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Observability in Connected Strongly Regular
Graphs and Distance Regular Graphs

Alain Y. Kibangou∗ and Christian Commault

Abstract—This paper concerns the study of observability in
consensus networks modeled with strongly regular graphs or
distance regular graphs. We first give a Kalman-like simple
algebraic criterion for observability in distance regular graphs.
This criterion consists in evaluating the rank of a matrix built
with the components of the Bose-Mesner algebra associated with
the considered graph. Then, we define some bipartite graphs
that capture the observability properties of the graph to be
studied. In particular, we show that necessary and sufficient
observability conditions are given by the nullity of the so-called
local bipartite observability graph (resp. local unfolded bipartite
observability graph) for strongly regular graphs (resp. distance
regular graphs). When the nullity cannot be derived directly
from the structure of these bipartite graphs, the rank of the
associated bi-adjacency matrix allows evaluating observability.
Eventually, as a by-product of the main results we show that
non-observability can be stated just by comparing the valency
of the graph to be studied with a bound computed from the
number of vertices of the graph and its diameter. Similarly non-
observability can also be stated by evaluating the size of the
maximum matching in the above mentioned bipartite graphs.

Index Terms—Observability, Association scheme, Distance reg-
ular graphs, Strongly regular graphs, Consensus networks, Nul-
lity of graphs, Bipartite graph.

I. INTRODUCTION

A system is observable if its internal state can be fully
reconstructed from its outputs. In complex systems, intercon-
nections between several entities occur so that an emergent
behaviour can be observed. For instance, in large scale factory
or multi-brand retailing, the overall system is constituted with
small entities that are networked. The networking of these
small entities allows the monitoring of the production of
the overall system through an average consensus method for
instance (see [1] and references therein). From any entity (node
of the network) it is then possible to assess the production of
the overall system. If in the meanwhile, we are also interested
with knowing the specific production of each entity then
the networked system should be observable. However, in a
context of economical war, one can promote to have a non-
observable system in order to limit spying of each entity. More
generally, observability plays an important role in distributed
estimation and intrusion detection problems [2], [3]. Indeed, in
estimating the network state, one can decide if the functioning
of the network is normal or not and decide an action to
preserve the system functionalities. In consensus networks,
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observability properties can serve for designing finite-time
average consensus protocols such that in [4]. Studying the
observability properties of a given network can also help for
characterizing the resilience of the network to external attacks.

In this paper, we are interested in the observability issue in
a network running a consensus algorithm. Different notions of
network observability can be considered. A network is said to
be:

• node-observable from a given node if that node is able
to reconstruct the entire network state from its own
measurements. This issue has been studied for instance in
[5] and [6] where it has been stated that a network with
a state matrix having at least one non-simple eigenvalue
is not node-observable.

• nodes set-observable from a given set of nodes if the
entire network state can be reconstructed from the mea-
surements of these nodes. This issue has been considered
in the pioneering work [7] and also in [6].

• neighborhood observable from a given node if that node
can reconstruct the entire network state from its own
measurements and those of its neighbors. This issue was
studied in [8].

• globally observable if it is neighborhood observable from
any node.

The main contribution in [7] was to carry out a graph-
theoretic characterization of observability. Precisely a nec-
essary condition for nodes set-observability based on the
notion of equitable partition over graphs was stated. This
notion is also the cornerstone of several results concerning
the dual problem of controllability [9], [10]. Recently, for the
node-observability problem over consensus networks, a full
relationship between the minimal size of the external equitable
partition and the dimension of the observable subspace has
been investigated in [5]. In general, studying necessary and
sufficient conditions of observability for arbitrary graphs is a
tough task. Therefore, in the recent years, studies have been
generally restricted to some particular families of graphs. For
instance, observability has been studied in [6] for paths and
circular graphs where the study was carried out based on rules
on number theory. The case of simple grids and torus were
considered by the same authors in [11] and [12]. To summa-
rize, two methodological approaches have been considered for
a graph-theoretic characterization of observability: equitable
partitions and number theory. The first approach gives rise to
necessary conditions for general graphs, whereas the second
allows getting necessary and sufficient conditions for specific
graphs (paths, cycles, simple grids). In this paper, we introduce
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a new methodological approach that is well adapted for a
larger family of graphs: distance regular graphs, which include
cycles and strongly regular graphs. The regularity properties of
these graphs can particularly be useful for improving network
robustness as it is the case for cryptographic systems [13],
[14]. Moreover, universality of strongly regular graphs have
been stated in [15] where it is established that any graph on
N vertices is an induced subgraph of a strongly regular graph
on at most 4N2 vertices.

It is noteworthy to mention that, for distance regular graphs,
the dual problem of controllability in multi-agent systems has
been recently studied in [10]. The analysis methodology was
based on the notion of graph equitable partitions. It was shown
that a networked system modelled with a distance regular
graph cannot be controlled from a single leader. At least N−D
leaders are necessary, N and D standing respectively for the
number of nodes and the diameter of the graph. In this paper,
our approach is different. It is based on the Bose-Mesner
algebra [16] and on the notion of nullity of graphs. In several
cases, it gives simpler ways for assessing observability and
we provide necessary and sufficient conditions in contrast to
equitable partitions based analysis that only provides necessary
conditions. Since distance regular graphs and strongly regular
graphs have multiple eigenvalues, according to [6], they are not
node-observable. Therefore, our study concerns neighborhood
observability and global-observability. We first extend the
preliminary results on the algebraic characterization reported
in [8] and then introduce new results related to a graph
characterization of observability, which does not require the
computation of a matrix rank. Precisely, we show how building
a bipartite graph that captures the observability properties of
the graph. We derive a couple of necessary and sufficient
conditions based on the nullity of such a graph.

The paper is organized as follows: in Section II, we state the
problem and define the class of graphs under study. In Section
III, we study the observability conditions by following an
algebraic point of view. In Section IV, a graph characterization
of observability conditions is proposed for strongly regular
graphs first and then for more general distance regular graphs.
Finally, the obtained results are illustrated for some particular
families of graphs in Section V before concluding the paper.

Notations: The N×N matrices IN and JN denote respec-
tively the identity matrix and the all ones matrix. en stands for
the nth vector of the canonical basis of ℜN . For matrices A
and B and the integer N, K (A,BT ,N) stands for the matrix(

AT BAT · · · BN−1AT
)T .

II. PROBLEM FORMULATION

Agents in distributed multi-agent networks are required to
operate in concert with each other in order to achieve system
level objectives, while having access to short range communi-
cations, local sensing capabilities, and limited computational
resources [17]. Graphs provide powerful abstractions of in-
teractions in such networks. Throughout this paper, we will
consider connected regular graphs. A graph X (V ;E ) consists
of a vertex set V = {v1,v2, · · · ,vN}, of cardinality |V | = N,
and an edge set E ⊂ V ×V , where an edge is an unordered

pair of distinct vertices of X . For two vertices vn and vm
of X (V ;E ), if (vn,vm) ∈ E then vn and vm are said to be
adjacent or neighbors. In the sequel, we will denote by Nn
the neighborhood of vn, i.e. the set of vertices of X that are
adjacent to vertex vn, whereas ¯Nn will stand for the set of
vertices non-adjacent to vn. Therefore, Nn

⋃ ¯Nn
⋃{vn} = V .

The adjacency matrix A, with entries Anm defined as Anm = 1
if (vn,vm) ∈ E and 0 elsewhere, captures the interaction
between the vertices of a graph. X (V ;E ) is said to be regular
of degree (or valency) K, when every vertex is precisely
adjacent to K vertices, and connected if for each pair of distinct
vertices there exists a path containing them; a path being a
sequence of distinct vertices such that consecutive vertices in
the sequence are adjacent. The number of edges involved is
usually called the length of the path. For two vertices vn and
vm, the length of the shortest path between them defines the
distance dist(vn,vm). The diameter, D, of a graph is then the
maximum distance between any two vertices in V .

A. Problem Statement

Let us consider a network with N agents whose interactions
are modeled with a connected regular graph X (V ;E ) of
valency K and adjacency matrix A. The dynamics of the
network are given by

x(k+1) = Wx(k), W = γ1IN + γ2A, 0 < γ2 <
1
K
, (1)

where γ1 and γ2 are nonzero real scalars such that γ1+Kγ2 = 1,
while x(k)∈ℜN contains the local values and defines the state
of the network. By selecting the parameters γ1 and γ2 such
that the spectral radius ρ(γ1IN +γ2A− 1

N JN)< 1, equation (1)
defines an average consensus protocol, which constitutes the
cornerstone of several distributed estimation algorithms [1].

Through short range communications, each node can di-
rectly observe the value of its neighbors. Therefore, the
observation vector at vertex vn is given by

yn(k) = Cnx(k), (2)

where CT
n =

(
en em1 · · · emK

)
∈ ℜN×(K+1), with mi ∈

{m ∈ N|(vn,vm) ∈ E } , i = 1,2, · · · ,K.
In this paper, the fundamental question to be studied is

as follows: given consecutive measurements yn(k), k ≥ 0, is
it possible to reconstruct the initial state x(0) of the entire
network ? In other words, is the pair (W,Cn) observable ?

It is well known that observability of the pair (W,Cn) is
guaranteed if and only if the so-called Kalman matrix OW,Cn =
K (Cn,W,N) ∈ ℜN(K+1)×N is full column rank. It is worth
noting that observability of a given pair, i.e. neighborhood-
observability does not imply global-observability. As noticed
in [7], checking the rank condition of the Kalman matrix
becomes infeasible when the number N of agents becomes
very large. In what follows, we will devise alternative ways
for studying observability for networks modeled as distance
regular graphs and strongly regular graphs.

B. Strongly regular and distance regular graphs

Before defining strongly regular graphs and distance regular
graphs, let us first recall the notion of association scheme with
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D classes, that is a set A = {A0, · · · ,AD} of N×N binary (
0−1) matrices such that [18]:

1) A0 = IN ,

2)
D
∑

i=0
Ai = JN ,

3) AT
i ∈A for each i,

4) AiA j = A jAi ∈ span{A }
The algebra generated by the matrices Ai, i = 0, · · · ,D, is
called Bose-Mesner algebra [16]. We can note from the second
item that the matrices Ai are linearly independent. In addition,
from the fourth item, we can also note that this algebra is
closed under multiplication.

Definition 1: A connected graph X (V ;E ) is said to be
strongly regular if there are integers K, a, and c such that:

1) X (V ;E ) is regular with valency K.
2) Any two adjacent vertices vn and vm have exactly a

common neighbors, i.e. |Nn
⋂

Nm|= a if (vn,vm) ∈ E .
3) Any two distinct non-adjacent vertices vn and vm have

exactly c common neighbors, i.e. |Nn
⋂

Nm| = c if
(vn,vm) /∈ E .

A strongly regular graph with N vertices, degree K, and
parameters a and c is denoted by SRG(N,K,a,c).
It has been shown that {IN ,A,JN− IN−A}, with A the adja-
cency matrix of a strongly regular graph, forms an association
scheme with two classes. Conversely, any association scheme
with two classes arises from a strongly regular graph [18].

Definition 2: Consider a connected graph X (V ;E ) with
diameter D. Define graphs Xi, i = 0, · · · ,D, with adjacency
matrices Ai, where two vertices are adjacent in Xi if and
only if their distance equals i. If {A0,A1, · · · ,AD} defines
an association scheme then X (V ;E ) is said to be distance
regular.

Defining by N
(i)

n the neighborhood of vn in Xi, for any two
vertices vn and vm such that dist(vn,vm) = i, distance regular
graphs are characterized by the parameters

ci =
∣∣∣Nm

⋂
N

(i−1)
n

∣∣∣ , i = 1, · · · ,D,

ai =
∣∣∣Nm

⋂
N

(i)
n

∣∣∣ , i = 1, · · · ,D,

bi =
∣∣∣Nm

⋂
N

(i+1)
n

∣∣∣ , i = 0, · · · ,D−1.

We can interpret these parameters as follows: given two
vertices vn and vm such that d(vn,vm) = i, among the neighbors
of vm there are ci at distance i− 1 from vn, ai at distance i,
and bi at distance i+1. It follows that:

ai +bi + ci = K,

a0 = c0 = bD = 0, c1 = 1,

ciki = bi−1ki−1,

where ki stands for the valency of the ith-distance graph
Xi. One can note that: b0 ≥ b1 ≥ ·· · ≥ bD−1 ≥ 0 and 0 <
c1 ≤ c2 ≤ ·· · ≤ cD. The intersection array associated with a
distance regular graph with diameter D is then defined as
{b0,b1, · · · ,bD−1;c1,c2, · · · ,cD}.

Example 1: A cycle with N vertices is a distance
regular graph with valency 2. Its intersection array

is given by {2,1, · · · ,1;1,1, · · · ,1,1} if N is odd and
{2,1, · · · ,1;1,1, · · · ,1,2} if N is even.

Example 2: A connected strongly regular graph
SRG(N,K,a,c) is a distance-regular graph with diameter
2. Its intersection array is given by {K,K−a−1;1,c}.

The Bose-Mesner algebra being closed under multiplication,
one important property, in the case of distance regular graphs,
is as follows [18]:

AAi = bi−1Ai−1 +aiAi + ci+1Ai+1. (3)

III. ALGEBRAIC CHARACTERIZATION OF OBSERVABILITY
IN DISTANCE REGULAR GRAPHS.

In this section, for an arbitrary vertex vn, our aim is to
devise algebraic conditions for neighborhood-observability, i.e.
observability of the pair (W,Cn), by using simpler matrices
than the Kalman observability matrix. In order to carry out
our study, we will rewrite OW,Cn according to the matrices Ai
defining the Bose-Mesner algebra. For this purpose, we first
state the following lemma:

Lemma 1: [8] The powers Ap of the adjacency matrix of
a distance regular graph can be expanded in the Bose-Mesner
algebra as follows:

Ap =
p

∑
j=0

βp, jA j, (4)

where the coefficients βp, j depend uniquely on the intersection
parameters and βp,p > 0.
From this lemma, we can show that rather studying observabil-
ity through the Kalman matrix, we can instead study a simpler
matrix depending on matrices of the Bose-Mesner algebra.

Lemma 2: Consider a network with N nodes modeled
with a distance regular graph X (V ;E ) of diameter D and
valency K whose association scheme is given by A =
{A0, · · · ,AD}. Assume that the dynamics of the network
are modeled with equations (1) and (2) where Cn stands
for the observation matrix associated with vertex vn ∈ V .
The pair (W,Cn) is observable if and only if the matrix
Ôn =

(
A0CT

n A1CT
n · · · ADCT

n
)T ∈ ℜ(D+1)(K+1)×N is

full column rank.
Proof: See Appendix A.
The matrix Ôn is simpler than the Kalman matrix. Indeed,
it is smaller and it does not resort to powers of the network
matrix. The matrices CnAl , l = 0,1, · · · ,D, involved in Ôn have
also some nice properties. For instance the following result
demonstrated in [8] will be particularly useful in the sequel.

Lemma 3: Let vn be a vertex of a graph X (V ;E ) char-
acterized by the association scheme A = {A0,A1, · · · ,AD}
and let Cn be the observation matrix associated with vn. The
first row wT

1,l of the matrix CnAl can be written as a linear
combination of rows of CnA j, j = 0,1, · · · , l−1.

Now, equivalently to the Kalman matrix, we define a Bose-
Mesner observability matrix that completely characterizes ob-
servability in distance regular graphs.

Theorem 1: Consider a network with N nodes modeled with
a distance regular graph X (V ;E ) of diameter D and valency
K whose association scheme is given by A = {A0, · · · ,AD}.
Assume that the dynamics of the network are modeled with
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equations (1) and (2) where Cn stands for the observation
matrix associated with vertex vn ∈ V . The pair (W,Cn) is
observable if and only if:

1) the Bose-Mesner observability matrix Ōn =(
A0CT

n · · · AD−1CT
n
)T ∈ ℜD(K+1)×N is full

column rank.
2) the truncated Bose-Mesner observability matrix Õn =(

A0C̄T
n · · · AD−1C̄T

n
)T ∈ℜDK×N has rank equal to

N − 1, where C̄T
n =

(
em1 · · · emK

)
∈ ℜN×K , with

mi ∈ {m ∈ N|(vn,vm) ∈ E } , i = 1,2, · · · ,K.
Proof: See Appendix B.
The Bose-Mesner observability matrix and its truncated ver-
sion are much simpler than the Kalman matrix since in general
the diameter D is much lower than N.

Eventually, we can deduce the following necessary observ-
ability condition:

Corollary 1: Consider a network with N nodes modeled
with a distance regular graph X (V ;E ) of diameter D and
valency K whose association scheme is given by A =
{A0, · · · ,AD}. Assume that the dynamics of the network are
modeled with equations (1) and (2) where Cn stands for the
observation matrix associated with vertex vn ∈ V . The pair
(W,Cn) is observable only if DK ≥ N−1.
From the corollary above, non-observability can be stated
by considering only the number of vertices of the graph, its
diameter, and its valency. We can therefore easily conclude on
non-observability in some families of graphs without carrying
out complex studies.

Example 3: Odd graphs On are distance-regular graphs of

degree n, diameter n−1, and number of vertices
(

2n−1
n−1

)
.

O2 is a triangle while O3 is the Petersen graph (see Fig.
4). These graphs have been proposed as a network topology
in parallel computing[19]. We can note that for n ≥ 3 the
necessary condition is not fulfilled. With the simple tool
provided herein we can state on non-observability of graphs
that can have a very high number of vertices without any
computation of matrix rank nor investigation of existence of
equitable partitions as in [7].
In what follows, we exploit some properties of the truncated
Bose-Mesner observability matrix to devise a graph based
characterization of observability.

IV. GRAPH BASED CHARACTERIZATION OF
OBSERVABILITY IN STRONGLY REGULAR GRAPHS AND

DISTANCE REGULAR GRAPHS

Before analyzing observability from structural properties of
some given induced graphs to be defined, we first recall the
notion of matching that will be useful in the sequel of our
study.

Definition 3: For a graph X (V ;E )

• A matching is a collection of mutually non-adjacent edges
of X .

• A maximum matching is a matching with the maximum
possible number of edges.

Induced graphs that will be used for characterizing observ-
ability are bipartite. We will, in particular, be interested by
the notion of nullity of graphs.

A. Nullity of bipartite graphs

The nullity η(X ) of a graph X (V ;E ), with N = |V |, is
defined as the algebraic multiplicity of the number zero in
the graph spectrum, i.e. in the spectrum of the corresponding
adjacency matrix. It is linked to the rank of the adjacency
matrix as: η(X ) = N− rank(A). In addition to the evident
relation of this notion with spectral graph theory, it is note-
worthy to mention its importance in the research field named
Chemical Graph Theory [20], [21]. In the sequel we will make
use of theorems characterizing the nullity of bipartite graphs
introduced by Chemical Graph theorists. We first recall that

Definition 4: A graph X (V ;E ) with N vertices is said to
be bipartite if the vertex set can be partitioned in two parts V1
and V2 such that every edge has one end in V1 and one in V2.
In such a case, the graph will be denoted as X (V1,V2;E ).

For a bipartite graph X (V1,V2;E ), the adjacency matrix is
structured as:

A =

(
0 B

BT 0

)
.

the matrix B, with dimensions |V1| × |V2|, called the bi-
adjacency matrix, captures the relationship between vertices
of the two disjoint subsets defining the bipartite graph.

Theorem 2: [22] For a bipartite graph X (V1,V2;E ) with
N vertices and bi-adjacency matrix B, η(X ) = N−2rank(B).

For computing the nullity of a graph, we can also draw
conclusions from the structure of the graph. In general, finding
connections between the structure of a graph and its nullity
is a tough task. For bipartite graphs we have the following
result:

Theorem 3: [23] If a bipartite graph X (V1,V2;E ) with
N ≥ 1 vertices does not contain any cycle of length 4s
(s = 1,2, · · · ), then η(X ) = N−2m, where m is the size of a
maximum matching in X .
One can note that a particular case of this theorem concerns
trees that are by definition acyclic. Moreover, the two previous
theorems yield the following obvious corollary:

Corollary 2: If a bipartite graph X (V1,V2;E ) with N ≥ 1
vertices does not contain any cycle of length 4s (s = 1,2, · · · ),
then the rank of its bi-adjacency matrix B is the size of the
maximum matching in X .
Determining whether a bipartite graph contains a cycle whose
length is a multiple of 4 is a question that has been answered
by providing some sufficient conditions. Following the for-
malism of signed graphs, an answer has been provided in [24]
and more generally some algorithms have been proposed for
instance in [25].

B. Graph-based characterization of observability in strongly
regular graphs

Keeping in mind that strongly regular graphs admit an
association scheme with D= 2 classes, then applying Theorem
1 to strongly regular graphs yields that observability of the
pair (W,Cn) is guaranteed if and only if the truncated Bose-

Mesner observability matrix Õn =

(
C̄nA0
C̄nA1

)
∈ ℜ2K×N has

rank N−1.
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Let us define a permutation matrix ΠΠΠ that allows partitioning
Õn in two sub-matrices of dimensions 2K×K and 2K× (N−
K) respectively:

ÕnΠΠΠ =
(

Õn,1 Õn,2
)
=

(
IK 0

B̃n,1 B̃n,2

)
.

We can easily note that the intersection of the column space
of these two sub-matrices is restricted to zero. Therefore
rank(Õn) = rank(ÕnΠΠΠ) = rank(Õn,1)+ rank(Õn,2) [26]. As a
consequence, we get:

rank(Õn) = K + rank(Õn,2) = K + rank(B̃n,2). (5)

From the above equation, we can conclude that the rank
property of Õn is completely characterized by the rank of B̃n,2.
This matrix can be studied following a graph theory point of
view. For this purpose, we first state the following definition:

Definition 5: Consider a strongly regular graph X (V ;E ).
The local bipartite observability graph Ln(Nn, ¯Nn;E), E ⊂ E ,
associated with vertex vn ∈ V is defined as the bipartite graph
where u ∈Nn and v ∈ ¯Nn are adjacent if and only if they are
adjacent in X (V ;E ). Its bi-adjacency matrix Bn is equal to
B̃n,2.
The local bipartite observability graph associated with vertex
vn can be built by first dividing the vertices in V \vn in two
sets: the neighbors of vn and the non-adjacent vertices. Then
take off the edges between vertices of the same set along with
vertex vn. The obtained graph is bipartite.

Example 4: Figure 1 depicts a 5-Payley graph, that is
also a cycle graph with 5 vertices, and the local bipartite
observability graph associate with a given vertex.

v1

v2

v3 v4

v5 v2

v3 v4

v5N1

N̄1

Fig. 1. (a) A strongly regular graph SRG(5,2,0,1) with the associated local
bipartite observability graph corresponding to vertex v1 (b).

Now, in the following theorem, we state that observability
of the pair (W,Cn) depends only on the local bipartite
observability graph.

Theorem 4: Consider a network with N nodes modeled with
a connected strongly regular graph X (V ;E ) of valency K and
adjacency matrix A. Assume that the dynamics of the network
are modeled with equations (1) and (2) where Cn stands for
the observation matrix associated with vertex vn ∈ V . Let
Ln(Nn, ¯Nn;E), with bi-adjacency matrix Bn, be the local
bipartite observability graph associated with vn. The following
statements are equivalent:
• the pair (W,Cn) is observable;
• the bi-adjacency matrix Bn of its associated local bipartite

observability graph Ln(Nn, ¯Nn;E) has rank N−K−1;

• the local bipartite observability graph Ln(Nn, ¯Nn;E) has
nullity η(Ln) = 2K−N +1.

Proof: From Theorem 1, we know that (W,Cn) is
observable iff rank(Õn) = N − 1. Using (5), it is
equivalent to have rank(Bn) = N − K − 1 since Bn is
the bi-adjacency matrix of Ln. Applying Theorem 2, we
know that the nullity of this bipartite graph is given by
η(Ln(Nn, ¯Nn;E)) = N − 1 − 2rank(Bn). Knowing that
observability means that rank(Bn) = N−K−1, we conclude
that the nullity of the local bipartite observability graph must
be equal to 2K−N +1. �

Inferring the nullity of a graph from its structure is not an
easy task in general. However, we can deduce conditions that
can be particularly useful in practice. For instance, taking into
account the link between the rank of the bi-adjacency matrix
and the notion of maximum matching of a bipartite graph for
a given family of graphs, we can state the following condition:

Theorem 5: Consider a network with N nodes modeled with
a connected strongly regular graph X (V ;E ) of valency K and
adjacency matrix A. Assume that the dynamics of the network
are modeled with equations (1) and (2) where Cn stands for the
observation matrix associated with vertex vn ∈ V . Assuming
that Ln(Nn, ¯Nn;E), the local bipartite observability graph
associated with vn, does not contain any cycle of length 4s
(s = 1,2, · · · ). The pair (W,Cn) is observable if and only if
the size of a maximum matching in Ln equals N−K−1.
Proof: As said before, observability is ensured if and only
if the rank of the bi-adjacency matrix of the local bipartite
observability graph Ln(Nn, ¯Nn;E) equals N−K− 1. When
Ln(Nn, ¯Nn;E) does not contain any cycle of length 4s
(s = 1,2, · · · ), from Corollary 2, we know that the rank of
the bi-adjacency matrix is equal to the size of a maximum
matching in Ln. We can therefore deduce that observability
of the pair (W,Cn) is equivalent to ensure that the size of a
maximum matching of Ln(Nn, ¯Nn;E) equals N−K−1.�

C. Graph-based characterization of observability in distance
regular graphs

In this section, we extend the results from strongly regular
graphs to distance regular graphs. First, we can note that
the notion of local bipartite graph introduced for strongly
regular graphs only takes adjacency relation into account.
When considering more general distance regular graphs, the
notion of distance is to be seriously considered. Each class d
of the association scheme associated with a distance regular
graph introduces a different modality for the analysis of the
graph. For this purpose, we resort to the concept of multi-
layer graphs that can be used for representing interactions
with different modalities. A multi-layer graph is defined as
a graph G (V ;E ) with M individual layers each layer being
a graph G (i)(V ;E (i)). Such representations have been used
for modeling social networks or citation networks for instance
[27], [28].

Definition 6: Let X (V ;E ) and Xi(V ;Ei) be a distance
regular graph, with valency K and diameter D, and its ith-
distance graph, respectively. The local observability multilayer
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graph associated with a vertex vn is defined as a multilayer
graph Mn(Nn, ¯Nn;E), E ⊂ E constituted with (D−1) layers,
each layer M

(i)
n being defined as a bipartite graph where u ∈

Nn and v ∈ ¯Nn are adjacent if they are adjacent in Xi.
Figure 2 depicts a distance regular graph, here a cycle with
6 vertices, and the two layers defining the local observability
multilayer graph associated with vertex v1.

v2

v1

v3

v4

v5v6

v2 v3

v4

v5v6

N1
N̄1

M(1)
1

v2 v3

v4

v5v6

N1 N̄1

M(2)
1

Fig. 2. A distance regular graph (left) and the two layers (middle and right)
of the associated local observability multilayer graph or the vertex v1.

Definition 7: Let Bn,i, i = 1, · · · ,D−1, be the bi-adjacency
matrices of the layers M

(i)
n of a local observability multi-

layer graph Mn(Nn, ¯Nn;E), then the local unfolded bipartite
observability graph Yn is defined as the bipartite graph ad-
mitting the matrix Bn =

(
BT

n,1 BT
n,2 · · · BT

n,D−1
)T

as bi-
adjacency matrix.
The local unfolded bipartite observability graph associated
with vertex v1 of the graph depicted in Fig. 2 is given in
Fig. 3.

Fig. 3. Local unfolded bipartite observability graph associated with a cycle
with 6 vertices.

For D = 2, corresponding to a strongly regular graph,
Mn(Nn, ¯Nn;E) has a single layer. Therefore the local un-
folded bipartite observability graph is the so-called local bi-
partite observability graph defined in the previous subsection.
Then, we can easily extend the previous results to the more
general case of distance regular graphs, i.e. for an arbitrary
value of D.

Theorem 6: Consider a network with N nodes modeled with
a connected distance regular graph X (V ;E ) of valency K,
diameter D, and association scheme A = {A0,A1, · · · ,AD}.
Assume that the dynamics of the network are modeled with
equations (1) and (2) where Cn stands for the observation
matrix associated with vertex vn ∈ V . Let Yn, with bi-
adjacency matrix Bn =

(
BT

n,1 BT
n,2 · · · BT

n,D−1
)T

, be the
local unfolded bipartite observability graph associated with vn.
The following statements are equivalent:
• the pair (W,Cn) is observable;

• the bi-adjacency matrix Bn of the local unfolded bipartite
observability graph Yn associated with vn has rank N−
K−1;

• the local unfolded bipartite observability graph Yn asso-
ciated with vn has nullity η(Yn) = DK−N +1.

Proof: From Theorem 1, we know that the pair (W,Cn)
is observable iff the corresponding truncated Bose-Mesner
observability matrix Õn has rank N−K− 1. As we did for
SRGs we can also partition ÕnΠΠΠ in two parts Õn,1 and Õn,2

where rank(Õn,1) = K and Õn,2 =
(

0T BT
n,1 · · · BT

n,2
)T

.
We can show that rank(Õn) = K + rank(Õn,2) where the
matrix Bn having Bn,i, i = 1, · · · ,D− 1, as sub-matrices can
be viewed as the bi-adjacency matrix of the unfolded bipartite
observability graph Yn. This graph has (D− 2)K + N − 1
vertices. Then, applying Theorem 2, we know that the nullity
of this graph is given by (D−2)K+N−1−2rank(Bn). Since
observability means that rank(Õn,2) = rank(Bn) = N−K−1,
we conclude that the nullity of the local unfolded bipartite
observability graph must be equal to DK−N +1. �

Now, we can state the following observability conditions
that can be proven by following guidelines similar to those
considered for strongly regular graphs:

Theorem 7: Consider a network with N nodes modeled with
a connected distance regular graph X (V ;E ) of valency K,
diameter D, and association scheme A = {A0,A1, · · · ,AD}.
Assume that the dynamics of the network are modeled with
equations (1) and (2) where Cn stands for the observation
matrix associated with vertex vn ∈ V . Assuming that Yn, the
local unfolded bipartite observability graph associated with
vertex vn, does not contain any cycle of length 4s (s= 1,2, · · · ).
The pair (W,Cn) is observable if and only if the size of a
maximum matching in Yn equals N−K−1.

Eventually, we can deduce the following necessary condi-
tion:

Corollary 3: Consider a network with N nodes modeled
with a connected distance regular graph X (V ;E ) of valency
K and diameter D. Assume that the dynamics of the network
are modeled with equations (1) and (2) where Cn stands for
the observation matrix associated with vertex vn ∈ V . Let Yn
be the local unfolded bipartite observability graph associated
with vn. The pair (W,Cn) is observable only if the size of a
maximum matching in Yn equals N−K−1.

From corollaries 1 and 3, we have two ways for concluding
on non-observability in a given connected distance regular
graph. The first condition is a simple comparison of the
valency of the graph with the lower bound given by N−1

D
whereas the second condition goes further by exploring the
adjacency relation through the analysis of the local bipartite
observability graph. For instance, let us consider the well
known Petersen and Clebsch graphs that are strongly reg-
ular graphs (distance regular with D = 2) with parameters
SRG(10,3,0,1) and SRG(16,5,0,2) respectively.

Using Corollary 1, we can directly conclude that these
graphs are not observable. Indeed their respective valencies
are lower than the required lower bound. In figures 4 and
5 (right) are depicted the local observability bipartite graphs



7
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v5 v6

v7 v8

v9 v10

v2

v3 v4
N1

N̄1

v5 v6
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Fig. 4. Petersen graph (left) and the Local bipartite observability graph
associated with vertex v1 (right).
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v2 v3
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v14 v15

v16

v2v3

v4 v5v6

v7

v8 v9

v10

v14 v15

N1

v13v16v12

v11

Fig. 5. Clebsch graph (left) and the local bipartite observability graph
associated with vertex v1 (right).

associated with a given vertex of the Petersen graph and the
Clebsch graph respectively. According to Corollary 3, the size
of a maximum matching should be 6 for the Petersen graph
and 10 for the Clebsch graph. We can note from figures 4 and
5 that the size m of a maximum matching in L1 is equal to 3
for the Petersen graph and m = 5 for the Clebsch graph. The
obvious conclusion concerns again non-observability of these
graphs.

The necessary condition for observability, as stated in [7],
requires the enumeration of all equitable partitions of the graph
under study and those of the associated augmented graph. It is
well known that graph partitioning is NP-hard [29]. Provided
the graph is known to be distance-regular, the conditions stated
herein only require the knowledge of some graph parameters
(number of vertices, valency, and diameter), on one hand, and
the computation of the size of the maximum matching of a
bipartite graph on the other hand. The later can be computed
with a complexity of order of the number of edges of the
bipartite graph. In addition, checking that an arbitrary graph is
distance-regular can be carried out by checking that for every
vertex, the distance partition is regular with the same quotient
matrix [30]. Therefore, from a computation point of view, the
conditions proposed herein are less complex than that in [7].

V. OBSERVABILITY OF DISTANCE-TRANSITIVE GRAPHS

In the previous sections we have studied neighborhood-
observability, i.e. observability for a given pair (W,Cn). As
explained in the problem formulation section, a graph will be
said to be globally-observable if all the pairs are observable.
We can state that a graph is not globally-observable if at least
one pair is not observable. In this section, the fundamental
question is: can we conclude on global-observability of the
graph from the study of a single pair? The answer is yes for
a family of graphs exhibiting some desirable symmetries.

Definition 8: [31] Given a graph X (V ;E ), an automor-
phism of X is a bijective function ϕ : V → V such that vn
is adjacent to vm if and only if ϕ(vn) is adjacent to ϕ(vm).
The set of all automorphisms is the automorphism group of
X , denoted by Aut(X ).

Definition 9: [31] X (V ;E ) is said to be distance-transitive
if, for vertices vn, v j, vk, vl ∈V , with dist(vn,v j)= dist(vk,vl),
there exists some ϕ ∈ Aut(X ) satisfying ϕ(vn) = vk and
ϕ(v j) = vl .
A distance-transitive graph is symmetric and also distance reg-
ular. Given two vertices vn and vm it exists a permutation ma-
trix such that ΠΠΠ such that ΠΠΠ−1AΠΠΠ and CmΠΠΠ−1 = Cn, meaning
that OW,Cm = OW,CnΠΠΠ. Thus, rank(OW,Cm) = rank(OW,Cn)
for two distinct vertices vn and vm. Therefore we can state the
following corollary:

Corollary 4: Consider a network with N nodes modeled
with a connected distance-transitive graph X (V ;E ). The net-
work is globally-observable if the pair (W,Cn) is observable
for any arbitrary vertex vn.

A. Application to some families of graphs

In this sub-section, we consider application of the main re-
sults of this paper to some families of graphs that are distance-
transitive. As said before, in such a case, the conclusions
drawn do not depend on the selected vertex. Therefore, we
can conclude if the underlying graph is globally-observable or
not.

1) Rook’s graph [31]: An n× n Rook’s graph is a SRG
with parameters (n2,2n− 2,n− 2,2), n ≥ 2. It represents the
moves of a rook on an n× n chessboard. Its vertices may
be given coordinates (x1,x2), where 1≤ xi ≤ n, i = 1,2. Two
vertices are adjacent if and only if they have one common
coordinate. From Corollary 5, we can deduce that an n× n
Rook’s graph is observable only for the values of n giving rise
to non positive values for the polynomial f (n) = n2−4n+3.
Only two values of n fulfill this condition: n = 2 and n = 3.
Their corresponding local bipartite observability graphs are
depicted in Fig. 6. For n = 2 the local observability bipartite
graph has no cycle and the size of the maximum matching
is equal to 1. Applying Theorem 5, we can conclude that the
graph is observable. However, for n= 3, the local observability
bipartite graph admits cycles of length 8. Unfortunately, we
are outside the framework of Theorem 5.
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Fig. 6. Local observability bipartite graphs for n×n Rook’s graph for n = 2
(left) and n = 3 (right).

Studying the bi-adjacency matrix of this graph:

B =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 ,

we can note that this matrix is rank deficient (rank(B) = 3).
Since observability is ensured if and only if the bi-adjacency
matrix of the local observability matrix is full column rank, we
can deduce that for n > 2 the Rook’s graph is not observable.
Note that observability occurs only for n = 2 that is a cycle
graph with 4 vertices.

2) Payley graph [31]: The Payley graph is a graph whose
vertex set is a finite field with q elements. Two vertices are
adjacent when their difference is a square in the field. This
is an undirected graph when q is congruent to 1 (mod 4). It
is a SRG(q, q−1

2 , q−5
4 , q−1

4 ). We can note that for any value of
q, the minimal number of adjacent nodes is fulfilled. Let us
study the Payley graph (13,6,2,3). Its associated local bipartite
observability graph is depicted in Fig. 7.

B=


1 0 1 0 0 1
0 0 0 1 1 1
0 0 1 1 1 0
0 1 1 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0



Fig. 7. Bi-adjacency matrix and local observability bipartite graph associated
with a Payley graph with 13 vertices.

We can note the existence of a cycle of length 4. The
analysis of the structure of the graph cannot confirm the ob-
servability of the graph. However, by studying its bi-adjacency
matrix, we can note that B is full column rank. Hence, the
Payley graph with 13 vertices is observable. Generalizing this
result to an arbitrary value of q congruent to 1 (mod 4) is
still an open question. Indeed, for q = 5 a Payley graph is
observable. Its local bipartite observability graph is depicted
in Fig. 1(b). However, for q = 9, the payley graph is not
observable. Indeed, we get the graph depicted in Fig. 8 with
the corresponding bi-adjacency matrix:

B =


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 .

Fig. 8. Bi-adjacency matrix and local observability bipartite graph associated
with a Payley graph with 9 vertices.

3) Hamming graph: Let S be a set of q elements and
d a positive integer. The Hamming graph H(d,q) has for
vertex set the set of ordered d-tuples of elements of S , or
sequences of length d from S . Two vertices are adjacent if
they differ in precisely one coordinate. Therefore the number
of vertices is qd . The Hamming graph is distance regular
with degree d(q− 1). We can note that H(1,q), H(2,q), and
H(d,1) correspond to a complete graph, a Rook’s graph, and a
single vertex respectively. According to the sufficient condition
derived in the previous section, we know that observability is
ensured only if d(q− 1) ≥ qd−1

d ; meaning that the bi-variate
function f (d,q) = qd −d2(q−1)−1 should be non positive.
By discarding the complete graph and the single vertex case,
the only values for which f (d,q) is non positive are (d = 2,q=
2), (d = 2,q = 3), (d = 3,q = 2), and (d = 4,q = 2). Since the
cases H(2,2) and H(2,3) have been studied in the subsection
devoted to the Rook’s graph, here we concentrate our study
on H(2,3) and H(4,2). The corresponding local observability
bipartite graphs are depicted in figure 9. For H(3,2), we can
note that the bipartite graph has a cycle of length 6. The size of
the maximum matching equals 4. Then applying Theorem 7,
we can conclude that H(3,2) is observable. Unlike H(3,2), the
local observability bipartite graph associated with H(4,2) has
a cycle of length 8. By computing the rank of its bi-adjacency
matrix we get rank(B) = 9 instead of 11 as required by the
observability condition. In conclusion, the Hamming graph
fulfilling the observability condition are: H(2,2) and H(3,2).

Fig. 9. Local unfolded observability bipartite graph associated with H(3,2)
(left) and H(4,2) (right)

4) Johnson graph [18]: Let Ω be a fixed set of size n.
The Johnson graph J(n,k) is the graph whose vertices are the
subsets of Ω with size k and where two subsets are adjacent
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if their intersection has size k−1. In other words, two subsets
are adjacent if their differ precisely in one element. Johnson
graphs are distance-regular with valency k(n−k) and diameter

min{k,n− k}. The number N of vertices is given by
(

n
k

)
.

J(n,1) and J(n,n-1) correspond to a complete graph. Since
the valency of a non complete graph is strictly lower than
the number of vertices of the graph, we have k(n− k) ≤(

n
k

)
− 1. As a consequence, in order to also fulfill the

observability necessary condition, we should have the follow-

ing inequality:
(

n
k

)
−1≤ εn,kk(n−k)≤ εn,k

((
n
k

)
−1
)
,

with εn,k = min{k,n− k}. Such inequality is verified only for
k = 1 or k = n− 1. Therefore, except the case of complete
graph J(n,1) and J(n,n-1), Johnson graphs are not observable.

5) Cycle graph: A cycle graph with N vertices is distance
regular with valency 2 and diameter D = N/2 if N is even
and D = (N−1)/2 if N is odd. It has been shown in [6] that
these graphs are observable. The proof was based on number
theory. Herein, we show how getting the same conclusion from
properties of the local unfolded bipartite graph Yn. Indeed, we
can note that the degree of each vertex in the local unfolded
bipartite observability graph will be 1 or 2. Moreover, for
a given vertex vn, two vertices in Nn can share at most
1 neighbor in ¯Nn. We can deduce that the local unfolded
bipartite observability graph Yn associated with a cycle graph
is a forest, that is by definition acyclic. We can therefore apply
the necessary and sufficient condition of Theorem 7. Since a
cycle has valency 2, the size of a maximum matching should
be equal to N-3. We can note that each layer of the local
unfolded bipartite observability graph Yn induces a maximum
matching of size 2 except the layer associated with distance
D− 1 that gives a maximum matching of size 2 if N is odd
and 1 if N is even. Therefore the size of a maximum matching
in Yn equal 2(D−2)+1 if N is even and 2(D−2)+2 if N
is odd. As a consequence the size of a maximum matching in
Yn is exactly equal to N−3, which confirms observability of
cycles. One can note that the proof of this statement as carried
out herein is simpler than that in [6].

VI. CONCLUSION

In this paper, we have studied the observability issue in
a consensus network described with a connected undirected
graph and a topology constrained to be strongly regular or
distance regular. These families of graphs admit an association
scheme. We have first derived a new algebraic condition for
observability based on the Bose-Mesner algebra. Then we have
shown that observability can be studied by considering the nul-
lity of some bipartite graphs introduced in this paper. Such a
nullity can be deduced from the structure of the bipartite graph.
When conclusion cannot be drawn from the structure of the
graph, the bi-adjacency matrix of the so-called local bipartite
observability graph must be full column rank for guaranteeing
observability. A new necessary condition has been stated:
observability is ensured in such graphs only if DK ≥ N− 1
where D is the number of classes of the association scheme, or
the diameter of the graph, N the number of vertices, and K the

valency of the graph, i.e. the cardinality of the neighborhood.
Similarly, non-observability can also be stated when the size
of the maximum matching of the local bipartite observability
graph is not equal to N−K− 1. The main message of this
paper can be summarized as follows: observability condition
does not necessarily require the computation of the rank of the
observability matrix. Analyzing the structure of well defined
graphs such as the local bipartite observability graph can be
sufficient as shown herein. When such a characterization is
not possible, instead of computing the rank of the Kalman
observability matrix, the analysis can be carried out from
the rank of a much simpler matrix called here Bose-Mesner
observability matrix.
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APPENDIX

A- Proof of Lemma 2

First, we expand powers Wp of the consensus matrix in the
Bose-Mesner algebra. Since W = γ1I+ γ2A, we get:

Wp =
p

∑
j=0

αp, jA j, with αp, j =

(
p
j

)
γ

p− j
1 γ

j
2 .

γ1 and γ2 being nonzero, the coefficients αp, j are nonzero.
By denoting ΦΦΦ the N × N nonsingular triangular ma-
trix of entries αp, j, we can note that K (IN ,W,N) =
(ΦΦΦ⊗ IN)K (IN ,A,N), where ⊗ stands for the Kronecker
matrix product. Now, using Lemma 1, we get: K (IN ,A,N) =

(ΨΨΨ⊗ IN)
(

A0 A1 · · · AD
)T , where ΨΨΨ denotes the N×

(D+ 1) lower trapezoidal matrix with βp, j as entries. Since
the diagonal entries βp,p of ΨΨΨ are strictly positive and since
N ≤ D + 1, we can conclude that ΨΨΨ is full column rank,
i.e. rank(ΨΨΨ) = D + 1. As a consequence, the observability
matrix OW,Cn = K (Cn,W,N) can be rewritten as OW,Cn =

(IN⊗Cn)(ΦΦΦ⊗ IN)(ΨΨΨ⊗ IN)
(

A0 · · · AD
)T . Defining ΓΓΓ =

ΦΦΦΨΨΨ ∈ℜN×(D+1) and using properties of the Kronecker prod-
uct, we get OW,Cn = (ΓΓΓ⊗ IK+1)Ôn. ΦΦΦ being a nonsingular
matrix, we can also conclude that ΓΓΓ is full column rank:
rank(ΓΓΓ) = rank(ΨΨΨ) = D+1. Moreover, again from properties
of the Kronecker product, rank(ΓΓΓ⊗ IK+1) = (D+ 1)(K + 1),
meaning that ΓΓΓ⊗ IK+1 ∈ ℜN(K+1)×(D+1)(K+1) is full column
rank. Finally, we conclude that rank(OW,Cn) = rank(Ôn).
Hence, the pair (W,Cn) is observable iff Ôn is full column
rank.�

B- Proof of Theorem 1
From properties of the association scheme we know

that
D
∑
j=0

A j = JN , which yields
D
∑
j=0

CnA j = J(K+1)×N , where

J(K+1)×N = CnJN stands for a (K + 1)×N all ones matrix.
We can conclude that a row of CnAD can be written as
a linear combination of the all ones row vector 1T and
those of matrices CnA j, j = 0,1, · · · ,D− 1. More precisely
if wT

j,l denotes the j-th row of the matrix CnAl , then we

have wT
j,D = 1T −

D−1
∑

l=0
wT

j,l . We can then conclude that wT
j,D =

D
∑

l=0
wT

1,l −
D−1
∑

l=0
wT

j,l , j = 2, · · · ,K + 1. As a consequence the K

last rows of CnAD do not increase the rank of Ôn. Thus
rank(Ôn) = rank(

(
A0CT

n · · · AD−1CT
n wT

1,D
)
)T . Now,

using Lemma 3, we know that wT
1,D is a linear combination of

rows of CnA j, j = 0,1, · · · ,D−1. We can therefore state that
rank(Ôn) = rank(

(
A0CT

n · · · AD−1CT
n
)T

),which con-
cludes the proof of the first condition. From Lemma 3, we also
know that first rows wT

1,l of CnAl are linearly dependent from
rows of CnAm, m < l. Therefore wT

1,l , l = 1, · · · ,D−1, can be
excluded from the evaluation of the rank of the Bose-Mesner

observability matrix. We get: rank(Ôn) = rank(
(

wT
1,0

Õn

)
).

Since wT
1,0 is the transpose of the n-th vector of the canonical

basis of ℜN , we have rank(Ôn) = rank(Õn)+1. The observ-
ability of the pair (W,Cn) is then ensured when rank(Õn) =
N−1 �
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