), has a double zero eigenvalue if and
only if T(û) = 0. All these properties are intimately connected with the fact that the
Lazutkin invariant can be interpreted as an intersection index for codimension one
intersection of two Lagrangian planes.

The use of the Maslov index to study of the linearization about homoclinic orbits,
as models for solitary waves, was pioneered in the work of Jones [19] and Bose
& Jones [3]. A numerical framework for computing the Maslov index of solitary
waves was introduced in Chardard et al. [12, 13]. Other definitions of the Maslov
index were proposed in Chardard [9] and Chen & Hu [14]. In this paper we use a
definition for the Maslov index based on a theory of Souriau [25]. It is equivalent to
the above definitions and it can be related much more easily to the Lazutkin invariant.
In addition to the connection (1.5) we show how the Maslov index enters the theory
of the Evans function.

The linearization of (1.1) about a homoclinic orbit, with a spectral ansatz and
spectral parameter λ , can be put into standard form for the theory of the Evans
function (e.g. Alexander et al. [1]). Let span{u+

1 ,u
+
2 } be the (x, λ)−dependent

stable subspace, and span{u−3 ,u−4 } be the (x, λ)−dependent unstable subspace in
the linearization, then the Evans function is

D(λ)vol = u+
1 ∧ u+

2 ∧ u−3 ∧ u−4 , (1.6)

where vol is a volume form on V . One of the main results of the paper is a proof of
the formula

D′(0) = −T(û)

∫ +∞

−∞
〈Mûx, ûx〉 dx . (1.7)

If the integral on the right-hand side is non-vanishing, then it is immediate that
D′(0) = 0 if and only if the Lazutkin invariant vanishes. The proof that the Evans
function has a simple zero when the homoclinic orbit is transversely constructed is
a Hamiltonian version of a Theorem of Alexander & Jones [2] (see also §4 of
[3]). There, transversality is obtained by lifting the phase space by one dimension by
including a parameter. Here the dimension is reduced by one dimension due to the
energy surface, and moreover the derivative D′(0) in (1.7) is expressed in terms of a
geometric invariant of the homoclinic orbit.

A key step in the proof is to reformulate the Evans function (1.6) in such a
way that the symplectic structure becomes apparent. A new formula which will be
used throughout is the following connection between four-forms on V and symplectic
determinants. For any vectors a , b , c and d in V ,

a ∧ b ∧ c ∧ d = det

[
Ω(a, c) Ω(a,d)
Ω(b, c) Ω(b,d)

]
vol−Ω(a,b)Ω(c,d)vol . (1.8)
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We have not seen this formula before. The key to proving it is the fact that the
symplectic form and the volume form on V∗ are related by vol∗ = − 1

2
Ω ∧Ω , and a

proof is given in Appendix A.
An outline of the paper is as follows. First in §2 it is shown how systems like (1.2)

and (1.3) can be cast into the form (1.1), and establish some of the properties of the
class of equations (1.1). A simplified ODE (ordinary differential equation) version of
(1.1) is considered in §3 and it is shown how the formula (1.7) arises naturally.

The stable and unstable subspaces are paths of Lagrangian planes, and the back-
ground needed on the geometry of Lagrangian planes is given in §4 and Appendix
B. Section 4 also includes a new proof of the necessary and sufficient condition for
two Lagrangian planes to have a complete intersection, which is essential for under-
standing degeneracy of the Lazutkin invariant. In §5 transversal intersection and its
implications are presented.

The construction, symplectification and differentiation of the Evans function are
presented in §7, leading to a proof of the formula (1.7).

The longest proof in the paper is the proof of the connection between the Maslov
index and the Lazutkin invariant (1.5). The proof uses the full power of homotopy
equivalence of the Maslov index. First Souriau’s construction of the Maslov index is
reviewed in §9, and then the proof of (1.5) is given in §10.

One of the hidden features of Evans function analysis is the role of normalizations.
In this paper three different normalizations are used, mainly to make the formulas
tidy. Although essential, such normalizations do not make for interesting reading,
and a summary is given in the Appendix C.

2 Gradient PDEs with Hamiltonian steady part

In this section, the examples (1.2) and (1.3) are formulated in the form (1.1), and the
key properties of systems in the form (1.1) are identified. The assumptions on the
matrix M : V→ V∗ are

MT = M and the eigenvalues of M are non-negative . (2.1)

The symplectic operator will be taken in standard form

J =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 . (2.2)

It is derived from the symplectic form after a choice of basis for V (cf. §4).
The Swift-Hohenberg equation (1.2) can be cast into the form (1.1) by taking

u = (u1, u2, u3, u4) := (φ, φxx,−φxxx − pφx,−φx) ,
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J in standard form (2.2), and

M =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (2.3)

The Hamiltonian function is

H(u, p) = 1
2
u22 + 1

2
pu24 − 1

2
u21 − u3u4 + 1

3
u31 .

A second example is the pair of reaction diffusion equations (1.3). Systems of this
type are considered in Bose & Jones [3]. The system (1.3) can be expressed in the
form (1.1) by taking

u = (u1, u2, u3, u4) := (v, w, vx, wx) ,

J in the standard form (2.2), and

M =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .

The Hamiltonian function is

H(u, d1, d2) =
1

2d1
u23 +

1

2d2
u24 + F (u1, u2) .

2.1 Gradient-like structure

We call PDEs of the form (1.1) “gradient-like PDEs” because there is a functional
which is monotone on orbits. This designation is formal since a function space is not
introduced. Define

F := 1
2
Ω(ux,u)−H(u, p) and A = 1

2
Ω(u,ut) . (2.4)

Note that F is the density for Hamilton’s principle for steady solutions. Differenti-
ating F and A gives

Ft + Ax = 〈Mut + Jux −DH(u, p),ut〉 − 〈Mut,ut〉 .

Suppose u is a solution of (1.1). Then with integration over x and appropriate
boundary conditions on A , the integral of F , denoted F , is formally decreasing when
evaluated on solutions of (1.1),

Ft = −〈Mut,ut〉 ≤ 0 .

The functional F , being associated with Hamilton’s principle, is indefinite in general.
However, this gradient-like structure assures that the eigenvalue λ in the Evans func-
tion can be taken to be real, and it affects the formula (1.7). If M was skew-symmetric
for example, then D′(0) = 0 in (1.7).
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2.2 Cauchy-Riemann operators and Floer theory

Another interesting example is when M is the identity

ut + Jux = DH(u) , u ∈ V . (2.5)

It is primarily of theoretical interest, as it is the form of the equation used in Morse-
Floer theory [23, 14], and the left-hand side, ut+Jux , is a Cauchy-Riemann operator.
Since the Cauchy-Riemann operator is elliptic, this PDE is not an evolution equation.
This case is not considered in the paper because the Evans function construction in
the linearization would require modification: in this case the essential spectrum, in
the linearization about a homoclinic orbit, is the entire real line.

3 Intermezzo: gradient ODE systems

Before proceeding to analyze the class of systems (1.1) is is useful to consider the case
of gradient ODEs, as it provides the inspiration for the formula (1.7). Consider the
system of gradient ODEs

Mut = DH(u, p) , u ∈ V , (3.1)

where H(u, p) is a smooth function, and p is a parameter. The matrix M is assumed
to have the properties (2.1). In this section the vector space V can have arbitrary
finite dimension.

Suppose there exists a family of equilibrium solutions, û(p) , of (3.1); that is,
satisfying DH(û(p), p) = 0. Let L(p) := D2H(û(p), p) , and suppose there is a value
of p , denoted p0 , at which L has a simple zero eigenvalue with eigenvector ξ ,

L(p0)ξ = 0 with ‖ξ‖ = 1 . (3.2)

Look at the linearization of (3.1) about û(p) ,

Mvt = L(p)v .

With the spectral ansatz, v(t) 7→ eλtv , the exponent λ is an eigenvalue of

[L(p)− λM]v = 0 .

The Evans function in this case is just the characteristic determinant

D(λ) = det[L(p)− λM] .

At p = p0 and λ = 0, D(0) = det[L(p0)] = 0. Differentiating

D′(λ) = −Trace
(
[L(p)− λM]#M

)
,
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where the superscript # denotes adjugate. Hence at λ = 0 and p = p0 ,

D′(0) = −Trace
(
L(p0)

#M
)
.

But
L(p0)

# = Π ξ ξT , (3.3)

where Π is the product of the nonzero eigenvalues of L(p) . The formula (3.3) is
proved as part of Theorem 3 on page 41 of Magnus & Neudecker [21]. Hence

D′(0) = −Trace
(
L(p0)

#M
)

= −Π Trace(ξξTM
)

= −Π 〈Mξ, ξ〉 .

The close connection with the formula (1.7) is apparent. The formula (1.7) is a
generalization of this case with the product of the nonzero eigenvalues replaced by
the Lazutkin homoclinic invariant.

Since Π is the product of the nonzero eigenvalues of L(p0) , the sign of Π gives the
parity of the Morse index, where here the Morse index is just the number of negative
eigenvalues of L(p0) . Hence the ODE version of (1.5) is

(−1)Morse = sign
(
Π
)
.

4 Geometry of Lagrangian planes

Here and throughout V is a 4−dimensional normed vector space. Let

V = span
{
e1, e2, e3, e4

}
and V∗ = span

{
e∗1, e

∗
2, e
∗
3, e
∗
4

}
, (4.1)

be bases for V and the dual space V∗ , where ej are not necessarily the standard unit
vectors. The bases are normalized by 〈e∗i , ej〉 = δi,j , with pairing 〈·, ·〉 : V∗×V→ R .

Associated with V and V∗ are the wedge spaces
∧k(V) and

∧k(V∗) for k =
1, 2, 3, 4. The convention here on the exterior algebra spaces follows Chapter 4 of
Crampin & Pirani [15]. The induced pairing on the wedge spaces is denoted by

[[·, ·]]k :
∧k(V∗)×

∧k(V)→ R , k = 1, 2, 3, 4 ,

with [[·, ·]]1 := 〈·, ·〉 . The pair (V,Ω) with

Ω = e∗1 ∧ e∗3 + e∗2 ∧ e∗4 (4.2)

is a symplectic vector space. The relation between the symplectic form Ω and the
symplectic operator (2.2), relative to the above basis, is

〈a Ω,b〉 = [[Ω, a ∧ b]]2 = 〈Ja,b〉 := Ω(a,b) , ∀ a,b ∈ V .

The first equality is the definition of the interior product, and the second equality
follows by evaluating the expression on the bases for V and V∗ , giving (2.2).
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On V and V∗ take the following volume forms

vol := e1 ∧ e2 ∧ e3 ∧ e4 and vol∗ := e∗1 ∧ e∗2 ∧ e∗3 ∧ e∗4 .

In terms of the symplectic form,

vol∗ = − 1
2
Ω ∧Ω . (4.3)

Associated with (V,Ω) is a dual symplectic form, denoted by Ωdual , acting on
elements in V∗ . The dual symplectic form is defined by

Ω(a,b)vol = Ωdual ∧ a ∧ b , ∀ a,b ∈ V . (4.4)

In this case, a calculation, substituting the bases into (4.4), shows that

Ωdual = e3 ∧ e1 + e4 ∧ e2 .

A two-dimensional subspace, span{a,b} , of V is a Lagrangian subspace, equiva-
lently a Lagrangian plane, if

Ω(a,b) = 0 . (4.5)

The manifold of Lagrangian planes in V is denoted by Λ(2). Other representations
of Lagrangian planes needed in the paper are summarized in Appendix B

4.1 Intersection indices

Consider pairs of oriented Lagrangian planes and define an intersection index. In
what follows, we identify oriented subspaces of V , say span{a,b} , with the corre-
sponding elements in

∧2(V) , that is R∗+(a ∧ b) , where R∗+ denotes multiplication
by an arbitrary positive real number. Let U and V be two Lagrangian planes and
define

d := dim
(
U ∩V

)
.

The intersection index is denoted by Od(U,V) .

Definition Suppose d = 0 and let U = span{a∧b} and V = span{c∧d} then the
intersection index of this pair is defined as

O0(U,V) = sign det

[
Ω(a, c) Ω(a,d)
Ω(b, c) Ω(b,d)

]
= sign(a ∧ b ∧ c ∧ d). (4.6)

Definition Suppose d = 1. Then there exists vectors a,b, c ∈ V such that

U := span{a ∧ b} and V := span{a ∧ c} .

The intersection index in this case is defined as

O1(U,V) = sign(Ω(b,∧c)) = sign(Ωdual ∧ b ∧ c) . (4.7)
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It is this latter intersection index which is closely associated with the Lazutkin
invariant. Evaluating (4.7) on the tangent spaces of the stable and unstable manifolds
gives

O1

(
ûx(x) ∧ a−(x), ûx(x) ∧ a+(x)

)
= sign

(
Ωdual ∧ a− ∧ a+

)
= sign

(
Ω(a−, a+)

)
(using (4.4))

= sign
(
T(û)

)
.

The above intersection indices are for the cases when the dimension d = 0, 1.
We also need necessary and sufficient conditions for when the intersection is two-
dimensional; that is, when the two Lagrangian planes have a complete intersection.
It is used in the study of transversely-constructed homoclinic orbits.

Lemma 4.1 Suppose a,b, c ∈ V are such that a ∧ b 6= 0 and a ∧ c 6= 0 . Suppose
moreover that span{a,b} and span{a, c} are Lagrangian subspaces. Then

span{a,b} = span{a, c} ⇔ Ω(b, c) = 0 .

Proof Let r and s be any vectors in V such that

span{a,b, r, s} = V . (4.8)

Then c can be represented as

c = α1a + α2b + α3r + α4s ,

for some constants α1, . . . , α4 . Now pair this expression with Ja and Jb and use the
fact that span{a,b} and span{a, c} are Lagrangian,

0 = 〈Ja, c〉 = α1〈Ja, a〉+ α2〈Ja,b〉+ α3〈Ja, r〉+ α4〈Ja, s〉
= α3〈Ja, r〉+ α4〈Ja, s〉 ,

and
〈Jb, c〉 = α1〈Jb, a〉+ α2〈Jb,b〉+ α3〈Jb, r〉+ α4〈Jb, s〉

= α3〈Jb, r〉+ α4〈Jb, s〉 ,
or (

〈Ja, r〉 〈Ja, s〉
〈Jb, r〉 〈Jb, s〉

)(
α3

α4

)
=

(
0

〈Jb, c〉

)
.

But the coefficient matrix is invertible. This follows from (4.8) and the formula (1.8),

0 6= a ∧ b ∧ r ∧ s = det

[
Ω(a, r) Ω(a, s)
Ω(b, r) Ω(b, s)

]
vol .

Hence α3 = α4 = 0 if and only if 〈Jb, c〉 = 0 and the Lemma is proved. �
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5 Transversely constructed homoclinic orbits

Suppose there exists a homoclinic orbit, û(x, p) , satisfying the steady part of (1.1)

Jux = DH(u, p) , u ∈ V , (5.1)

with

lim
x→±∞

û(x, p) = 0 and 0 <

∫ +∞

−∞

∣∣û(x, p)
∣∣2 dx < +∞ . (5.2)

The linearization about the trivial solution is assumed to be strictly hyperbolic.
The tangent vector to the homoclinic orbit is ûx , and the orbit lies on an energy

surface H(û, p) = H(0, p) . The stable and unstable manifolds of the origin also lie
on the energy surface. Hence, there are two other tangent vectors in V , denoted by
a−(x) and a+(x) satisfying

d

dx
a± = A(x, 0)a± , with A(x, 0) := J−1D2H(û, p) , (5.3)

and
Es(x, 0) = span{ûx, a+} and Eu(x, 0) = span{ûx, a−} .

The notation with 0 in the second argument anticipates the extension to include
λ dependence, and the explicit dependence on p is suppressed for brevity. The
subspaces Es,u are x−dependent Lagrangian subspaces. This property is proved in
§4 of [12].

Definition A homoclinic orbit is said to be “transversely constructed” if a+ and a−

are linearly independent for all x

a−(x) ∧ a+(x) 6= 0 for all x ∈ R . (5.4)

Proposition 5.1 If a−(x0) ∧ a+(x0) 6= 0 for some x0 ∈ R then the condition (5.4)
is satisfied.

Proof The proof follows from the fact that a−(x) ∧ a+(x) satisfies an ODE

d

dx
a− ∧ a+ = A(2)(x, 0)a− ∧ a+ ,

and the uniqueness of solutions of ODEs, where A(2)(x, 0) is the induced representa-
tion of A(x, 0) on

∧2(V) . �

Definition The Lazutkin invariant of a homoclinic orbit is T(û) = Ω(a−, a+) .

Theorem 5.2 A homoclinic orbit is “transversely constructed” if and only if the
Lazutkin homoclinic invariant is nonzero.
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Proof The Lazutkin invariant is independent of x . This follows since a± are solu-
tions of (5.3) and the symplectic form is independent of x when evaluated on any
two solutions of (5.3).

Now suppose the Lazutkin invariant is zero Ω(a−, a+) = 0. Then by Lemma 4.1,
the stable and unstable subspaces have a two-dimensional intersection (for each x)
and so the intersection is not transverse.

Conversely, suppose a−(x0) ∧ a+(x0) = 0 for some x0 . Then it is zero for all x
by Proposition 5.1. Hence Ωdual ∧ a− ∧ a+ = 0 and so

0 = Ωdual ∧ a− ∧ a+ = [[vol∗,Ωdual ∧ a− ∧ a+]]4vol

= [[Ω, a− ∧ a+]]2vol = Ω(a−, a+)vol ,

proving that the Lazutkin invariant is zero. �

Hence the Lazutkin invariant measures whether the codimension one intersection
of the (Lagrangian) stable and unstable subspaces is non-degenerate. It is invariant
under symplectic change of coordinates. However, in order to fix the sign of the
Lazutkin invariant, and to define the sign of a homoclinic orbit, a normalization
needs to be introduced.

Definition Suppose that the stable and unstable subspaces are normalized as follows

lim
x→+∞

e2(µ1+µ2)x ûx(−x) ∧ a+(−x) ∧ ûx(+x) ∧ a−(+x) = vol . (5.5)

Then the sign of the homoclinic orbit is

sign(T) = sign
(
Ωdual ∧ a+ ∧ a−

)
= sign

(
Ω(a+, a−)

)
. (5.6)

The exponents µ1 and µ2 are the decay rates at infinity for the stable subspace. They
are defined in §7. It is not obvious that the solutions can be normalized so that the
coefficient of the volume form on the right-hand side of (5.5) is unity. A proof that
this normalization is possible is given in Appendix C.2.

5.1 Transversality on an energy surface

The transversality is not in V but on the level surface of the Hamiltonian function.
A representation for the Lazutkin invariant on the energy surface can also be derived.
Define a volume form on the energy surface, volEnergy , by

DH ∧ volEnergy = vol∗ = − 1
2
Ω ∧Ω .

Contract both sides with ûx

−ûx ( 1
2
Ω ∧Ω) = ûx (DH ∧ volEnergy) ,
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or, after using (A-3), ûx DH = 0 and ûx Ω = DH ,

DH ∧Ω = DH ∧ (ûx volEnergy) ,

or
ûx volEnergy = Ω .

Contracting with a+ and a− then gives an energy surface interpretation of the
Lazutkin invariant

T(û) = Ω(a−, a+) = volEnergy(ûx, a
−, a+) .

6 Example: an explicit calculation of T(û)

Take d1 = d2 and

F (v, w) = −2(v2 + w2) + 2(v3 + w3)− 1
2
p(v − w)2 ,

in (1.3). The resulting pair of gradient reaction-diffusion equations is

vt = vxx − 4v + 6v2 − p(v − w)

wt = wxx − 4w + 6w2 + p(v − w) .
(6.1)

This system was studied in §11 of [12] (with the parameter p here replaced by c there).
The system (6.1) has an exact steady solution v = w := v̂(x) = sech2(x) . It is an
example where the Maslov index and other geometric properties of the linearization
about the steady solution can be explicitly computed. Here the Lazutkin invariant is
calculated.

The tangent vector to the homoclinic orbit is

ûx = −2sech2(x)


tanh(x)
tanh(x)

1− 3tanh2(x)
1− 3tanh2(x)

 ,

and the complementary vectors a±(x) are

a±(x) =


−σ±(x)
+σ±(x)
−σ±x (x)
+σ±x (x)

 ,

where
σ±(x) = e∓

√
κx(∓a0 + a1tanh(x)∓ a2tanh2(x) + tanh3(x)) ,
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with κ = 4 + 2p and

a0 =

√
κ

15
(4− κ) , a1 =

1

5
(2κ− 3) , a2 = −

√
κ .

Computing
T(û)vol = Ωdual ∧ a− ∧ a+ ,

gives

T(û) =
8p

225

√
4 + 2p(3 + 2p)(5− 2p) .

Transversality of the construction of the homoclinic orbit is lost precisely when

p = −3

2
, p = 0 , p =

5

2
. (6.2)

The above form for a± is chosen so that the normalization (5.5) is operational.
Therefore the formula (1.5) should hold. Indeed this can be checked directly. Ac-
cording to §11 of Part 1, the values of p in (6.2) are precisely the values where the
Maslov index of the homoclinic orbit changes. The Maslov index is 2 for 0 < p < 5

2

and 1 for p > 5
2

. Hence confirming the relation

(−1)Maslov = sign
(
T(û)

)
.

This example also emphasizes that the Lazutkin invariant is not an invariant of
the homoclinic orbit directly. It is a property of the intersection between the stable
and unstable manifolds. Here the basic homoclinic orbit, and its tangent vector ûx ,
are independent of the parameter p , but the complementary tangent vectors a± are
dependent on p and they determine when there is a loss of transversality.

7 The Evans function

Suppose that the Hamiltonian system (5.1) has a homoclinic orbit as in §5. Consider
the linearization of the PDE (1.1) about the homoclinic orbit û

Mut + Jux = B(x, p)u , u ∈ V .

where B is the Hessian of H evaluated on the homoclinic orbit,

B(x, p) = D2H(û, p) .

Letting u = eλtũ results in the spectral problem, which will be formulated in the
following way in preparation for the use of the Evans function theory

ux = A(x, λ)u , u ∈ V , (7.1)

13



with
A(x, λ) = J−1[B(x, p)− λM] . (7.2)

The tilde over u has been dropped to simplify notation. The role of u(x, λ) versus
u(x, t) will be clear from the context.

The “system at infinity”, A∞(λ) , that is used in the construction of the Evans
function is defined by

JA∞(λ) =
[
B∞ − λM

]
, (7.3)

with B∞ = limx→±∞B(x, p) , with the dependence on p suppressed.
The formal definition of an eigenvalue is: λ ∈ C is an eigenvalue of of (7.1) if

there exists u(x, λ) such that∫ +∞

−∞
‖u(x, λ)‖2 dx < +∞ ,

where ‖ · ‖ is a norm on V .
In fact we will restrict attention to real λ , which can almost be proved in general.

Suppose λ and u are complex,

u = ur + iui and λ = λr + iλi .

Substitute into (7.1), take real and imaginary parts, pair with ui and ur in turn,
giving

d

dx

(
Ω(ur,ui)

)
= λi

(
〈Mur,ur〉+ 〈Mui,ui〉

)
.

Integrating over x and using ‖u‖ → 0 as x→ ±∞ gives

λi

∫ +∞

−∞

(
〈Mur,ur〉+ 〈Mui,ui〉

)
dx = 0 .

If M is non-degenerate, λi = 0 and the argument is proved, but since M may have
zero eigenvalues there may be exceptions. Here we will assume that the exceptions
don’t occur and take λ to be real throughout.

The essential spectrum is defined to be

σess =
{
λ ∈ R

∣∣ det[B∞ − ikJ− λM] = 0 with k ∈ R
}
.

We will assume that
sup
λ
σess < 0 . (7.4)

Now the Evans function can be constructed in the usual way. Denote the eigenval-
ues of A∞(λ) with negative real part by µ1(λ) and µ2(λ) and the eigenvalues with
positive real part by µ3(λ) and µ4(λ) , with eigenvectors[

B∞ − λM
]
ξi = µiJξi , i = 1, . . . , 4 . (7.5)

14



Figure 1: The 3 cases of hyperbolic eigenvalues on a 4−dimensional space

Due to the symplectic symmetry, µ3 = −µ1 and µ4 = −µ2 . With the assumption of
strict hyperbolicity, there are three possible configurations for the eigenvalues: (a) four
hyperbolic real distinct eigenvalues, (b) two real eigenvalues each with multiplicity
two, and (c) a hyperbolic complex quartet as shown qualitatively in Figure 1. To
simplify the exposition, assume that we are in case (a) and the µj(λ) and their
associated eigenvectors are real. The complex case can be treated by splitting into
real and imaginary parts. For the double eigenvalues generalized eigenvectors are
used. In the latter case there is a loss of analyticity in the λ−plane near double
eigenvalues, but this issue is well understood and so is not considered here [7].

Now define solutions of (7.1) that decay to zero as x→ +∞ with the asymptotic
properties

lim
x→+∞

e−µj(λ)xu+
j (x, λ) = ξj(λ) , j = 1, 2, (7.6)

and solutions which decay as x→ −∞ ,

lim
x→−∞

e−µj(λ)xu−j (x, λ) = ξj(λ) , j = 3, 4 . (7.7)

Then the natural definition of the Evans function is

D(λ)vol = u+
1 (x, λ) ∧ u+

2 (x, λ) ∧ u−3 (x, λ) ∧ u−4 (x, λ) . (7.8)

It has the usual properties of an Evans function (cf. Alexander, Gardner &
Jones [1]). In particular, D(0) = 0 since ûx is a solution of (7.1) with λ = 0.

7.1 Symplectification of the Evans function

By working directly with the Evans function as a four-form (7.8) it is not immediately
clear how to take advantage of the symplectic structure. The symplectic structure
was brought out in the construction of the symplectic Evans function in Bridges &
Derks [6]. However, there the solutions of the adjoint of (7.1) were required. Here
we avoid use of the adjoint solutions by using the new formula (1.8). Indeed, since
the stable and unstable subspaces are Lagrangian, the correction term vanishes and
we find the following new formula for the Evans function

D(λ) = det

[
Ω(u−3 ,u

+
1 ) Ω(u−3 ,u

+
2 )

Ω(u−4 ,u
+
1 ) Ω(u−4 ,u

+
2 )

]
. (7.9)
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In this form, a symplectic proof that D(0) = 0 can be given. In the limit λ = 0,

u+
1

∣∣
λ=0

= ûx and u+
2

∣∣
λ=0

= a+

u−3
∣∣
λ=0

= ûx and u−4
∣∣
λ=0

= a− .
(7.10)

In general, in the λ→ 0 limit,

span
{
u+
1 (x, 0),u+

2 (x, 0)
}

= span
{
ûx, a

+
}
.

However, the Evans function can be suitably scaled so that the limits (7.10) are
achieved (see Appendix C.3 for this argument).

With the limits (7.10), the Evans function at λ = 0 is

D(0) = lim
λ→0

det

[
Ω(u−3 ,u

+
1 ) Ω(u−3 ,u

+
2 )

Ω(u−4 ,u
+
1 ) Ω(u−4 ,u

+
2 )

]
= det

[
Ω(ûx, ûx) Ω(ûx, a

+)

Ω(a−, ûx) Ω(a−, a+)

]
.

Now Ω(ûx, ûx) = 0 due to skew-symmetry, and Ω(ûx, a
±) = 0 due to the fact that

the stable and unstable subspaces are Lagrangian. Hence

D(0) = det

[
0 0
0 Ω(a−, a+)

]
= 0 .

7.2 The derivative at λ = 0

Define the matrix in the definition of the symplectic Evans function as

D(λ) =

[
Ω(u−3 ,u

+
1 ) Ω(u−3 ,u

+
2 )

Ω(u−4 ,u
+
1 ) Ω(u−4 ,u

+
2 )

]
.

Then D(λ) = det[D(λ)] and

D(0) =

[
0 0
0 Ω(a−, a+)

]
.

Now use the standard formula for the derivative of a determinant

D′(λ) = Trace
(
D(λ)#D ′(λ)

)
,

where the superscript # denotes adjugate. Evaluation at λ = 0 gives

D′(0) = Trace
(
D(0)#D ′(0)

)
.

But

D(0)# = Ω(a−, a+)

[
1 0
0 0

]
,

and so

D′(0) = Trace

(
D(0)#D ′(0)

)
= Ω(a−, a+)

d

dλ
Ω(u−3 ,u

+
1 )

∣∣∣∣
λ=0

.

It remains to prove the following
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Proposition 7.1

d

dλ
Ω(u−3 ,u

+
1 )

∣∣∣∣
λ=0

= −
∫ +∞

−∞
〈Mûx, ûx〉 dx . (7.11)

This formula is very similar to λ−derivatives in previous work and a brief proof
is given in Appendix D. This completes the proof of the formula (1.7). Moreover, we
have proved the following result:

Theorem 7.2 Suppose ∫ +∞

−∞
〈Mûx, ûx〉 dx > 0 .

Then λ = 0 is a simple eigenvalue of the Evans function if and only if the homoclinic
orbit is transversely constructed.

This result is to be contrasted with the non-Hamiltonian case. For a class of
parabolic reaction-diffusion equations, Alexander & Jones [2], prove that the
Evans function has a simple zero if and only if the homoclinic orbit is transversely
constructed (see Theorem 2.2 on page 59 of [2], and Theorem 4.1 on page 212 of [3]).
In the Hamiltonian case the derivative D′(0) is related to the symplectic invariant
T(û) .

8 Example: transversality for Swift-Hohenberg

Suppose that the Swift-Hohenberg equation (1.2) has a steady solitary wave, rep-

resented by a homoclinic orbit solution φ̂(x, p) . Assume that it satisfies the basic
properties

lim
x→±∞

φ̂(x, p) = 0 and 0 <

∫ +∞

−∞
|φ̂x|2 dx < +∞ . (8.1)

It could be a simple homoclinic orbit or a multi-pulse homoclinic orbit. Such solutions
have been studied in [8, 11, 24]. The linearization about such solutions in the time-
dependent equation, with in addition a spectral ansatz, leads to the spectral problem

L φ = λφ , (8.2)

where
L φ := −φxxxx − pφxx − φ+ 2φ̂φ . (8.3)

The theory of this paper leads to a new proof of Lemma 2.1(iii) in [24].

Lemma 8.1 (Sandstede [24]). Any homoclinic orbit of the steady SH equation with
−2 < p < 2 is transversely constructed if and only if zero is a simple eigenvalue of
L in (8.2).
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Proof The spectral problem (8.2) can be recast into the form (7.1). The hypothesis
on the essential spectrum is satisfied for −2 < p < +2, and with the properties (8.1)
the formula (1.7) applies. Hence

D′(0) = −T(û)

∫ +∞

−∞
〈Mûx, ûx〉 dx = −T(û)

∫ +∞

−∞
φ̂2
x dx ,

using the form of M in (2.3). Hypothesis (8.1) assures that the integral exists and is
non-vanishing. Hence D′(0) = 0 if and only if T(û) 6= 0. The proof is completed by
applying Theorem 5.2. � .

The spectral problem here (8.2) is simple enough so that the Maslov index equals
the Morse index of L . Hence the formula (1.5) can be cast into a formula for the
parity of the Morse index. The Morse index for a wide range of multi-pulse homoclinic
orbits of the steady SH equation is computed in [11].

9 The Maslov index of homoclinic orbits

To prove the formula (1.5) we need a definition for the Maslov index of homoclinic
orbits. Here we will use a formulation due to Souriau [25], following Chapter 1 of [10]
where Souriau’s formulation is used to show how the formulations of the Maslov index
of Bose & Jones [3], Chardard [9], Chen & Hu [14] are related. In addition a
new slightly modified definition is given here, which makes it easier to compare with
the Lazutkin invariant.

Souriau’s definition is formulated on the universal cover of the Lagrangian Grass-
mannian manifold. For simplicity we define it on the universal covering of the unitary
group

π : Ũ(2)→ Λ(2) , (U, κ) 7→ the space spanned by U ,

with

Ũ(2) =

{
(U, κ)

∣∣∣ U =

[
U1

U2

]
, U1 + iU1 ∈ U(2) , e−i

κ
2 = det(U1 + iU2)

}
. (9.1)

Let U and V be two Lagrangian planes in the unitary representation,

U =

[
U1

U2

]
with U1 + iU2 ∈ U(2) ,

with a similar definition for V , and define the mapping

ψ(U,V) = (U1 − iU2)
−1(V1 − iV2)(V1 + iV2)

−1(U1 + iU2) . (9.2)

ψ(U,V) is a symmetric unitary matrix and its eigenvalues lie on the unit circle (cf.
§1.1.2 of [10]). Hence the eigenvalues can be expressed in the form

σ
(
ψ(U,V)

)
=
{

eiα1(U,V), eiα2(U,V)
}
, 0 ≤ α1, α2 < 2π .
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To lighten the notation, we will drop the arguments on α1 and α2 and their depen-
dence will be clear from the context.

Let d be the intersection of the two Lagrangian planes spanned by the columns
of U and V .

Proposition 9.1 The dimension of the eigenspace of ψ associated to the eigenvalue
+1 is equal to d .

Proof First prove that the dimension of the eigenspace is greater than d . The space

{γ ∈ R1×2 | ∃ β such that γU = βV} ,

has dimension d . Let γ = (γ1, γ2) and β = (β1, β2) be such that γU = βV . In the
unitary representation

γ[U1 − iU2] = β[V1 − iV2] ,

or γ(U1 − iU2)
−1(V1 − iV2) = β . Hence

γψ = β(U1 + iU2)
−1(V1 + iV2) = γ ,

proving that ψ has eigenvalue 1 with left eigenvector γ . Therefore the eigenspace of
ψ associated to 1 has a dimension greater to or equal to d .

Reciprocally, if γ is a left eigenvector of ψ associated to 1, then γ̃ is also an
eigenvector of ψ associated to 1. Hence, X = {γ ∈ R1×2 | γψ = γ} has the same
dimension as the eigenspace of ψ associated to the the eigenvalue +1.

Let γ ∈ X and let β = γ(U1 − iU2)
−1(V1 − iV2) , then γU = βV is in the set

π((U, κ))∩π((V, τ)) . Therefore the eigenspace of ψ associated to the eigenvalue +1
has a dimension equal to d . �

According to Souriau’s formula (cf. pages 126–128 of [25]), the Maslov index of
this pair of elements is defined in the following way.

Definition Let (U, κ) and (V, τ) be in Ũ(2). The Maslov index of this pair of
elements is defined by:

m
(
(U, κ), (V, τ)

)
=
τ − κ

2π
− α1 + α2

2π
+

1

2
d

where
d := dim

(
π((U, κ)) ∩ π((V, τ))

)
.

Now, the definition for the Maslov index of a homoclinic orbit, based on Souriau’s
definition above, is as follows. Let û be an homoclinic orbit. Let (U+, κ+) and

(U−, κ−) in Ũ(2) be such that:
span U+(x) = span{ûx(x), a+(x)}
span U−(x) = span{ûx(x), a−(x)}
κ+, κ− are continuous

.
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Then, the Maslov index of the homoclinic is defined by:

Ihom(û) = m
(
(U−(x), κ−(x)), (U+(x), κ+(x))

)
− lim

y→+∞
m
(
(U−(−y), κ−(−y)), (U+(y), κ+(y))

)
,

(9.3)

and the definition is independent of x .

10 Transversality and parity of the Maslov index

The purpose of this section is to prove the following connection between the parity
of the Maslov index and transversality.

Theorem 10.1 Suppose û is a transversely constructed homoclinic orbit with Maslov
index Ihom(û) . Then

(−1)Maslov = sign
(
T(û)

)
, Maslov := Ihom(û) +

1

2
.

The key point to prove the relationship between the Maslov index and the inter-
section index for the tangent spaces of the stable and unstable subspaces lies in the
following lemma:

Lemma 10.2 Let (U, κ), (V, τ) ∈ Ũ(2) such that d = dim
(
π((U, κ)) ∩ π((V, τ))

)
with d = 0, 1 , and let U∧ and V∧ be the corresponding 2-forms. Then

Od(U
∧,V∧) = (−1)m+ 1

2
d , m := m((U, κ), (V, τ)) .

Proof First consider the case d = 1.
Now let U and V be unitary matrix representations of the Lagrangian planes,

with

U =

(
U1

U2

)
and V =

(
V1

V2

)
.

By considering I, 0, (U1+iU2)
−1(V1+iV2), τ−κ , instead of U1+iU2, κ,V1+iV2, τ ,

it is possible to assume that U1 + iU2 = I , and κ = 0.
Use a homotopy to reduce the calculation of O1 and g to a simpler problem.

Since d = 1, V has exactly one eigenvalue at ±1 (since ψ has an eigenvalue +1 and
ψ is quadratic in V). Since V1 + iV2 is unitary, it can be put into the following
form:

V1 + iV2 = TH

(
(−1)k 0

0 (−1)leiθ

)
T

where T is also a unitary matrix and θ ∈ (0, π) .
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Now, in the exterior algebra representation U∧ = t1 ∧ t2 and V∧ = (−1)kt1 ∧

(−1)l(cos(θ)t2+sin(θ)t4) , where t1, . . . , t4 are the columns of

(
<T −=T
=T <T

)
. There-

fore, the intersection index, for the case d = 1, is

O1(U
∧,V∧) = (−1)k+l sign(Ω(t2, cos(θ)t2 + sin(θ)t4))

= (−1)k+l sign(sin(θ))

= (−1)k+l ,

(10.1)

and using the fact that κ = α1 = 0 and α2 = 2π−2θ ∈ [0, 2π[ and e−
τ
2 = (−1)k+leiθ ,

we get:
m((U, κ), (V, τ)) = m((I, 0), (V, τ))

= τ
2π
− 0+2π−2θ

2π
+ 1

2

∈ 2π(k+l)−2θ+4πZ
2π

+ θ
π
− 1 + 1

2

∈ k + l − 1
2

+ 2Z .

This completes the proof that (−1)m+ 1
2 = O1(U,V) in the case d = 1.

Now consider the case d = 0.
By the same argument as in case d = 1, one can assume without generality loss

that U1 + iU2 = I and κ = 0.
Since V1 + iV2 is unitary, it can be put into the following form:

V1 + iV2 = TH

(
(−1)keiµ 0

0 (−1)leiθ

)
T

where T is also a unitary matrix and θ, µ ∈ (0, π) .
We have τ ∈ −2(µ+ θ) + 2(k + l)π + 4πZ and the eigenvalues of ψ are

σ
(
ψ(U,V)

)
= σ

(
(V1 − iV2)(V1 + iV2)

−1) =
{

e2iπ−2iµ, e2iπ−2iθ
}
.

Therefore we have m = τ
2π

+ 2θ+2µ−4π
2π

∈ k + l + 2Z .
Let V∧ be the 2-form corresponding to V .
Now, in the exterior algebra representation U∧ = t1∧t2 and V∧ = (−1)k(cos(µ)t1+

sin(µ)t3)∧(−1)l(cos(θ)t2+sin(θ)t4) , where t1, . . . , t4 are the columns of

(
<T −=T
=T <T

)
.

Therefore, the intersection index is

O0(U,V) = det

[
Ω(t1, cos(µ)t1 + sin(µ)t3)(−1)k Ω(t1, cos(θ)t2 + sin(θ)t4)(−1)l

Ω(t2, cos(µ)t1 + sin(µ)t3)(−1)k Ω(t2, cos(θ)t2 + sin(θ)t4)(−1)l

]
= (−1)k+l sign(sin(µ) sin(θ))

= (−1)k+l ,

and we have m ∈ k + l + 2Z . This concludes the proof of the lemma �
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10.1 The Lazutkin invariant and the Maslov index

The Maslov index, in the Souriau representation, for a homoclinic orbit is defined in
(9.3). Use Lemma 10.2 above to conclude the proof of Theorem 10.1,

(−1)Ihom(û)+ 1
2 = O1

(
(ûx ∧ a−(x)), (ûx ∧ a+(x))

)
× lim

y→+∞
O0

(
(ûx ∧ a−(−y)), (ûx ∧ a+(y)

)
.

(10.1)

But the right-hand side is just the sign of T(û) . Hence, we conclude that

(−1)Ihom(û)+ 1
2 = sign

(
T(û)

)
.

�

11 Concluding remarks

The generalization of this theory to spaces with V of dimension greater than 4 is given
in [4]. The key feature needed is a generalization of the Lazutkin invariant and such
a generalization has been given by Treshchev [26]. An additional new direction
that is now possible is a new proof of the sufficient condition for instability in [5, 6] in
the case where the PDE is multi-symplectic (the matrix M is skew-symmetric). The
proof in [5, 6] required additional symmetry and that hypothesis can now be replaced
by the property of Lagrangian subspaces.
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— Appendix —

A Symplectifying four-vectors

The purpose of this appendix is to prove the following

Proposition A.1 Let a , b , c and d be any four vectors in V . Then

a ∧ b ∧ c ∧ d = det

[
Ω(a, c) Ω(a,d)
Ω(b, c) Ω(b,d)

]
vol−Ω(a,b)Ω(c,d)vol . (A-1)

Corollary A.2 If either span{a,b} or span{c,d} is a Lagrangian subspace. Then
the formula reduces to

a ∧ b ∧ c ∧ d = det

[
Ω(a, c) Ω(a,d)
Ω(b, c) Ω(b,d)

]
vol . (A-2)

Proof The corollory follows from the proposition using the definition of Lagrangian
subspace. For the proposition, if any pair of the vectors is dependent then the left
and right hand sides vanish. So restrict to the case where the four vectors are linearly
independent.

The four-form is proportional to the volume form,

a ∧ b ∧ c ∧ d = [[vol∗, a ∧ b ∧ c ∧ d]]4 vol .

The key then is to use the symplectic form representation of the volume form (4.3)

a ∧ b ∧ c ∧ d = −1
2
[[Ω ∧Ω, a ∧ b ∧ c ∧ d]]4 vol

= −1
2
[[(a ∧ b) (Ω ∧Ω), c ∧ d]]2 .

We will need the following two formulas

a
(
B∧C

)
= (a B)∧C+(−1)kB∧(a C) and B∧C = (−1)k`C∧B , (A-3)

for any a ∈ V , B ∈
∧k(V∗) , and C ∈

∧ `(V∗) , which are proved in [15]. From these
formulas it follows that

a (Ω ∧Ω) = 2(a Ω) ∧Ω ,

and
(a ∧ b) (Ω ∧Ω) = b

(
a (Ω ∧Ω)

)
= 2Ω(a,b) Ω− 2(a )Ω ∧ (b Ω)
= 2Ω(a,b) Ω− 2Ja ∧ Jb ,
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using a Ω = Ja , and so

(a ∧ b) vol∗ = − 1
2

(a ∧ b) (Ω ∧Ω) = Ja ∧ Jb−Ω(a,b) Ω .

Pair this equation with c ∧ d

[[(a ∧ b) vol∗, c ∧ d]]2 = [[Ja ∧ Jb−Ω(a,b)Ω, c ∧ d]]2 .

or
[[vol∗, a ∧ b ∧ c ∧ d]]4 = [[Ja ∧ Jb, c ∧ d]]2 −Ω(a,b)Ω(c,d) ,

the proof of the formula (A-1) is complete by noting that

[[Ja ∧ Jb, c ∧ d]]2 = det

[
Ω(a, c) Ω(a,d)
Ω(b, c) Ω(b,d)

]
.

�

B Lagrangian planes

In this appendix the discussion of Lagrangian planes in §4 is expanded. In the paper,
three other representations of Lagrangian planes are needed. The second representa-
tion is in terms of exterior algebra

span{a ∧ b} with [[Ω, a ∧ b]]2 = 0 , (B-1)

equivalently,
Ωdual ∧ a ∧ b = 0 .

The third representation is in terms of 4× 2 matrices of rank 2,

Z =

[
X
Y

]
with YTX = XTY , (B-2)

where X,Y are 2× 2 matrices. This representation is called a Lagrangian frame.
The fourth representation is in terms of 2×2 unitary matrices, U(2). The identity

(B-2) implies that
(X− iY)T (X + iY) = XTX + YTY .

Hence if R =
√

XTX + YTY , which is well defined and symmetric since the argument
is positive definite, then

Q = Q1 + iQ2 := (X + iY)R−1 ,

is unitary. This provides a unitary representation of a Lagrangian plane. The deter-
minant of a unitary matrix lies on the unit circle. Hence this representation can be
used to define the Maslov angle of a Lagrangian plane

e−i
κ
2 = det[Q1 + iQ2] , (B-3)

and the polar representation det(X + iY) = det(R)e−i
κ
2 .
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C Normalizations

There are three normalizations used in the paper, and they are summarized in this
appendix. The first is the normalization of the eigenvectors ξ1, . . . , ξ4 . The second is
normalization of the tangent vectors a± in order to impose the property (5.5), and
the third is the normalization (7.10).

C.1 Normalization of the eigenvectors

Eigenvectors are usually normalized by using the adjoint eigenvectors. Here the eigen-
vectors are normalized by imposing symplecticity.

There are three qualitative configurations of the eigenvalues in the hyperbolic case
as shown in Figure 1. In the case of real and distinct eigenvalues ξ1 and ξ2 are the
eigenvectors corresponding to µ1 and µ2 . In the case µ1 = µ2 , ξ1 is the eigenvector
and ξ2 is the generalized eigenvector. In the case where µ1 and µ2 are complex with
µ2 = µ1 , then ξ1 and ξ2 are the real and imaginary parts of the complex eigenvector
associated with µ1 . In all three cases span{ξ1, ξ2} is a Lagrangian subspace. A
similar formulation applies to ξ3 and ξ4 .

Now, define

K =

[
Ω(ξ1, ξ3) Ω(ξ1, ξ4)
Ω(ξ2, ξ3) Ω(ξ2, ξ4)

]
.

This matrix is invertible since the eigenvectors are linearly independent and from the
formula (1.8)

ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 = det
[
K
]

vol .

Let
Φ =

[
ξ1
∣∣ ξ2 ∣∣ ξ3 ∣∣ ξ4] ,

then

ΦTJΦ =

[
0 −K
K 0

]
.

Therefore take the equivalent subspace for span{ξ3, ξ4} ,[
ξ3
∣∣ξ4] =

[
ξ̂3
∣∣ξ̂4]KT , (C-1)

and redefine Φ to
Φ̂ =

[
ξ1
∣∣ ξ2 ∣∣ ξ̂3 ∣∣ ξ̂4] .

Then the transformation Φ̂ is symplectic

Φ̂TJΦ̂ = J ,

and
ξ1 ∧ ξ2 ∧ ξ̂3 ∧ ξ̂4 = vol .
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C.2 Normalizing the tangent vectors a±

In the linearization with λ = 0, the stable subspace is span{ûx, a+} and the unstable
subspace is span{ûx, a−} , and they satisfy

span{ûx, a+} → span{ξ1, ξ2} as x→ +∞ ,

and
span{ûx, a−} → span{ξ3, ξ4} as x→ −∞ .

Hence there exists constants C± with the property that

e−(µ1+µ2)x ûx(x) ∧ a+(x)→ C+ξ1 ∧ ξ2 as x→ +∞ , (C-2)

and
e−(µ3+µ4)x ûx(x) ∧ a−(x)→ C−ξ3 ∧ ξ4 as x→ −∞ .

Now using the fact that µ3 + µ4 = −µ1 − µ2 and replacing ξ3, ξ4 by their scaled
versions (C-1), the latter expression can be replaced by

e−(µ1+µ2)x ûx(−x) ∧ a−(−x)→ Ĉ−ξ̂3 ∧ ξ̂4 as x→ +∞ . (C-3)

Combining (C-2) and (C-3) then gives

e−2(µ1+µ2)xûx(x) ∧ a+(x) ∧ ûx(−x) ∧ a−(−x)→ C+C− ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 ,

or
e−2(µ1+µ2)xûx(x) ∧ a+(x) ∧ ûx(−x) ∧ a−(−x)→ C+Ĉ− vol .

Now it is clear how to scale a±(x) : define

â+(x) :=
1

C+
a+(x) and â−(x) :=

1

Ĉ−
a−(x) .

Then
lim

x→+∞
e−2(µ1+µ2)xûx(x) ∧ â+(x) ∧ ûx(−x) ∧ â−(−x) = vol , (C-4)

which is what is required in (5.5).

C.3 The Evans function in the limit λ→ 0

Define 4× 2 matrices

U+(x, λ) =

[
u+
1 (x, λ)

∣∣∣∣ u+
2 (x, λ)

]
and U−(x, λ) =

[
u−3 (x, λ)

∣∣∣∣ u−4 (x, λ)

]
.

Define

Λ+(x, λ) =

[
eµ1(λ)x 0

0 eµ2(λ)x

]
and Λ−(x, λ) =

[
eµ3(λ)x 0

0 eµ4(λ)x

]
.
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Then, the asymptotic x limits with λ fixed are

lim
x→+∞

U+(x, λ)Λ+(x, λ)−1 = Ξ+(λ) and lim
x→−∞

U−(x, λ)Λ−(x, λ)−1 = Ξ−(λ) ,

where

Ξ+(λ) =

[
ξ1(λ)

∣∣∣∣ ξ2(λ)

]
and Ξ−(λ) =

[
ξ3(λ)

∣∣∣∣ ξ4(λ)

]
.

The limit λ→ 0 with x fixed gives

U±(x, 0) =
[
ûx|a±

]
c± ,

for some invertible 2× 2 matrices

c± =

[
c±11 c±12
c±21 c±22

]
.

Let T± = c±
−1

and define

Ũ+(x, λ) =

[
ũ+
1 (x, λ)

∣∣∣∣ ũ+
2 (x, λ)

]
=

[
u+
1 (x, λ)

∣∣∣∣u+
2 (x, λ)

]
T+ ,

or
U+(x, λ) = Ũ+(x, λ)(T+)−1 ,

with a similar definition for Ũ−(x, λ) .
Now, the basis vectors for the stable subspace satisfy

lim
x→+∞

U+(x, λ)Λ+(x, λ)−1 = Ξ+(λ) ,

equivalently
lim

x→+∞
Ũ+(x, λ)Λ+(x, λ)−1T+ = Ξ+(λ)T+ .

Now define

Λ̃+(x, λ) = T+−1Λ+(x, λ)T+ and Ξ̃+(λ) = Ξ+(λ)T+ .

Then T+Λ̃+(x, λ)−1 = Λ+(x, λ)−1T+ and

lim
x→+∞

U+(x, λ)T+Λ̃+(x, λ)−1 = Ξ̃+(λ) ,

or
lim

x→+∞
Ũ+(x, λ)Λ̃+(x, λ)−1 = Ξ̃+(λ) ,

and [
ũ+
1 (x, 0)

∣∣∣∣ ũ+
2 (x, 0)

]
=

[
ûx

∣∣∣∣ â+

]
. (C-5)

Similarly
lim

x→−∞
Ũ−(x, λ)Λ̃−(x, λ)−1 = Ξ̃−(λ) ,

and [
ũ−3 (x, 0)

∣∣∣∣ ũ−4 (x, 0)

]
=

[
ûx

∣∣∣∣ â−] . (C-6)

Hence the normalized vectors now satisfy the limits (7.10).
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D λ−derivative of Ω(u−3 ,u
+
1 )

The purpose of this appendix is to prove Proposition 7.1. λ−derivatives are widely
used in Evans function analysis so we can be brief. Derivatives of the form used here
were first given by Pego & Weinstein [22], with symplectic versions presented in
Bridges & Derks [5, 6].

Differentiating (7.1) with respect to λ

J

(
∂u

∂λ

)
x

= [B(x, p)− λM]

(
∂u

∂λ

)
−Mu .

Now,

∂
∂x

Ω
(
∂
∂λ

u−3 ,u
+
1

)
= Ω

(
(u−3 )xλ,u

+
1

)
+ Ω

(
(u−3 )λ, (u

+
1 )x
)

= 〈J(u−3 )λx,u
+
1 〉 − 〈(u−3 )λ,J(u+

1 )x〉
= 〈[B− λM](u−3 )λ −Mu−3 ,u

+
1 〉 − 〈[B− λM](u−3 )λ,u

+
1 〉

= −〈Mu−3 ,u
+
1 〉 .

Similarly
∂

∂x
Ω

(
u−3 ,

∂

∂λ
u+
1

)
= +〈Mu−3 ,u

+
1 〉 .

Integrating over x

Ω((u−3 )λ,u
+
1 )

∣∣∣∣x0
−R

= −
∫ x0

−R
〈Mu−3 ,u

+
1 〉 and −Ω(u−3 , (u

+
1 )λ)

∣∣∣∣S
x0

= −
∫ S

x0

〈Mu−3 ,u
+
1 〉 .

Adding and using the x−asymptotics of u+
1 ,u

−
3 as R, S →∞ gives

[
Ω((u−3 )λ,u

+
1 ) + Ω(u−3 , (u

+
1 )λ)

]∣∣∣∣
x=x0

= −
∫ +∞

−∞
〈Mu−3 ,u

+
1 〉 dx .

Evaluating at λ = 0, using the limits (7.10), and noting that the choice x = x0 is
arbitrary, then gives

∂λΩ(u−3 ,u
+
1 )

∣∣∣∣
λ=0

= −
∫ +∞

−∞
〈Mûx, ûx〉 dx ,

completing the proof of Proposition 7.1. �
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