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Abstract. Partial differential equations in one space dimension and time, which are

gradient-like in time with Hamiltonian steady part, are considered. The interest is in

the case where the steady equation has a homoclinic orbit, representing a solitary wave.

Such homoclinic orbits have two important geometric invariants: a Maslov index and

a Lazutkin-Treschev invariant. A new relation between the two has been discovered

and is moreover linked to transversal construction of homoclinic orbits: the sign of the

Lazutkin-Treschev invariant determines the parity of the Maslov index. A key tool

is the geometry of Lagrangian planes. All this geometry feeds into the linearization

about the homoclinic orbit in the time dependent system, which is studied using the

Evans function. A new formula for the symplectification of the Evans function is

presented, and it is proved that the derivative of the Evans function is proportional

to the Lazutkin-Treschev invariant. A corollary is that the Evans function has a

simple zero if and only if the homoclinic orbit of the steady problem is transversely

constructed. Examples from the theory of gradient reaction-diffusion equations and

pattern formation are presented.

23 September 2014

1. Introduction

The starting point is partial differential equations in one space dimension and time where

the time-independent part is a finite-dimensional Hamiltonian system. In particular,

systems of the following form,

Mut + Jux = DH(u, p) , u ∈ V , (1.1)

where V is a finite-dimensional normed vector space, p ∈ R is a parameter, and

H : V × R → R is a smooth Hamiltonian function with DH(u, p) the derivative with

respect to the first argument. The matrix J is a symplectic operator associated with

the symplectic form, denoted by Ω, and M is assumed to be symmetric and the vector

space V is taken to be 2n−dimensional with n ≥ 2.
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Examples of PDEs that can be represented in the form (1.1) are the Swift-

Hohenberg equation

φt + φxxxx + pφxx + φ− φ2 = 0 , (1.2)

where p is a real parameter, which is widely used as a model in pattern formation, and

coupled gradient reaction-diffusion equations

vt = Dvxx +DF (v) , v = (v1, . . . , vn) , (1.3)

where F (v) is a given smooth function, and D is a diagonal positive definite matrix.

The case n = 2 is a model for coupled nerve fibers [3].

Suppose that the steady equation, Jux = DH(u, p), has a homoclinic orbit to

a hyperbolic equilibrium, denoted û(x, p). This homoclinic orbit has two important

characteristics: a Maslov index and a Lazutkin-Treschev invariant. The latter is defined

as follows. Since V has dimension 2n the stable (+) and unstable (−) subspaces, in the

linearization of the steady system about the homoclinic orbit, are of the form

Es,u = span{ûx, a±1 , . . . , a±n−1} ,

for each x (with p fixed). The Lazutkin-Treschev invariant, which is independent of x,

is defined by

T(û) = det

 Ω(a−1 , a
+
1 ) · · · Ω(a−1 , a

+
n−1)

...
. . .

...

Ω(a−n−1, a
+
1 ) · · · Ω(a−n−1, a

+
n−1)

 . (1.4)

It was discovered by Treschev [29], and generalizes the case n = 2 introduced by

Lazutkin [25]. In the case n = 2, it has been a valuable tool to study the case where

the distance between the stable and unstable manifolds is exponentially small (e.g.

[19, 18, 20]) (the formula (1.4) in the case n = 2 is given explicitly in part C of §2.3 of

[19] and an explicit example is given in [20]). In the case n > 2 it has been used to study

the intersection between the stable and unstable manifolds associated with hyperbolic

tori, and for perturbation of invariant manifolds [29].

In this paper three new results about this invariant are proved. Firstly, we give a

new proof that a homoclinic orbit to a hyperbolic equilibrium is transversely constructed

if and only if T(û) 6= 0. Secondly we prove that when a±1 , . . . , a
±
n−1 are suitably

normalized, it determines the parity of the Maslov index of the homoclinic orbit,

(−1)Maslov = sign
(
T(û)

)
, (1.5)

where Maslov is the Maslov index of the homoclinic orbit.

Thirdly, the Evans function, constructed from the linearization about the

homoclinic orbit in the time-dependent system (1.1), has a double zero eigenvalue if

and only if T(û) = 0. All these properties are intimately connected with the fact that

the Lazutkin-Treschev invariant can be interpreted as an index for codimension one

intersection of two Lagrangian planes.
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The use of the Maslov index to study of the linearization about homoclinic orbits,

as models for solitary waves, was pioneered in the work of Jones [23] and Bose &

Jones [3]. A numerical framework for computing the Maslov index of solitary waves

was introduced in Chardard et al. [12, 13]. Other definitions of the Maslov index

were proposed in Chardard [8] and Chen & Hu [14]. In this paper we use a definition

for the Maslov index based on a theory of Souriau [28]. It is equivalent to the above

definitions and it can be related much more easily to the Lazutkin-Treschev invariant.

In addition to the connection (1.5) we show how the Maslov index enters the theory of

the Evans function.

The linearization of (1.1) about a homoclinic orbit, with a spectral ansatz and

spectral parameter λ, can be put into standard form for the theory of the Evans

function (e.g. Alexander et al. [1]). Let span{u+
1 , . . . ,u

+
n } be the (x, λ)−dependent

stable subspace, and span{u−1 , . . . ,u−n } be the (x, λ)−dependent unstable subspace in

the linearization, then the Evans function is

D(λ)vol = u−1 ∧ · · · ∧ u−n ∧ u+
1 ∧ · · · ∧ u+

n , (1.6)

where vol is a volume form on V. One of the main results of the paper is a proof of the

formula

D′(0) = −T(û)

∫ +∞

−∞
〈Mûx, ûx〉 dx . (1.7)

If the integral on the right-hand side is non-vanishing, then it is immediate that

D′(0) = 0 if and only if the Lazutkin-Treschev invariant vanishes. For the examples

(1.2) and (1.3) the integral on the right-hand side of (1.7) is the H1(R) norm of φ and

v respectively.

The proof that the Evans function has a simple zero when the homoclinic orbit

is transversely constructed is a Hamiltonian version of a theorem of Alexander &

Jones [2] (see also §4 of [3]). There, transversality is obtained by lifting the phase

space by one dimension by including a parameter. Here the dimension is reduced by

one dimension due to the energy surface, and moreover the derivative D′(0) in (1.7) is

expressed in terms of a symplectic invariant of the homoclinic orbit.

A key step in the proof is to reformulate the Evans function (1.6) in such a way

that the symplectic structure becomes apparent. Towards this end, a formula which will

be used throughout is the following connection between 2n−forms on V and symplectic

determinants. For a pair of n−dimensional subspaces in V,

A = span{a1, . . . , an} and B = span{b1, . . . ,bn} ,

the formula connecting the exterior algebra representation and the symplectic

determinant representation is

a1 ∧ · · · ∧ an ∧ b1 ∧ · · · ∧ bn = det

Ω(a1,b1) · · · Ω(a1,bn)
...

. . .
...

Ω(an,b1) · · · Ω(an,bn)

 vol + Υvol , (1.8)
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where Υ is to be defined. The formula simplifies dramatically when either A or B is

Lagrangian since Υ = 0 if A or B is Lagrangian. We have not seen this formula before.

A proof is given in §4.

An outline of the paper is as follows. First in §2 it is shown how systems like (1.2)

and (1.3) can be cast into the form (1.1), and establish some of the properties of the

class of equations (1.1). A simplified ODE version of (1.1) is considered in §3 and it is

shown how the formula (1.7) arises naturally.

The stable and unstable subspaces are paths of Lagrangian planes, and the

background needed for the intersection theory of Lagrangian planes is given in §4.

Section 4 also includes a new proof of the necessary and sufficient condition for

two Lagrangian planes to have a two-dimensional intersection, which is essential

for understanding degeneracy of the Lazutkin-Treschev invariant. In §6 transversal

construction of homoclinic orbits and its implications are presented.

The construction, symplectification and differentiation of the Evans function are

presented in §8, leading to a proof of the formula (1.7), with an application in §7.

The longest proof in the paper is the proof of the connection between the Maslov

index and the Lazutkin-Treschev invariant (1.5). The Souriau definition of the Maslov

index is introduced in §10, and then applied to homoclinic orbits. The proof of (1.5)

is then given in §11. In §12 the details of an example, with calculation of T and the

Maslov index, for a system with dim(V) = 6 is given.

The technical report [10] gives detailed calculations for the case n = 2.

2. Gradient PDEs with Hamiltonian steady part

In this section, the examples (1.2) and (1.3) are formulated in the form (1.1), and the key

properties of systems in the form (1.1) are identified. The assumptions on the matrix

M : V→ V∗ are

MT = M and the eigenvalues of M are non-negative . (2.1)

The matrix representation of the symplectic operator will be taken in standard form

J =

(
0 −I

I 0

)
. (2.2)

It is derived from the symplectic form after a choice of basis for V (cf. §4).

The Swift-Hohenberg equation (1.2) can be cast into the form (1.1) by taking

u = (u1, u2, u3, u4) := (φ, φxx,−φxxx − pφx,−φx) ,

J in standard form (2.2) with n = 2, and

M =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 . (2.3)



Transversality, Maslov index and Evans function 5

The Hamiltonian function is

H(u, p) = 1
2
u22 + 1

2
pu24 − 1

2
u21 − u3u4 + 1

3
u31 .

A second example is the system of reaction diffusion equations (1.3). Systems of

this type are considered in Bose & Jones [3] in the case n = 2 and an example with

n = 3 is considered in §12. The system (1.3) can be expressed in the form (1.1) by

taking

u = (v,p) := (v,Dvx) ,

J in the standard form (2.2), and

M =

[
I 0

0 0

]
.

The Hamiltonian function is

H(v,p) =
1

2
p ·D−1p + F (v) .

2.1. Gradient-like structure

We call PDEs of the form (1.1) “gradient-like PDEs” because there is a functional which

is monotone on orbits. Define

F := 1
2
Ω(ux,u)−H(u, p) and A = 1

2
Ω(u,ut) . (2.4)

Note that F is the density for Hamilton’s principle for steady solutions. Differentiating

F and A gives

Ft + Ax = 〈Mut + Jux −DH(u, p),ut〉 − 〈Mut,ut〉 .

Suppose u is a solution of (1.1). Then with integration over x and appropriate boundary

conditions on A, the integral of F, denoted F, is formally decreasing when evaluated on

solutions of (1.1),

Ft = −〈Mut,ut〉 ≤ 0 .

The functional F, being associated with Hamilton’s principle, is indefinite in general.

However, this gradient-like structure indicates that the eigenvalue λ in the Evans

function can be taken to be real, and it affects the formula (1.7). When M is skew-

symmetric for example, then D′(0) = 0 in (1.7).

2.2. Cauchy-Riemann operators and Floer theory

Another interesting example is when M is the identity

ut + Jux = DH(u) , u ∈ V . (2.5)
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It is primarily of theoretical interest, as it is the form of the equation used in Morse-

Floer theory [17, 14], and the left-hand side, ut + Jux, is a Cauchy-Riemann operator.

Since the Cauchy-Riemann operator is elliptic, this PDE is not an evolution equation.

This case is not considered in the paper because the Evans function construction in

the linearization would require modification: in this case the essential spectrum, in the

linearization about a homoclinic orbit, is the entire real line.

3. Intermezzo: gradient ODE systems

Before proceeding to analyze the class of systems (1.1) is is useful to consider the case of

gradient ODEs, as it provides the inspiration for the formula (1.7). Consider the system

of gradient ODEs, with M having the property (2.1),

Mut = DH(u, p) , u ∈ V . (3.1)

Suppose there exists a family of equilibrium solutions, û(p), of (3.1); that is,

satisfying DH(û(p), p) = 0. Let L(p) := D2H(û(p), p), and suppose there is a value of

p, denoted p0, at which L has a simple zero eigenvalue with eigenvector ξ,

L(p0)ξ = 0 with ‖ξ‖ = 1 . (3.2)

Look at the linearization of (3.1) about û(p),

Mvt = L(p)v .

With the spectral ansatz, v(t) 7→ eλtv, the exponent λ is an eigenvalue of

[L(p)− λM]v = 0 .

The Evans function in this case is just the characteristic determinant

D(λ) = det[L(p)− λM] .

At p = p0 and λ = 0, D(0) = det[L(p0)] = 0. Differentiating

D′(λ) = −Trace
(
[L(p)− λM]#M

)
,

where the superscript # denotes adjugate. Hence at λ = 0 and p = p0,

D′(0) = −Trace
(
L(p0)

#M
)
.

But

L(p0)
# = Π ξ ξT , (3.3)

where Π is the product of the nonzero eigenvalues of L(p). The formula (3.3) is proved

as part of Theorem 3 on page 41 of Magnus & Neudecker [26]. Hence

D′(0) = −Trace
(
L(p0)

#M
)

= −Π Trace(ξξTM
)

= −Π 〈Mξ, ξ〉 .
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The close connection with the formula (1.7) is apparent. The formula (1.7) is a

generalization of this case with the product of the nonzero eigenvalues replaced by

the Lazutkin-Treschev homoclinic invariant.

Since Π is the product of the nonzero eigenvalues of L(p0), the sign of Π gives the

parity of the Morse index, where here the Morse index is just the number of negative

eigenvalues of L(p0). Hence the ODE version of (1.5) is

(−1)Morse = sign
(
Π
)
.

4. Intersection of Lagrangian planes

Here and throughout V is a 2n−dimensional normed vector space. Let

V = span
{
e1, . . . , e2n

}
and V∗ = span

{
e∗1, . . . , e

∗
2n

}
, (4.1)

be bases for V and the dual space V∗, where ej are not necessarily the standard unit

vectors. The bases are normalized by 〈e∗i , ej〉 = δi,j, with pairing 〈·, ·〉 : V∗ × V→ R.

Associated with V and V∗ are the wedge spaces
∧k(V) and

∧k(V∗) for k = 1, . . . , 2n.

The convention here on the exterior algebra spaces follows Chapter 4 of Crampin &

Pirani [16]. The induced pairing on the wedge spaces is denoted by

[[·, ·]]k :
∧k(V∗)×

∧k(V)→ R , k = 1, . . . , 2n ,

with [[·, ·]]1 := 〈·, ·〉. The pair (V,Ω) with

Ω = e∗1 ∧ e∗n+1 + · · ·+ e∗n ∧ e∗2n (4.2)

is a symplectic vector space. The relation between the symplectic form Ω and the

symplectic operator (2.2), relative to the above basis, is

〈a Ω,b〉 = [[Ω, a ∧ b]]2 = 〈Ja,b〉 := Ω(a,b) , ∀ a,b ∈ V .

The first equality is the definition of the interior product, and the second equality follows

by evaluating the expression on the bases for V and V∗, giving (2.2).

On V and V∗ take the following volume forms

vol := e1 ∧ · · · ∧ e2n and vol∗ := e∗1 ∧ · · · ∧ e∗2n .

An n−dimensional subspace, span{a1, . . . , an}, of V is a Lagrangian subspace,

equivalently a Lagrangian plane, if

Ω(ai, aj) = 0 , ∀ i, j = 1, . . . , n . (4.3)

The manifold of Lagrangian planes in V is denoted by Λ(n).

Associated with (V,Ω) is a dual symplectic form, denoted by Ωdual, acting on

elements in V∗, and defined by

Ωdual = Ωn−1 vol , (4.4)
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where Ωk = Ω ∧ · · · ∧Ω︸ ︷︷ ︸
k times

denotes the k-th exterior power of Ω. To give an explicit

expression for the dual symplectic form defined in (4.4), first related the volume form

to powers of the symplectic form,

Ωn = (−1)
n(n−1)

2 n! vol∗ . (4.5)

This formula can be seen as a consequence of section 5. Substitution then shows that

Ωdual = (−1)
n(n−1)

2 (n− 1)!
n∑
j=1

ej ∧ ej+n . (4.6)

In the case n = 2, Ω ∧Ω = −2 vol∗, and the dual symplectic form is defined by

Ω(a,b)vol = Ωdual ∧ a ∧ b , ∀ a,b ∈ V . (4.7)

In this case, a calculation, substituting the bases into (4.4), shows that

Ωdual = e3 ∧ e1 + e4 ∧ e2 .

4.1. Intersection index

Consider pairs of oriented Lagrangian planes. In what follows, we identify oriented

subspaces of V, say span{a1, . . . , an}, with the corresponding elements span{a1∧· · ·∧an}
in
∧n(V). Let U and V be two Lagrangian planes and define

d := dim
(
U ∩ V

)
.

Now suppose U and V have a d−dimensional intersection, and denote the intersection

index by Od(U, V ). Then there exists vectors

ξ1, . . . , ξd, a1, . . . , an−d,b1, . . . ,bn−d ∈ V ,

such that
U := span{ξ1 ∧ · · · ∧ ξd ∧ a1 ∧ · · · ∧ an−d},

V := span{ξ1 ∧ · · · ∧ ξd ∧ b1 ∧ · · · ∧ bn−d} ,
and

a1 ∧ · · · ∧ an−d ∧ b1 ∧ · · · ∧ bn−d 6= 0.

Definition 4.1 The orientation index of the pair (U, V ) is defined as:

Od(U, V ) = sign det

 Ω(a1,b1) . . . Ω(a1,bn−d)
...

...

Ω(an−d,b1) . . . Ω(an−d,bn−d)

 . (4.8)

Two special cases, d = 1, 2, are of great interest and will be treated in more detail.
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4.2. d = 1 intersection

The d = 1 intersection is transversal if

a1 ∧ · · · ∧ an−1 ∧ b1 ∧ · · · ∧ bn−1 6= 0 .

An equivalent definition is

Ωdual ∧ a1 ∧ · · · ∧ an−1 ∧ b1 ∧ · · · ∧ bn−1 6= 0 .

This follows since, using (4.4),

Ωdual ∧ a1 ∧ · · · ∧ an−1 ∧ b1 ∧ · · · ∧ bn−1 =

= [[vol∗,Ωdual ∧ a1 ∧ · · · ∧ an−1 ∧ b1 ∧ · · · ∧ bn−1]]2nvol

= [[Ωdual vol∗, a1 ∧ · · · ∧ an−1 ∧ b1 ∧ · · · ∧ bn−1]]2n−2vol

= [[Ωn−1, a1 ∧ · · · ∧ an−1 ∧ b1 ∧ · · · ∧ bn−1]]2n−2vol

= τvol ,

with

τ = det

 Ω(a1,b1) · · · Ω(a1,bn−1)
...

. . .
...

Ω(an−1,b1) · · · Ω(an−1,bn−1)

 . (4.9)

Hence, an equivalent definition of the intersection index in this case is

O1(U, V ) = sign(Ωdual ∧ a1 ∧ · · · ∧ an−1 ∧ b1 ∧ · · · ∧ bn−1) . (4.10)

In the case n = 2, this formula simplifies. With d = 1 and n = 2, there exists vectors

a,b, c ∈ V such that

U := span{a ∧ b} and V := span{a ∧ c} .

The intersection index in this case is defined as

O1(U, V ) = sign(Ω(b, c)) = sign(Ωdual ∧ b ∧ c) . (4.11)

4.3. d = 2 intersection

Loss of transversality in the d = 1 intersection leads to investigation of the d = 2

intersection. This d = 2 intersection will be useful for the study of non transversely-

constructed homoclinic orbits.

Lemma. Let A,B be n−dimensional Lagrangian subspaces defined by

A = span{ξ, a1, . . . , an−1} and B = span{ξ,b1, . . . ,bn−1} , (4.12)

with

ξ ∧ a1 ∧ . . . ∧ an−1 6= 0 and ξ ∧ b1 ∧ . . . ∧ bn−1 6= 0 .
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Then dim
(
A
⋂
B
)
≥ 2 if and only if τ = 0 where τ is defined in (4.9).

Proof. Suppose dim
(
A
⋂
B
)
≥ 2. Then there exists constants β1, . . . , βn−1 (not all

zero) such that

β1b1 + · · ·+ βn−1bn−1 ∈ A (4.13)

and so

Ω(aj, β1b1 + · · ·+ βn−1bn−1) = 0 for j = 1, . . . , n− 1 , (4.14)

or  Ω(a1,b1) · · · Ω(a1,bn−1)
...

. . .
...

Ω(an−1,b1) · · · Ω(an−1,bn−1)


 β1

...

βn−1

 =

0
...

0

 . (4.15)

Since β 6= 0 it follows that the determinant must vanish giving τ = 0.

Now suppose τ = 0. The above argument can just be reversed: there exists

constants β1, . . . , βn−1 such that (4.15) holds, which in turn implies (4.14) holds which

then implies (4.13). Hence τ = 0 implies that the dimension of the intersection is two

or greater. �
The case n = 2 is of special interest. Suppose a,b, c ∈ V are such that a∧b 6= 0 and

a∧ c 6= 0. Suppose moreover that span{a,b} and span{a, c} are Lagrangian subspaces.

Then

span{a,b} = span{a, c} ⇔ Ω(b, c) = 0 .

5. Volume form to symplectic determinants

In this section a proof of the formula (1.8) is given.

Let Sn be the set of permutations; that is mappings σ : {1, . . . , n} → {1, . . . , n}
that are one-to-one. For σ ∈ Sn, let

ε(σ) :=
∏

1≤i<j≤n

sign
(
σ(j)− σ(i)

)
,

be the parity of the permutation σ. The following lemma on permutations is required.

Lemma 5.1 Define the mapping

f :


Sn × Sn × {0, 1}n → {σ ∈ S2n s.t. ∀k {σ(2k − 1), σ(2k)} * {1, . . . , n}}

(µ, ψ, u) 7→ σ :


{1, . . . , 2n} → {1, . . . , 2n}
2k − 1 + uk 7→ µ(k)

2k − uk 7→ ψ(k) + n

.

Then f is a one-to-one correspondence and ε(f(µ, ψ, u)) = (−1)
n(n−1)

2 ε(µψ)
∏n

i=1(−1)ui.

Proof: It is clear that f is well-defined and one-to-one. To prove that f is an onto

mapping, let

σ ∈ S2n such that ∀k {σ(2k), σ(2k + 1)} * {1, . . . , n} .
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Then, for all k, the cardinality of {1, . . . , n} ∩ {σ(2k− 1), σ(2k)} is one. Let uk be such

that σ(2k − 1 + uk) ∈ {1, . . . , n}. Then define µ(k), ψ(k) as

µ(k) = σ(2k − 1 + uk) and ψ(k) = σ(2k − uk)− n .

Then σ = f(µ, ψ, u), which proves the surjectivity.

It remains to prove the assertion on the parity of the permutation. Let (µ, ψ, u) be

in Sn × Sn × {0, 1}n. Then, it is clear that ε(f(µ, ψ, u)) =
∏n

i=1(−1)uif(µ, ψ, 0).

So let σ be σ = f(µ, ψ, 0). Then:

ε(σ) = sign

(∏
2k<2l

σ(2l)− σ(2k)
∏

2k<2l−1

σ(2l − 1)− σ(2k)

∏
2k−1<2l

σ(2l)− σ(2k − 1)
∏

2k−1<2l−1

σ(2l − 1)− σ(2k − 1)

)
. (5.1)

Hence,

ε(σ) = sign

(∏
k<l

ψ(l)− ψ(k)
∏
k<l

µ(l)− ψ(k)− n
∏
k≤l

ψ(l) + n− µ(k)
∏
k<l

µ(l)− µ(k)

)

Therefore ε(σ) = ε(ψ)(−1)
n(n−1)

2 1
n(n+1)

2 ε(µ). This proves the lemma. �

5.1. The nth exterior power of the symplectic form

For 1 ≤ k ≤ r, let ρk be an ik-form and tk =
∑k

j=1 ij.

According to page 116 of [24], the wedge product of these forms is equal to:(
r∧

k=1

ρk

)
(a1, . . . , atr) =

1

i1!i2! . . . ir!

∑
σ∈Sn

ε(σ)
r∏

k=1

ρk(aσ(tk−1+1), . . . , aσ(tk)) .

Let ∆ := Ω ∧ · · · ∧Ω(a1, . . . , a2n). Then we have:

∆ = 1
2n

∑
σ∈S2n

ε(σ)Ω(aσ(1), aσ(2)) . . .Ω(aσ(2n−1), aσ(2n))

= 1
2n

∑
σ∈S2n,∀k {σ(2k),σ(2k+1)}*{1,...,n} ε(σ)Ω(aσ(1), aσ(2)) . . .Ω(aσ(2n−1), aσ(2n))

+ 1
2n

∑
σ∈S2n,∃k {σ(2k),σ(2k+1)}⊆{1,...,n} ε(σ)Ω(aσ(1), aσ(2)) . . .Ω(aσ(2n−1), aσ(2n))

= 2n

2n

∑
µ,ψ∈Sn(−1)

n(n−1)
2 ε(µ)ε(ψ)Ω(aµ(1), an+ψ(1)) . . .Ω(aµ(n), an+ψ(n))

+ 1
2n

∑
σ∈S2n,∃k {σ(2k),σ(2k+1)}⊆{1,...,n} ε(σ)Ω(aσ(1), aσ(2)) . . .Ω(aσ(2n−1), aσ(2n))

= (−1)
n(n−1)

2 n! det


Ω(a1, an+1) . . . Ω(a1, an+k) . . . Ω(a1, a2n)

...
. . .

...
...

Ω(ak, an+1) . . . Ω(ak, an+k) . . . Ω(ak, a2n)
...

...
. . .

...

Ω(an, an+1) . . . Ω(an, an+k) . . . Ω(an, a2n)

+ (−1)
n(n−1)

2 n!Υ ,
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with

Υ =
(−1)

n(n−1)
2

n!2n

∑
σ∈S2n,∃k {σ(2k−1),σ(2k)}⊆{1,...,n}

ε(σ)Ω(aσ(1), aσ(2)) . . .Ω(aσ(2n−1), aσ(2n)) .

This proves the formula (1.8), noting that the left-hand side is related to the volume

form (see equation (4.5)). A special case is as follows. Let e1, e2, . . . , en, f1, f2, . . . , fn be

a basis for V normalized such that

Ω(ei, ej) = 0 , Ω(ei, fj) = δij and Ω(fi, fj) = 0 ,

then

Ω ∧ · · · ∧Ω(e1, . . . , en, f1, . . . , fn) = (−1)
n(n−1)

2 n! (5.2)

�

5.2. The formula in the cases dim(V) = 4, 6

The formula simplifies in low dimension. In the case n = 2:

Proposition 5.2 Let a, b, c and d be any four vectors in V. Then

a ∧ b ∧ c ∧ d = det

[
Ω(a, c) Ω(a,d)

Ω(b, c) Ω(b,d)

]
vol−Ω(a,b)Ω(c,d)vol . (5.3)

Corollary 5.3 If either span{a,b} or span{c,d} is a Lagrangian subspace. Then the

formula reduces to

a ∧ b ∧ c ∧ d = det

[
Ω(a, c) Ω(a,d)

Ω(b, c) Ω(b,d)

]
vol . (5.4)

The case with n > 2 of greatest use in applications is the case n = 3. An explicit

formula for this case is given in the following.

Proposition 5.4 Suppose dim(V) = 6 and let A,B be two three-dimensional subspaces

defined by

A = span{a1, a2, a3} and B = span{b1,b2,b3} .
Then

a1 ∧ a2 ∧ a3 ∧ b1 ∧ b2 ∧ b3 = det

Ω(a1,b1) Ω(a1,b2) Ω(a1,b3)

Ω(a2,b1) Ω(a2,b2) Ω(a2,b3)

Ω(a3,b1) Ω(a3,b2) Ω(a3,b3)

 vol + Υvol ,

where

Υ = −Ω(a1, a2)

[
Ω(a3,b1)Ω(b2,b3)− det

(
Ω(a3,b2) Ω(a3,b3)

Ω(b1,b2) Ω(b1,b3)

)]

+Ω(a1, a3)

[
Ω(a2,b1)Ω(b2,b3)− det

(
Ω(a2,b2) Ω(a2,b3)

Ω(b1,b2) Ω(b1,b3)

)]

−Ω(a2, a3)

[
Ω(a1,b1)Ω(b2,b3)− det

(
Ω(a1,b2) Ω(a1,b3)

Ω(b1,b2) Ω(b1,b3)

)]
.
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Corollary. If either A or B is a Lagrangian plane then Υ = 0 and the formula reduces

to

a1 ∧ a2 ∧ a3 ∧ b1 ∧ b2 ∧ b3 = det

Ω(a1,b1) Ω(a1,b2) Ω(a1,b3)

Ω(a2,b1) Ω(a2,b2) Ω(a2,b3)

Ω(a3,b1) Ω(a3,b2) Ω(a3,b3)

 vol .

Proofs follow by evaluating the formula for Υ in §5.1.

6. Transversely constructed homoclinic orbits

Suppose there exists a homoclinic orbit, û(x, p), satisfying the steady part of (1.1)

Jux = DH(u, p) , u ∈ V , (6.1)

with

lim
x→±∞

û(x, p) = 0 and 0 <

∫ +∞

−∞

∣∣û(x, p)
∣∣2 dx < +∞ . (6.2)

The linearization about the trivial solution is assumed to be strictly hyperbolic.

The tangent vector to the homoclinic orbit is ûx, and the orbit lies on an energy

surface H(û, p) = H(0, p). The stable and unstable manifolds of the origin also lie on

the energy surface. Hence, there are 2(n − 1) other tangent vectors in V, denoted by

a−j (x) and a+
j (x) for j = 1, . . . , n− 1 satisfying

d

dx
a±j = A(x, 0)a±j , with A(x, 0) := J−1D2H(û, p) , (6.3)

and
Es(x, 0) = span{ûx, a+

1 , . . . , a
+
n−1}; a+

j → 0 as x→ +∞ ,

Eu(x, 0) = span{ûx, a−1 , . . . , a−n−1}; a−j → 0 as x→ −∞ .

The notation with 0 in the second argument anticipates the extension to include λ

dependence, and the explicit dependence on p is suppressed for brevity. The subspaces

Es,u are x−dependent Lagrangian subspaces. This property is proved in §4 of [12].

Definition 6.1 For the homoclinic orbit û(x, p), define

Ξ(x, p) := a−1 (x, p) ∧ · · · ∧ a−n−1(x, p) ∧ a+
1 (x, p) ∧ · · · ∧ a+

n−1(x, p) . (6.4)

The homoclinic orbit is said to be “transversely constructed” if Ξ(x, p) 6= 0 for all x ∈ R.

Proposition 6.2 If Ξ(x0, p) = 0 (Ξ(x0, p) 6= 0) for some x0 ∈ R then Ξ(x, p) = 0

(Ξ(x, p) 6= 0) for all x ∈ R.

Proof. The proof follows from the fact that Ξ(x, p) satisfies an ordinary differential

equation
d

dx
Ξ(x, p) = A(2n−2)(x, 0)Ξ(x, p) ,

and the uniqueness of solutions of ODEs, where A(2n−2)(x, 0) is the induced

representation of A(x, 0) on
∧2n−2(V). �



Transversality, Maslov index and Evans function 14

Definition 6.3 The Lazutkin-Treschev invariant associated with a homoclinic orbit is

T(û) = det

 Ω(a−1 , a
+
1 ) · · · Ω(a−1 , a

+
n−1)

...
. . .

...

Ω(a−n−1, a
+
1 ) · · · Ω(a−n−1, a

+
n−1)

 (6.5)

Theorem 6.4 A homoclinic orbit is “transversely constructed” if and only if the

Lazutkin-Treschev homoclinic invariant is nonzero.

Proof. The Lazutkin-Treschev invariant is independent of x. This follows since a±j ,

j = 1, . . . , n−1, are solutions of (6.3) and the symplectic form is independent of x when

evaluated on any two solutions of (6.3).

Now suppose the Lazutkin-Treschev invariant is zero. Then by the Lemma in §4.1,

the stable and unstable subspaces have a (at least) two-dimensional intersection (for

each x) and so the intersection is not transverse.

Conversely, suppose Ξ(x0, p) = 0 for some x0. Then it is zero for all x by the

Proposition. Hence Ωdual ∧ Ξ(x, p) = 0 and so

0 = Ωdual ∧ Ξ(x, p)

= [[vol∗,Ωdual ∧ Ξ, ]]2nvol

= [[Ωdual vol∗,Ξ]]2n−2vol

= [[Ω ∧ · · · ∧Ω,Ξ]]2n−2vol

= τvol ,

proving that the Lazutkin-Treschev invariant is zero. �

Hence the Lazutkin-Treschev invariant measures whether the codimension one

intersection of the (Lagrangian) stable and unstable subspaces is non-degenerate.

However, in order to fix the sign of the Lazutkin-Treschev invariant, and to define

the sign of a homoclinic orbit, a normalization needs to be introduced.

Definition 6.5 Suppose that the stable and unstable subspaces are normalized as follows

lim
x→+∞

e2(µ
+
1 +···+µ+n )x E+(x) ∧ E−(x) = ρ vol , ρ > 0 , (6.6)

where

E±(x) = ûx(±x) ∧ a±1 (±x) ∧ · · · ∧ a±n−1(±x) ,

and µ+
1 , . . . , µ

+
n are the eigenvalues of the linearization at infinity with negative real parts

(cf. §8). Then the sign of the homoclinic orbit is defined to be sign(T).

According to Alexander, Gardner & Jones [1], limx→∞ e(µ
+
1 +···+µ+n )xE+(x) and

limx→∞ e(µ
+
1 +···+µ+n )xE−(x) are well-defined, nonzero and span respectively the unstable

and the stable of J−1D2H(0, p). As a consequence, limx→∞ e(µ
+
1 +···+µ+n )xE+(x) ∧

limx→∞ e(µ
+
1 +···+µ+n )xE−(x) 6= 0 since the stable space and the unstable space are

transverse. It is sufficient to divide one of the a±i by a constant to have the suitable

normalization.
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7. Example: an explicit calculation of T(û)

Take n = 2 and D = I and

F (v) = −2(v21 + v22) + 2(v31 + v32)− 1
2
p(v1 − v2)2 ,

in (1.3). The resulting pair of gradient reaction-diffusion equations is

∂v1
∂t

= ∂2v1
∂x2
− 4v1 + 6v21 − p(v1 − v2)

∂v2
∂t

= ∂2v2
∂x2
− 4v2 + 6v22 + p(v1 − v2) .

(7.1)

This system was studied in §11 of [12] (with the parameter p here replaced by c there).

The system (7.1) has an exact steady solution v1 = v2 := v̂(x) = sech2(x). It is an

example where the Maslov index and other geometric properties of the linearization

about the steady solution can be explicitly computed. Here the Lazutkin-Treschev

invariant is calculated.

The tangent vector to the homoclinic orbit is

ûx = −2sech2(x)


tanh(x)

tanh(x)

1− 3tanh2(x)

1− 3tanh2(x)

 ,

and the complementary vectors a±(x) are

a±(x) =


−σ±(x)

+σ±(x)

−σ±x (x)

+σ±x (x)

 ,

where

σ±(x) = e∓
√
κx(∓a0 + a1tanh(x)∓ a2tanh2(x) + tanh3(x)) ,

with κ = 4 + 2p and

a0 =

√
κ

15
(4− κ) , a1 =

1

5
(2κ− 3) , a2 = −

√
κ .

Computing

T(û)vol = Ωdual ∧ a− ∧ a+ ,

gives

T(û) =
8p

225

√
4 + 2p(3 + 2p)(5− 2p) .

Transversality of the construction of the homoclinic orbit is lost precisely when

p = −3

2
, p = 0 , p =

5

2
. (7.2)
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The above form for a± is chosen so that the normalization (6.6) is operational.

Therefore the formula (1.5) should hold. Indeed this can be checked directly. According

to §11 of [12], the values of p in (7.2) are precisely the values where the Maslov index

of the homoclinic orbit changes. The Maslov index is 2 for 0 < p < 5
2

and 1 for p > 5
2
.

Hence confirming the relation proved in section 11:

(−1)Maslov = sign
(
T(û)

)
.

This example also reminds that the Lazutkin-Treschev invariant is not an invariant

of the homoclinic orbit directly. It is a property of the intersection between the stable

and unstable manifolds. Here the basic homoclinic orbit, and its tangent vector ûx,

are independent of the parameter p, but the complementary tangent vectors a± are

dependent on p and they determine when there is a loss of transversality.

8. The symplectic Evans function

Suppose that the Hamiltonian system (6.1) has a homoclinic orbit as in §6. Consider

the linearization of the PDE (1.1) about the homoclinic orbit û

Mut + Jux = B(x, p)u , u ∈ V .

where B is the Hessian of H evaluated on the homoclinic orbit,

B(x, p) = D2H(û, p) .

Letting u = eλtũ results in the spectral problem, which will be formulated in the

following way in preparation for the use of the Evans function theory

ux = A(x, λ)u , u ∈ V , (8.1)

with

A(x, λ) = J−1[B(x, p)− λM] . (8.2)

The tilde over u has been dropped to simplify notation. The role of u(x, λ) versus

u(x, t) will be clear from the context.

The “system at infinity”, A∞(λ), that is used in the construction of the Evans

function is defined by

JA∞(λ) =
[
B∞ − λM

]
, (8.3)

with B∞ = limx→±∞B(x, p), with the dependence on p suppressed.

The formal definition of an eigenvalue is: λ ∈ C is an eigenvalue of (8.1) if there

exists a solution u(x, λ) to (8.1) such that∫ +∞

−∞
‖u(x, λ)‖2 dx < +∞ ,

where ‖ · ‖ is a norm on V.
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In fact we will restrict our attention to real λ, which can almost be proved in

general. Suppose λ and u are complex and let us decompose them into their real and

imaginary parts:

u = ur + iui and λ = λr + iλi .

Substitute into (8.1), take real and imaginary parts, pair with ui and ur in turn, giving

d

dx

(
Ω(ur,ui)

)
= λi

(
〈Mur,ur〉+ 〈Mui,ui〉

)
.

Integrating over x and using ‖u‖ → 0 as x→ ±∞ gives

λi

∫ +∞

−∞

(
〈Mur,ur〉+ 〈Mui,ui〉

)
dx = 0 .

If M is non-degenerate, λi = 0 and the argument is proved, but since M may have zero

eigenvalues there may be exceptions. Here we will assume that the exceptions don’t

occur and take λ to be real throughout.

The essential spectrum is defined to be

σess =
{
λ ∈ R

∣∣ det[B∞ − ikJ− λM] = 0 with k ∈ R
}
.

Since it is assumed that the linearization about the trivial solution is hyperbolic, it

is clear that 0 /∈ σess. Since σess is a closed set, there exists an open interval containing

0 with no essential spectrum in it.

Now the Evans function can be constructed in the usual way for λ /∈ σess. Denote

the eigenvalues of A∞(λ) with negative real part by µ+
1 (λ), . . . , µ+

n (λ) and the eigenvalues

with positive real part by µ−1 (λ), . . . , µ−n (λ), with eigenvectors[
B∞ − λM

]
ξ±j = µ±j Jξ±j , i = 1, . . . , n . (8.4)

With the assumption of strict hyperbolicity, the eigenvalues can be simple, strictly real

and nonzero, simple and complex with non-zero real part, or non-simple. In the latter

case there is a loss of analyticity in the λ−plane near double eigenvalues, but this issue

is well understood and so is not considered here [6].

Now define solutions of (8.1) that decay to zero as x → +∞ with the asymptotic

properties

lim
x→+∞

e−µ
+
j (λ)xu+

j (x, λ) = ξ+j (λ) , j = 1, . . . , n, (8.5)

and solutions which decay as x→ −∞,

lim
x→−∞

e−µ
−
j (λ)xu−j (x, λ) = ξ−j (λ) , j = 1, . . . , n . (8.6)

Then the natural definition of the Evans function is

D(λ)vol = u+
1 (x, λ) ∧ · · · ∧ u+

n (x, λ) ∧ u−1 (x, λ) ∧ · · · ∧ u−n (x, λ) . (8.7)

It has the usual properties of an Evans function (cf. Alexander, Gardner &

Jones [1]). In particular, D(0) = 0 since ûx is a solution of (8.1) with λ = 0.
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8.1. Symplectification of the Evans function

By working directly with the Evans function as a 2n−form (8.7) it is not immediately

clear how to take advantage of the symplectic structure. Since the stable and unstable

subspaces are Lagrangian, the correction term Υ in (1.8) vanishes and so application of

(1.8) to (8.7) gives the following formula for the Evans function

D(λ) = det[Σ(λ)] , Σ(λ) =

Ω(u−1 ,u
+
1 ) · · · Ω(u−1 ,u

+
n )

...
. . .

...

Ω(u−n ,u
+
1 ) · · · Ω(u−n ,u

+
n )

 . (8.8)

With this formula a symplectic proof that D(0) = 0 can be given. Taking the limit

λ→ 0, the Evans function reduces to

D(0) = det


Ω(ûx, ûx) Ω(ûx, a

+
1 ) · · · Ω(ûx, a

+
n−1)

Ω(a−1 , ûx) Ω(a−1 , a
+
1 ) · · · Ω(a−1 , a

+
n−1)

...
...

. . .
...

Ω(a−n−1, ûx) Ω(a−n−1, a
+
1 ) · · · Ω(a−n−1, a

+
n−1)

 .

Now, Ω(ûx, ûx) = 0 by skew symmetry, and

Ω(ûx, a
+
j ) = Ω(a−j , ûx) = 0 , j = 1, . . . , n− 1 ,

since the stable and unstable subspaces are Lagrangian subspaces. Hence

D(0) = det[Σ(0)] = 0 , since Σ(0) =


0 0 · · · 0

0 Ω(a−1 , a
+
1 ) · · · Ω(a−1 , a

+
n−1)

...
...

. . .
...

0 Ω(a−n−1, a
+
1 ) · · · Ω(a−n−1, a

+
n−1)

 .

8.2. The derivative at λ = 0

The derivative of D(λ) is

D′(λ) = Trace
(
Σ(λ)#Σ′(λ)

)
, (8.9)

where Σ(λ)# is the adjugate. Since we are only interested in the first derivative, take

the limit as λ→ 0. This limit takes the remarkably simple form

lim
λ→0

Σ(λ)# =


T(û) 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 .

Substitute into the expression for the derivative (8.9)

D′(0) = T(û)Trace




1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

Σ′(0)

 , (8.10)
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or

D′(0) = T(û)
d

dλ
Ω(u−1 ,u

+
1 )

∣∣∣∣
λ=0

. (8.11)

Using results on λ−derivatives [5, 6] it follows that

d

dλ
Ω
(
u−1 ,u

+
1

) ∣∣∣∣
x=0

=

∫ +∞

−∞

〈
u−1 ,Bλu

+
1

〉
dx .

Evaluation at λ = 0 and substitution into (8.11) then gives

D′(0) = −T(û)

[∫ +∞

−∞
〈ûx,Mûx〉 dx

]
, (8.12)

proving the following Theorem.

Theorem. Suppose ∫ +∞

−∞
〈Mûx, ûx〉 dx > 0 .

Then λ = 0 is a simple eigenvalue of the Evans function if and only if the homoclinic

orbit is transversely constructed.

This result is to be contrasted with the non-Hamiltonian case. For a class of

parabolic reaction-diffusion equations, Alexander & Jones [2], prove that the Evans

function has a simple zero if and only if the homoclinic orbit is transversely constructed

(see Theorem 2.2 on page 59 of [2], and Theorem 4.1 on page 212 of [3]). In the

Hamiltonian case the derivative D′(0) is related to the symplectic invariant T(û).

9. Example: transversality for Swift-Hohenberg

Suppose that the Swift-Hohenberg equation (1.2) has a steady solitary wave, represented

by a homoclinic orbit solution φ̂(x, p). Assume that it satisfies the basic properties

lim
x→±∞

φ̂(x, p) = 0 and 0 <

∫ +∞

−∞
|φ̂x|2 dx < +∞ . (9.1)

It could be a simple homoclinic orbit or a multi-pulse homoclinic orbit. Such solutions

have been widely studied (e.g. see [11, 27] and references therein). The linearization

about such solutions in the time-dependent equation, with in addition a spectral ansatz,

leads to the spectral problem

L φ = λφ , (9.2)

where

L φ := −φxxxx − pφxx − φ+ 2φ̂φ . (9.3)

The theory of this paper leads to a new proof of Lemma 2.1(iii) in [27].

Lemma 9.1 (Sandstede [27]). Any homoclinic orbit of the steady SH equation

satisfying (9.1) with −2 < p < 2 is transversely constructed if and only if zero is a

simple eigenvalue of L in (9.2).
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Proof The spectral problem (9.2) can be recast into the form (8.1). The hypothesis on

the essential spectrum is satisfied for −2 < p < +2, and with the properties (9.1) the

formula (1.7) applies. Hence

D′(0) = −T(û)

∫ +∞

−∞
〈Mûx, ûx〉 dx = −T(û)

∫ +∞

−∞
φ̂2
x dx ,

using the form of M in (2.3). Hypothesis (9.1) assures that the integral exists and is

non-vanishing. Hence D′(0) = 0 if and only if T(û) 6= 0. The proof is completed by

applying Theorem 6.4. �.

The spectral problem here (9.2) is simple enough so that the Maslov index equals

the Morse index of L . Hence the formula (1.5) can be cast into a formula for the parity

of the Morse index. The Morse index for a wide range of multi-pulse homoclinic orbits

of the steady SH equation is computed in [11].

10. The Maslov index à la Souriau

To prove the formula (1.5) we need a definition for the Maslov index of homoclinic

orbits. There are a range of definitions in the literature. The predominant definition is

to take a path of Lagrangian subspaces L(x) (in this case the path of stable subspaces

in the linearization about the homoclinic orbit) and count the number of intersections

with a reference Lagrangian subspace. It can also be based on a triple (L1, L2, L3) of

Lagrangian subspaces. A third approach is to take a pair (L̃1, L̃2) of elements in the

universal cover of Λ(n). It is proved in Cappell et al. [7] that all three approaches to

defining the Maslov index are equivalent. In previous work [11, 12, 13], the first approach

was used. Here a variant of the third formulation due to Souriau [28] is used, which

makes it easier to compare with the Lazutkin-Treschev invariant. A comparison with

other definitions can be found in [22].

Souriau’s definition is formulated on the universal cover of the Lagrangian

Grassmannian manifold. For simplicity we define it on the universal covering of the

unitary group

π : Ũ(n)→ Λ(n) , (U, κ) 7→ the space spanned by U ,

with

Ũ(n) =

{
(U, κ)

∣∣∣ U =

[
U1

U2

]
, U1 + iU1 ∈ U(n) , e−i

κ
2 = det(U1 + iU2)

}
. (10.1)

Let U and V be two Lagrangian planes in the unitary representation,

U =

[
U1

U2

]
with U1 + iU2 ∈ U(n) ,
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with a similar definition for V, and define the Souriau mapping

ψ(U,V) = (U1 − iU2)
−1(V1 − iV2)(V1 + iV2)

−1(U1 + iU2) . (10.2)

ψ(U,V) is a symmetric unitary matrix (cf. §1.1.2 of [9]):

ψH = ψ−1 and ψT = ψ ⇒ ψψ = I . (10.3)

Hence its eigenvalues are on the unit circle and can be expressed in the form:

σ
(
ψ(U,V)

)
=
{

eiα1(U,V), . . . , eiαn(U,V)
}
, 0 ≤ α1 ≤ . . . ≤ αn < 2π .

To lighten the notation, we will drop the arguments on α1 and αn and their dependence

will be clear from the context.

Proposition 10.1 Let D =

e
1
2
iα1 0

. . .

0 e
1
2
iαn

. There exists n×n orthogonal matrices

R and S such that:

R−1ψ(U,V)R = D2, (U1R + iU2R)D = (V1S + iV2S) .

Proof As mentioned in [21], by using equation (10.3), it is clear that ψ and ψ commute

with each other. Therefore <ψ and =ψ also commute with each other. As a consequence,

there exists R ∈ O(n) such that R−1<ψR and R−1=ψR are diagonal. By choosing an

appropriate permutations of columns, one can choose R such that:

R−1ψ(U,V)R = D2 = DD
−1

If we denote S = (V1 + iV2)
−1(U1 + iU2)RD, then the previous equality implies that:

S = S

Hence, S is a real orthogonal matrix and we have:

(U1R + iU2R)D = (V1S + iV2S) .

Proposition 10.2 Let r1, . . . , rn be the columns of UR, rn+i = Jri, and s1, . . . , sn be

the columns of VS. Then:

si = cos(
αi
2

)ri − sin(
αi
2

)rn+i

Let d be the multiplicity of 1 as an eigenvalue of ψ. Then the intersection of the spaces

spanned by U and V (which are the same as the one spanned by UR and VS, but not

necessarily with the same orientation) is the space spanned by r1, . . . , rd
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Proof First, we have:

UR(<D) + JUR(=D) = VS

Then it is clear that si = cos(αi
2

)ri − sin(αi
2

)rn+i. Besides:

Ω(ri, sj) = 〈Jri, cos(
αj
2

)rj − sin(
αj
2

)Jsj〉 = − sin(
αj
2

)〈ri, sj〉 = − sin(
αi
2

)δij .

We have that:

• ri = si if i ≤ d.

• r1∧ . . .∧ rn∧ sd+1∧ . . .∧ sn = (−1)n−d sin(αd+1) · . . . · sin(αn)r1∧ . . .∧ rn∧ rn+d+1∧
. . . ∧ r2n 6= 0.

Therefore, π(U, κ) ∩ π(V, τ) contains the space spanned by r1, . . . , rd and its

dimension is smaller 2n− (2n− d) = d.

We conclude that π(U, κ) ∩ π(V, τ) is the space spanned by r1, . . . , rd. �

According to Souriau’s formula (cf. pages 126–128 of [28]), the Maslov index of this

pair of elements is defined in the following way.

Definition Let (U, κ) and (V, τ) be in Ũ(n). The Maslov index of this pair of elements

is defined by:

m
(
(U, κ), (V, τ)

)
=
τ − κ

2π
− α1 + · · ·+ αn

2π
+

1

2
d

where

d := dim
(
π((U, κ)) ∩ π((V, τ))

)
.

It is essential that α1, . . . , αn ∈ [0, 2π), or there would be several possible values of

m. It is clear that m is an integer when d is even and an half-integer when d is odd.

10.1. Maslov index of a homoclinic orbit

The definition for the Maslov index of a homoclinic orbit, based on Souriau’s definition

above, is as follows. Let û be an homoclinic orbit. Let (U+, κ+) and (U−, κ−) in Ũ(n)

be such that: 
span U+(x) = span{ûx(x), a+

1 (x), . . . , a+
n−1(x)}

span U−(x) = span{ûx(x), a−1 (x), . . . , a−n−1(x)}
κ+, κ− are continuous

.

Then, the Maslov index of the homoclinic is defined by:

Ihom(û) = m
(
(U−(x), κ−(x)), (U+(x), κ+(x))

)
− lim

y→+∞
m
(
(U−(−y), κ−(−y)), (U+(y), κ+(y))

)
,

(10.4)

and the definition is independent of x.
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In the previous definition, it is important that κ+, κ− are continuous. As a

consequence, these functions are unique up to a shift by a multiple of 4π. If we shift

κ+ (resp. κ−) by 4kπ, then the left of the minus sign is shifted by 2k (resp. −2k)

and the right of the minus is shifted by −2k (resp. 2k). This guarantees that Ihom is

independent of the choice of κ+ and κ−.

11. Transversality and parity of the Maslov index

The purpose of this section is to prove the following connection between the parity of

the Maslov index and transversality.

Theorem 11.1 Suppose û is a transversely constructed homoclinic orbit with Maslov

index Ihom(û). Then

(−1)Maslov = sign
(
T(û)

)
, Maslov := Ihom(û) +

1

2
.

The key point to prove the relationship between the Maslov index and the

intersection index for the tangent spaces of the stable and unstable subspaces lies in

the following lemma:

Lemma 11.2 Let (U, κ), (V, τ) ∈ Ũ(n) such that d = dim
(
π((U, κ))∩π((V, τ))

)
with

d = 0, 1, and let U∧ and V∧ be the corresponding n-forms. Then

Od(U
∧,V∧) = (−1)m+ 1

2
d+n , m := m((U, κ), (V, τ)) .

Proof First, let R,S,D, ri, si be matrices as defined in propositions 10.1 and 10.2.

We have:

Od(UR∧,VS∧) = sign det

Ω(rd+1, sd+1) . . . Ω(rd+1, sn)
...

...

Ω(rn, sd+1) . . . Ω(rn, sn)


= sign det

− sin(αd+1

2
) 0

. . .

0 − sin(αn
2

)

 = (−1)n−d = (−1)n+d

As a consequence we have that:

Od(U
∧,V∧) = sign(det RS)Od(UR∧,VS∧)

= sign det((U1 + iU2)(V1 + iV2)
−1D)(−1)d+n

= e−
1
2
i(κ−τ)e−

1
2
i(α1+···+αn)(−1)n+d = eiπ(m−

1
2
d)(−1)d+n = (−1)m+ 1

2
d+n

�
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The Maslov index, in the Souriau representation, for a homoclinic orbit is defined

in (10.4). Use Lemma 11.2 above to conclude the proof of Theorem 11.1,

(−1)Ihom(û)+ 1
2 = O1

(
(ûx ∧ a−1 (x) ∧ . . . ∧ a−n−1(x)), (ûx ∧ a+

1 (x) ∧ . . . ∧ a+
n−1(x))

)
× lim

y→+∞
O0

(
(ûx ∧ a−2 (−y) ∧ . . . ∧ a−n (−y)), (ûx(y) ∧ a+

2 (y) ∧ . . . ∧ a+
n (y))

)
×(−1)

1
2
−(n+ 1

2
)+n

(11.1)

But the right-hand side is just the sign of T(û). The right term of the product is 1,

because of the normalisation. Hence, we conclude that

(−1)Ihom(û)+ 1
2 = sign

(
T(û)

)
.

�

12. Example: coupled system of reaction-diffusion PDEs

Now consider the system of reaction-diffusion equations (1.3) with n = 3 and D = I

∂v1
∂t

=
∂2v1
∂x2

− 4v1 + 6v21 − c1(v1 − v2) + c3(v3 − v1)

∂v2
∂t

=
∂2v2
∂x2

− 4v2 + 6v22 + c1(v1 − v2)− c2(v2 − v3)

∂v3
∂t

=
∂2v3
∂x2

− 4v3 + 6v23 + c2(v2 − v3)− c3(v3 − v1) ,

(12.1)

where c = (c1, c2, c3) is a non-zero vector-valued coupling parameter. This example

generalizes the study of coupled reaction-diffusion equations with n = 2 in [12] and §7.

It can be formulated as in (1.1) by taking J in standard form (2.2) with n = 3,

u := (v,p) := (v,vx) and M =

[
I 0

0 0

]
.

Then (12.1) can be written in the form (1.1) with

H(u) = 1
2
(u24 + u25 + u26)− 2(u21 + u22 + u23) + 2(u31 + u32 + u23) + V (u) ,

with

V (u) = −1
2
c1(u1 − u2)2 − 1

2
c2(u2 − u3)2 − 1

2
c3(u3 − u1)2 .

This system has the exact steady solitary-wave solution

v1 = v2 = v3 := û(x) = sech2(x) .

Linearizing (12.1) about the basic state û and taking perturbations of the form

eλt(v1(x, λ), v2(x, λ), v3(x, λ)) ,
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leads to the coupled ODE eigenvalue problem

vxx = a(x, λ)v −Cv , (12.2)

where

a(x, λ) = λ+ 4 + Trace(C)− 12sech2(x) ,

and

C =

c2 c1 c3
c1 c3 c2
c3 c2 c1

 . (12.3)

The eigenvalue problem (12.2) can be solved explicitly. First diagonalize the symmetric

matrix C. Denote its real eigenvalues by σ1, σ2 and σ3. They satisfy

0 = det[σI−C] = (σ − Trace(C))(σ2 − γ2) ,

with

γ =
1√
2

[
(c1 − c2)2 + (c2 − c3)3 + (c3 − c1)2

]1/2
.

Hence the three eigenvalues of C are

σ1 = Trace(C) , σ2 = −γ , σ3 = +γ .

In practice it may be of interest to choose c so that the trivial solution of (12.1) is

temporally stable. The condition for temporal stability is

4 + Trace(C)± γ > 0 . (12.4)

Let T be the 3× 3 matrix whose columns are the eigenvectors of C. Hence

T−1CT =

σ1 0 0

0 σ2 0

0 0 σ3

 .

Use this transformation to diagonalize the eigenvalue problem (12.2). Let v = Tṽ, then

ṽ satisfies ṽ1ṽ2
ṽ3


xx

=

a(x, λ)− σ1 0 0

0 a(x, λ)− σ2 0

0 0 a(x, λ)− σ3


ṽ1ṽ2
ṽ3

 . (12.5)

12.1. Lazutkin-Treschev invariant calculation

Set λ = 0. The three decoupled ODEs in (12.5) represent the three stable and unstable

subspaces. Since σ1 = Trace(C), the first equation for ṽ1,

(ṽ1)xx + 12sech2(x)ṽ1 = 4ṽ1
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is the building block for ûx. The other two equations,

(ṽ2)xx + 12sech2(x)ṽ2 = κ1 ṽ2

(ṽ3)xx + 12sech2(x)ṽ3 = κ2 ṽ3 ,
(12.6)

are the building blocks for a±1 and a±2 . The coefficients κ1 and κ2 are

κ1 = 4 + Trace(C) + γ and κ2 = 4 + Trace(C)− γ . (12.7)

Using the result in Appendix B of [12], the two equations (12.6) can be explicitly solved.

Their solutions are

ṽ±2 = e∓
√
κ1x
(
∓ b(1)0 + b

(1)
1 tanh(x)∓ b(1)2 tanh2(x) + tanh3(x)

)
ṽ±3 = e∓

√
κ2x
(
∓ b(2)0 + b

(2)
1 tanh(x)∓ b(2)2 tanh2(x) + tanh3(x)

)
,

(12.8)

with

b
(j)
0 =

1

15

√
κj(4− κj) , b

(j)
1 =

1

5
(2κj − 3) b

(j)
2 = −√κj .

Denote the columns of T (eigenvectors of C) by t1, t2 and t3 and suppose the columns

are orthonormalized. Then the basis vectors for the stable and unstable subspaces are

a±1 =

(
ṽ±1 t2

(ṽ±2 )xt2

)
and a±2 =

(
ṽ±3 t3

(ṽ±3 )xt3

)
.

Use these vectors to compute the Lazutkin-Treschev invariant

T(û) = det

[
Ω(a−1 , a

+
1 ) Ω(a−1 , a

+
2 )

Ω(a−2 , a
+
1 ) Ω(a−2 , a

+
2 )

]
. (12.9)

Since t2 and t3 are orthogonal it follows that

Ω(a−1 , a
+
2 ) = Ω(a−2 , a

+
1 ) = 0 ,

and so the matrix in (12.9) is diagonal and

T(û) = Ω(a−1 , a
+
1 ) Ω(a−2 , a

+
2 ) . (12.10)

But
Ω(a−1 , a

+
1 ) =

(
ṽ−2 (ṽ2)

+
x − ṽ+2 (ṽ2)

−
x

)
= 2b

(1)
0

(√
κ1b

(1)
0 + b

(1)
1

)
= 2

225

√
κ1(4− κ1)

(
κ1(4− κ1) + 3(2κ1 − 3)

)
,

which simplifies to

Ω(a−1 , a
+
1 ) =

2

225

√
κ1(κ1 − 1)(κ1 − 4)(κ1 − 9) . (12.11)
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Similarly

Ω(a−2 , a
+
2 ) =

2

225

√
κ2(κ2 − 1)(κ2 − 4)(κ2 − 9) , (12.12)

where κ1 and κ2 are functions of c given in (12.7). Hence there are two independent

ways that the Lazutkin-Treschev invariant can vanish giving loss of transversality: either

Ω(a−1 , a
+
1 ) = 0 or Ω(a−2 , a

+
2 ) = 0.

To determine whether the vectors ux, a
±
1 , a

±
2 are normalized as in (6.6), let us

compute :

lim
x→∞

e2x(2+
√
κ1+
√
κ2)ux(−x) ∧ a−1 (−x) ∧ a−2 (−x) ∧ ux(x) ∧ a+

1 (x) ∧ a+
2 (x)

= lim
x→∞

e2x(2+
√
κ1+
√
κ2)Ω(ux(−x),ux(x))Ω(a−1 (−x), a+

1 (x))Ω(a−2 (−x), a+
2 (x))vol

= lim
x→∞

e2x(2+
√
κ1+
√
κ2)(ṽ1(−x)(ṽ1)x(x)−ṽ1(x)(ṽ1)x(−x))(ṽ−2 (−x)(ṽ2)

+
x (x)−ṽ+2 (x)(ṽ2)

−
x (−x))

× (ṽ−2 (−x)(ṽ3)
+
x (x)− ṽ+3 (x)(ṽ3)

−
x (−x))vol

= lim
x→∞

e2x(2+
√
κ1+
√
κ2)(−2ṽ1(ṽ1)x)(−2ṽ+2 (ṽ2)

+
x )(−2ṽ+3 (ṽ3)

+
x )vol

= − lim
x→∞

e2x(2+
√
κ1+
√
κ2)
(
(ṽ1)

2
)
x

(
(ṽ+2 )2

)
x

(
(ṽ+3 )2

)
x
vol.

The third equality was obtained by noticing that ṽ1(−x) = −ṽ1(x), ṽ−2 (−x) = −ṽ+2 (x),

ṽ−3 (−x) = −ṽ+3 (x). When x is close to +∞, (ṽ+1 )2, (ṽ+2 )2, (ṽ+3 )2 are decreasing. Hence,

the normalising factor is positive. As a consequence, the Lazutkin-Treschev invariant

has the appropriate normalization.

12.1.1. The case where c = c(1, 1, 1) In the special case c = c(1, 1, 1) the Maslov index

was computed in [13]. In this case γ = 0 and Trace(C) = 3c, and so κ1 = κ2 := κ = 4+3c

and the Lazutkin-Treschev invariant reduces to

T(û) =

(
2

225

)2

κ(κ− 1)2(κ− 4)2(κ− 9)2 . (12.13)

With the condition κ > 0 (which follows from (12.4)), it is non-negative. Substituting

for κ in terms of c in (12.13),

T(û) =

[
18

225

√
4 + 3c (c+ 1)c(3c− 5)

]2
, (12.14)

giving that T(û) ≥ 0. Therefore, according to the formula

(−1)Maslov = sign(T(û)) , with Maslov = Ihom(u) +
1

2
,

the Maslov index must be even, and jumps by an even number when T(û) = 0. Hence

we can expect a jump of two in the Maslov index when c = −1, c = 0 and c = 5
3
. In this

case, the latter observation can be checked by explicitly computing the Maslov index.
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12.2. Calculation of the Maslov index

Using the results in [13] a formula for λ in the point spectrum can be computed. The

eigenvalue problem (12.2) can be re-formulated in terms of the Evans function

wx = A(x, λ)w ,

by taking w = (v,vx) and

A(x, λ) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

f(x, λ) + c1 + c3 −c1 −c3 0 0 0

−c1 f(x, λ) + c1 + c2 −c2 0 0 0

−c3 −c2 f(x, λ) + c2 + c3 0 0 0


, (12.15)

with f(x, λ) = λ + 4 − 12 sech2(x). The matrix in (12.15) is Hamiltonian: JA is

symmetric.

There are exactly nine eigenvalues in the point spectrum of this eigenvalue problem,

λj = −c1 − c2 − c3 + σj − 3

λj+3 = −c1 − c2 − c3 + σj
λj+6 = −c1 − c2 − c3 + σj + 5

 j = 1, 2, 3 .

When c1 = c2 = c3 := c then γ = 0 and σ1 = 3c, and σ2 = σ3 = 0. Hence the nine

eigenvalues reduce to{
λ : λ = (−3− 3c,−3c,−3c+ 5,−3, 0, 5)

}
,

with the first three having multiplicity two. Hence the number of positive eigenvalues

without multiplicity is 4, 3, 2, or 1 depending on whether c < −1, −1 < c < 0,

0 < c < 5/3 or c > 5/3 respectively. According to Lemma 6 of [12], the Maslov index

at λ counts the eigenvalues with multiplicities greater than λ, so the Maslov index can

be explicitly written down:

c c < −1 −1 < c < 0 0 < c < 5
3

c > 5
3

Maslov 8 6 4 2

As expected from the positive sign of the Lazutkin-Treschev invariant, the number

Maslov = Ihom(u) + 1
2

is even.
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12.3. Generalization to N−coupled reaction-diffusion equations

This model can be generalized to N−coupled reaction diffusion equations. Let v =

(v1, . . . , vN) and define

V (v) = −1
2

N−1∑
j=1

cj(vj − vj+1)
2 − 1

2
cN(vN − v1)2 .

Then the following system is a gradient reaction-diffusion system

∂vj
∂t

=
∂2vj
∂x2
− 4uj + 6v2j +

∂V

∂vj
, j = 1, . . . , N , (12.16)

which generalizes (12.1) to N−coupled equations. The steady part of this equation is

a Hamiltonian system on a phase space of dimension 2N . Taking vj(x) = sech2x as

the basic state and linearizing about it, the spectral problem can be explicitly solved

in terms of the eigenvalues of the matrix C. It appears that in this case the Lazutkin-

Treschev invariant can be constructed so that it is the determinant of a diagonal matrix,

e.g. T(û) = Ω(a−1 , a
+
1 ) · · ·Ω(a−N−1, a

+
N−1).

13. Concluding remarks

Our interest in this paper is in connecting transversality, the Lazutkin-Treschev

invariant, the Maslov index and the Evans function. However, one of the main

interests in geometric invariants of homoclinic orbits is to relate them to stability, when

the homoclinic orbit represents a solitary wave. For example, the Maslov index has

been related to stability of solitary waves for the nonlinear Schrödinger equation [23],

gradient reaction-diffusion equations [3], Fitzhugh-Nagumo type systems [15], and some

Hamiltonian PDEs [11, 12, 13]. An additional new direction that is now possible is

a new proof of the sufficient condition for instability in [4, 5] in the case where the

Hamiltonian PDE is multi-symplectic – the main difference is that the matrix M in (1.1)

is skew-symmetric, and so D′(0) = 0 and the second derivative needs to be calculated.

Combining the results in this paper with the proof in [4, 5] suggests that D′′(0) will be

proportional to a product of the Treschev-Lazutkin invariant and the derivative of the

momentum with respect to the speed of the solitary wave.
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