
HAL Id: hal-01092865
https://hal.science/hal-01092865

Submitted on 9 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Buffer sizing for elastic traffic
Jordan Augé, James Roberts

To cite this version:
Jordan Augé, James Roberts. Buffer sizing for elastic traffic. NGI2006, 2nd Conference on
Next Generation Internet Design and Engineering, Apr 2006, Valencia, Spain. pp.33 - 40,
�10.1109/NGI.2006.1678220�. �hal-01092865�

https://hal.science/hal-01092865
https://hal.archives-ouvertes.fr


1

Buffer Sizing for Elastic Traffic
Jordan Augé and James Roberts
France Télécom R&D Division

{jordan.auge, james.roberts}@francetelecom.com

Abstract— Two areas of active research are likely to
have a major impact on the future performance of the
Internet. These are firstly, the evaluation of the buffer size
required to ensure fair, stable and efficient sharing of link
bandwidth and secondly, the proposition of new congestion
control algorithms, more suitable for increasingly high
link speeds than the current version of TCP. In this
paper, we re-examine propositions for a drastic reduction
in buffer size in the light of our understanding of the
nature of Internet traffic at flow level. We demonstrate
through simulation that the trade-off between throughput
and delay is not as favourable as previously predicted.
We also illustrate the significant gains in this context that
would accrue from the implementation of per-flow fair
scheduling in router queues.

NGI 2006 Topic:Evolution of the IP network architec-
ture.

I. I NTRODUCTION

As the transmission speed of Internet links continues
to increase, the sustainability of the current rule of thumb
used for sizing router buffers has recently been called
into question [1]. The rule is to provide a buffer capable
of storing the data that can be transmitted at link rate in
one round trip time (RTT). With an assumed maximum
RTT of 250ms, the buffer requirement for an OC768
(40Gbps) link would be some 1.2GBytes. Realizing such
high speed memories in electronic routers is a significant
design challenge. In optical routers, it is very hard to
build buffers with a capacity of more than a few tens of
packets.

The origin of the rule of thumb is that this amount
of buffering is necessary to ensure full utilization when
a link is used by one TCP connection or by a group
of TCP connections undergoing synchronized losses [2].
This requirement is not obviously relevant for very high
speed links that typically handle hundreds of thousands
of simultaneous flows. Indeed, studies of the perfor-
mance of bandwidth sharing by a very large number of
flows using TCP reveal performance degradations due
to instability when the buffer size is large. It has been
demonstrated that a buffer with a capacity as small as 20
packets has much better performance [3]. Clearly such

small buffers would also have the advantage of ensuring
very low latency for any streaming flows sharing the link
in question.

In the present paper we question the assumptions
about the nature of link traffic used in the studies referred
to above. Specifically, we contest the notion that a large
number of TCP connections are activelycompetingfor
a share of link bandwidth. The vast majority of the
hundreds of thousands of connections using an OC192
link at any time are in fact limited in rate by other
constraints on their path. These constraints include the
users’ access link which is the most common flow
bottleneck. The number of connections that are actually
bottlenecked on a considered high speed link is arguably
very small.

Non-bottlenecked flows together consume a large part
of the link bandwidth and require a relatively small
buffer to avoid significant loss. However, if some traffic
is generated by users whose flow rate is otherwise
unconstrained, it is highly probable that the number of
such flows in progress at any time is very small. When
only one such flow is in progress, for instance, the rule
of thumb applied to the residual link capacity is indeed
necessary to ensure full link utilization.

Despite this observation, we do not conclude that large
buffers are desirable or necessary. In the first place,
full utilization is not essential. More significantly, the
assumption that connections use legacy New Reno TCP
is not appropriate when discussing buffer size for high
throughput bottlenecked flows. It is now well-known that
the particular additive increase multiplicative decrease
algorithm of legacy TCP cannot sustain high throughput.
New versions of TCP have been proposed that are more
responsive to congestion and do not require such large
buffers.

The performance of congestion control in the present
context has been studied assuming FIFO queuing with a
simple drop tail discard policy or with Gentle RED active
queue management (in [4]). In previous work we have
argued that it would be preferable to implement per-flow
fair queuing instead [5]. Under the realistic assumption
that link traffic is composed of a large number of non-
bottlenecked flows and just a relatively small number of



2

bottlenecked flows, it has been demonstrated that such a
scheduling mechanism is scalable and perfectly feasible
[6].

In this paper we therefore seek to evaluate the impact
of buffer size on congestion control and bandwidth
sharing performance assuming a realistic traffic mix. We
use simulation to illustrate the potential for throughput
loss with small buffers and to investigate the impact of
more responsive congestion control and the use of fair
queuing.

II. BUFFER SIZING ANDTCP

In this section we review recent work on buffer sizing
and discuss the impact of new TCP versions and non-
FIFO scheduling.

A. Requirements for a large number of TCP connections

The recent paper by Appenzeler et al. [1] argues that
the rule of thumb used for buffer sizing (capacity =
bandwidth× RTT) is not appropriate for high speed links
because they typically handle a very large number of
simultaneous flows. In this case it is unlikely that TCP
window sizes evolve synchronously and the combined
buffer requirement is considerably less than the delay
bandwidth product. They evaluate the mean and variance
of the window size of each flow and approximate the
distribution of the overall input rate by a Gaussian.
The authors’ conclusion was that a sufficient buffer
requirement is the bandwidth delay product divided by
the square root of the number of flows in progress. This
typically reduces buffer requirements for a high speed
link by two to three orders of magnitude.

Raina and Wischik [3] consider the performance of
TCP congestion control with many connections under
the assumption of small, medium and large buffer sizes.
They conclude that the protocol brings instability (wide
fluctuations in queue size and loss of utilization) for
medium and large buffers, including buffers dimensioned
following the recommendation in [1]. They point out that
instabilities for medium size buffers occur for a number
of connections somewhat larger than was used in the
simulations reported in [1]. Their recommendation is for
a very small buffer of 20 packets, for any link size.

Results from the above papers, [1] and [3], are sum-
marized and consolidated in [7].

An alternative approach to buffer sizing is presented
by Enachescu et al. in [4]. A significant observation in
that paper is that most TCP connections do not emit
bursts at rates close to the link rate since packets are
naturally paced by the users’ lower speed access links.
The authors also account for the fact that the rate a

connection can attain is limited by the maximum TCP
window size. They recommend very small buffers of no
more than 20 packets while recognizing that this can lead
to some loss of utilization.

B. TCP versions

The evaluations discussed above assume connections
use TCP Reno. It may be argued that this protocol
is not designed for high speed links and that buffer
requirements should be re-examined in the light of newly
proposed high speed versions of TCP.

RFC 3649 [8] defines so-called High Speed TCP
(HSTCP). Noting that TCP Reno cannot sustain high
throughput unless the rate of packet loss or error is
unreasonably small, it is necessary to make the additive
increase multiplicative decrease (AIMD) algorithm more
aggressive. In order to additionally realize fair sharing
with TCP Reno when the packet error rate is relatively
high, HSTCP uses increase and decrease factors that vary
with current window size.

FAST is another proposal for a more responsive high
speed protocol [9]. Window size is adjusted based on
estimated queue lengths as in TCP Vegas, this being con-
sidered a more comprehensive indication of congestion
than the binary signal of packet loss (or marking).

Scalable TCP replaces AIMD by MIMD (for mul-
tiplicative increase multiplicative decrease) [10]. This
yields a stable and efficient congestion control at all link
speeds. These advantages come, however, at the cost of
a loss in fairness when several flows share the link.

A number of disadvantages of the above protocols
have been identified, notably by Li et al. [11]. The
main drawbacks are slow convergence to fairness and
incompatibility with legacy versions of TCP. The authors
of [11] propose an new protocol, H-TCP, that is shown
to outperform the alternatives.

In our evaluation below we consider only HSTCP
using the publicly available ns2 implementation.

C. Buffer management

The impact of Gentle RED on the stability of con-
gestion control and consequent buffer requirements is
evaluated by Raina et al. [12]. This AQM mechanism
can ensure stability with larger buffers than possible with
drop tail though not over the entire range of window
sizes. The impact of alternative AQM mechanisms is an
open question.

A more radical alternative to FIFO or AQM is to
implement per-flow fair queuing. The well-known advan-
tages of fair queuing include the fact that, fairness being
ensured independently of user behaviour, it is possible to



3

introduce and experiment with new TCP versions with no
detrimental impact on users of the legacy version. Fair
queuing has the additional advantage of ensuring low
packet latency for relatively low rate streaming flows.

Fair queuing might be considered infeasible if the
number of flows to be controlled is large and increases
with link speed, as assumed in the work referred to in
Section II above. We argue in the next section that this
assumption is in fact inappropriate. The number of flows
to be scheduled is relatively small and independent of
link speed, as demonstrated in [13], [6].

Widespread implementation of fair queuing would
make it possible to use alternative congestion controls
like the packet pair proposal of Keshav [14]. It remains
to investigate the buffer requirements of such protocols.

III. T RAFFIC CHARACTERISTICS AT FLOW LEVEL

In this section we discuss the nature of Internet traffic
at flow level noting the significance for the present
evaluation of a flow’s exogenous peak rate. This deter-
mines whether the flow will be bottlecked or not by the
considered link.

A. Flow structure of traffic

IP traffic is composed of finite size flows. These flows
arrive according to a certain stochastic process and each
brings a certain amount of work equal to its size in bits.
It is useful to distinguish elastic flows whose rate can
vary to fill available capacity, usually under the control
of TCP, and streaming flows that have an intrinsic rate
determined by a codec. The number in progress varies
as new flows are initiated, remain active for a certain
duration and then leave.

The most significant traffic characteristic for perfor-
mance is the average link load, equal to flow arrival rate
× size / link rate. In many networks this load is very
small (less than 50%, say) though our evaluation predicts
performance would be satisfactory at higher levels (up
to 80 or 90%, say).

At fixed load, the number of flows in progress at a
given load depends on the distribution of exogenous
flow rates. The exogenous rate is the rate the flow
would realize if the considered link had infinite capacity.
Though this rate varies quite widely throughout a flow’s
lifetime, the variations within a flow are much less
significant than differences between distinct flows. Some
flows have a high exogenous rate; most are limited by
other constraints on their path (notably by access links)
to a rate much smaller than the link rate.

For a given link capacity and load, it is significant to
distinguish flows that arebottlenecked- their exogenous

rate is greater than the rate to which they are limited by
the link in question - and flows that arenon-bottlenecked
- their rate is not strictly limited by the considered link
(although they may lose some packets due to confluent
traffic from the other flows). Analysis of traces from a
variety of network links reveals that the vast majority
of flows (and often all flows) are non-bottlenecked [6],
[15].

B. Number of flows

The duration of non-bottlenecked flows is largely
independent of the considered link (local packet loss will
extend the duration of elastic flows but only marginally
compared to losses on their actual bottleneck). The
expected number, equal to the product of the arrival rate
and flow duration, is thus roughly proportional to link
capacity (assuming constant load). Trace statistics reveal
a mean per flow rate of a few tens of Kbps so that an
OC192 (10Gbps) at 50% load would have some hundreds
of thousands of non-bottlenecked flows in progress.

The duration of bottlenecked flows depends on link
capacity and load. The number of such flows in progress
can be roughly estimated using a queuing model. If
we assume all flows are elastic and bottlenecked and
that congestion control realizes perfect fair sharing,
the processor sharing model is a reasonable statistical
bandwidth sharing model [16]. This model predicts a ge-
ometric distribution for the number of flows in progress:

Pr[n flows] = (1 − ρ)ρn

where ρ is the link load. Note that ifρ = 0.5, for
example, the probability there are more than 4 flows in
progress is only 0.03.

In practice there is a mixture of non-bottlenecked
flows and bottlenecked flows, the latter dynamically
sharing the residual bandwidth unused by the former.
If the traffic due to the bottlenecked flows (arrival rate
× size) is equal to half the average residual capacity, for
instance, the above results from the processor sharing
model suggest we will rarely have more than 4 bottle-
necked flows sharing the link with a large number of
non-bottlenecked flows.

The number of bottlenecked flows is large only when
overall link load is very close to 1. If the offered load
exceeds 1, the number of flows increases (arrivals occur
more frequently than departures) and all flows eventually
become bottlenecked. The generally considered scenario
of a large number of bottlenecked flows is thus hardly
typical. It is in fact exceptional and, in our opinion,
not useful for evaluating the effectiveness of congestion
control algorithms or assessing buffer requirements.



4

Fig. 1. Three link operating regimes: "transparent", "elastic" and
"overload"

C. Link utilization regimes

From the above discussion, we identify three basic link
operating regimes. These are depicted in Figure 1. In the
upper sketches flows are represented as boxes of height
equal to their average exogenous rate and horizontal
position within the link determined by the starting time
and duration. The vertical position of the box within the
link is chosen at random. The lower figure represents the
evolution in time of the overall rate of flows in progress.

The left hand case depicts a “transparent” regime
where all flows are non-bottlenecked and the sum of
flow rates is always less than link capacity. Packet
loss and delay are then extremely small. This is the
regime of most links in the current Internet due to over
provisioning and the fact that most users have a relatively
low access rate.

The “elastic” regime in the middle occurs when some
bottlenecked flows are added to a non-bottlenecked
background while the overall offered load remains well
within link capacity. These bottlenecked flows can only
be generated by users with particularly high access
rates. Whenever one or several bottlenecked flows are
in progress, we can expect some packet level congestion
leading to delays and some loss. The delay may be
significant if large buffers are used, particularly for
streaming flows. Some form of scheduling may be con-
sidered necessary to preserve quality of service in this
regime.

The right hand case corresponds to a “overload”
regime where the offered traffic exceeds the available
link capacity. Congestion control algorithms like those
of TCP are inadequate to deal with this kind of satura-
tion and alternative means must be employed to avoid
saturation, e.g., [17], [18].

IV. BUFFER REQUIREMENTS UNDER REALISTIC

TRAFFIC ASSUMPTIONS

In this section we evaluate the impact of buffer size
on the performance of a realistic mix of bottlenecked

and non-bottlenecked flows, as discussed in the previous
section. We assume congestion control is performed
using TCP New Reno and buffer management is FIFO
drop tail.

A. Buffer sizing in the transparent regime

The transparent regime is characterized by the fact
that the sum of rates of a large set of non-bottlenecked
flows is less than available link capacity (with high
probability). The link buffer is necessary to absorb
momentary bursts of packet arrivals from a fraction of
the large number of independent connections. From well-
known theoretical limit results, and as confirmed by
measurements [19], the packet arrival process is very
nearly Poisson.

If we additionally (conservatively) assume exponential
packet sizes, the relation between buffer size and packet
loss probability is approximately geometric:

Pr[loss | buffer size =n] ≈ ρn

where ρ is the link load. If, for example, link load is
less than 90%, a buffer of 100 packets maintains a loss
rate better than 1 in 30000. A 20 packet buffer can keep
the loss rate better than 0.01 if load is less than 71%.
Delay is extremely small on high speed links: at 2.5Gbps,
assuming average packet size 500 bytes, a 100 packet
buffer empties in 160 microseconds.

B. Buffer sizing in the elastic regime

In the elastic regime a large set of non-bottlenecked
flows shares the link with a small number of bottlenecked
flows. We illustrate the behaviour of this regime by
means of ns2 simulations. The simulation scenario is
depicted in Figure 2. We initially simulated a background
traffic made up of a process of finite size TCP flows
each with a maximum rate of 1Mbps. However, to
facilitate the evaluation of a range of configurations, we
replaced the flow level process (resulting in a variable
rate background traffic) by a Poisson packet process of
the same intensity. We first verified that the principal
comparative results discussed below were not changed
by this simplification.

The link capacity is 50Mbps and the background
traffic accounts for half of this. We simulated 1, 2 and
4 permanent bottlenecked New Reno TCP flows and
observed the resulting performance for varying buffer
size. We only describe a small sample of the results
obtained. Further experiments are reported in the next
section.

Figure 3 illustrates the impact of buffer size on the
evolution of the TCP window sizecwnd(bottom graphs)



5

Fig. 2. Simulation scenario

and of link utilization averaged over an RTT (top graphs)
for a single bottlenecked flow. We show results for three
buffer sizes: 20 packets as recommended in [3], 625
packets corresponding to the bandwidth delay product,
and an intermediate value of 100 packets. Results for
the 20 packet buffer show that this buffer size is clearly
inadequate for the considered (realistic) traffic mix. The
bottlenecked flow only manages to acquire around 40%
of the residual bandwidth. The large buffer enables 100%
utilization, as expected. The intermediate size of 100
packets appears as a reasonable compromise, realizing
reasonable throughput while ensuring low latency for any
streaming traffic included in the set of background non-
bottlenecked flows.

Loss of utilization with a small buffer is not unex-
pected but the magnitude of the loss is at first surprising.
A single bottlenecked TCP flow on an empty link with
a buffer of only 1 packet should acquire a throughput
of 75% of the link capacity and we would expect
this to grow to around 80% with a 20 packet buffer.
The presence of background traffic reduces the realized
throughput to only 40% of the residual capacity.

The reason is that the competing background traffic
combines with the bursts of the bottlenecked TCP flow to
momentarily saturate the link. The emission of packets is
depicted in the scatter plot of Figure 4. This figure shows
the background packets as dots in the lower half of the
graph and bottlenecked flow packets in the upper half.
The stripes reflect the TCP window mechanism which
tends to emit packets in bursts.

During each burst packets arrive at link rate but with
some randomness and this tends to fill the buffer. If
the buffer is not big enough the randomness of the
arrival process will lead to loss. For the 20 packet buffer
this event happens quite often, even for relatively small
window sizes. In the figure, packet loss occurs at the end
of the first depicted burst. This is recognized one RTT
later leading to a halving of the current window size.
Had there been no background traffic, loss would only
have occurred when the window exceeds the bandwidth
delay product.

Figure 5 illustrates the impact of increasing the num-

Fig. 4. Representation of TCP New Reno packets arrivals on a link
with 20 packet buffers. Each dot is a packet; its vertical position is
random; squares on the left are lost packets.

ber of bottlenecked flows. We observe that even with
only two flows, there is little synchronized loss and uti-
lization improves as the number of flows increases. The
evolution of cwnd for each flow shows that bandwidth
sharing is approximately fair.

On the strength of these limited results it seems clear
that a recommendation to use buffers of only 20 packets
is not justified when taking account of a realistic mix of
bottlenecked and non-bottlenecked flows. While some
loss of utilization is acceptable, it would be preferable
to increase the buffer size in the considered case to
around 100 packets. The requirement is to have enough
buffer space for the random (Poisson-like) arrivals of
packets from non-bottlenecked flows together with a
further allowance to enable the full development of the
window size of the bottlenecked flows. The case of a
single bottlenecked flow is a worst case in this respect
and, according to the processor sharing model alluded to
above, is a quite frequent occurrence.

V. ENHANCED BANDWIDTH SHARING

In considering buffer requirements in the future high
speed network, it is appropriate to consider other evo-
lutions that can affect the performance of congestion
control. In this section we consider the impact of new
TCP versions and the possible use of per-flow fair
scheduling.

A. New high speed protocols

We confine the present evaluation to the use of HSTCP
as defined in RFC 3649 [8]. The performance of other
protocols will be considered in future work.

Figure 6 shows results for three configurations where
bottlenecked connections use HSTCP instead of New
Reno. The left hand plots demonstrate that a single
HSTCP connection uses bandwidth more efficiently than
Reno when the buffer size is considerably less than the



6

Fig. 3. From left to right, utilization and cwnd size as a function of time for a range of buffer sizes : 20, 100 and 625 packets (bandwith
delay product). All flows use TCP New Reno and the scheduling discipline isFIFO.

Fig. 5. From left to right, utilization and cwnd size as a function of time for 1, 2and 4 bottlenecked flows with a 20 packet buffer. All
flows use TCP New Reno and the scheduling discipline is FIFO.

bandwidth delay product. This is an encouraging result
illustrating that the evolution of TCP can improve the
efficiency of small buffers.

In the middle, an HSTCP flow shares the 25Mbps
residual bandwidth with a Reno flow using a large
buffer. The depicted behaviour of the respective flow
windowscwnd is typical: the Reno connection is unable
to compete fairly with the more aggressive HSTCP
connection.

The last plots on the right relate to 4 bottlenecked
HSTCP flows. We observe quite chaotic behaviour of the
flow cwnds as one flow after the other gains a temporary
ascendancy. As soon as one flow has a large value of
cwnd, it tends to act more aggressively and preserves
its relative advantage until it is eventually superseded
by one of the other flows. This kind of behaviour has
previously been observed by Li et al. [11].



7

Fig. 6. From left to right, utilization and cwnd size as a function of time for: - 1HSTCP flow with a 20 buffer packet, - 1 HSTCP flow
and 1 TCP New Reno flow with a 625 packet buffer (bandwith delay product), - 4 HSTCP flows with a 625 packet buffer. The scheduling
discipline is FIFO.

B. Using fair queuing

We have implemented per-flow fair queuing in ns2
with a drop from longest queue discard policy. The
latter has been shown to largely outperform RED as an
active queue management mechanism [20]. In the present
case the drop policy is such that non-bottlenecked flows
remain loss free. Their packets also have very low
latency1, a highly desirable feature for any streaming
flows included in the background traffic.

Figure 7 illustrates the evolution of utilization and
cwnd for the three cases previously illustrated under
FIFO in Figure 6. The plot on the left corresponds to
a single TCP Reno connection sharing the link with
background traffic using a 20 packet buffer. Comparison
with the left hand plot of Figure 6 shows that fair queuing
barely alleviates the loss in performance due to a very
small buffer (it does, however, avoid loss for the non-
bottlenecked flows).

The middle plot should be compared to the middle
plot of Figure 6. It is clear that fair queuing considerably
reduces the bias in favour of HSTCP. The HSTCP flow
does, however, gain slightly more throughput than the
Reno flow due to its more aggressive behaviour.

Finally the rightmost plot confirms that fair queuing
effectively counters the chaotic behaviour illustrated in
the corresponding plot of Figure 6. Fair queuing also
considerably attenuates the impact on existing flows

1This is can be reduced still further using the priority mechanisms
described in [5], [21].

of newly arriving flows whose aggressive slow-start
behaviour can otherwise lead to quite severe loss events.

Two supplementary benefits of fair queuing are desyn-
chronized loss events due to flow isolation and the fact
that packet emissions are paced at the current fair rate.
The latter effect means acknowledgements are paced
leading to less bursty input in the following window
cycle. Both phenomena appear to improve bandwidth
sharing performance somewhat, notably when the buffer
size is small.

VI. CONCLUSIONS

Several authors have recently pointed to the need to
reduce Internet buffer sizes by several orders of magni-
tude. This is necessary for technological reasons but is
also claimed to have a positive impact on performance. In
the present paper we have contested the relevance of the
traffic model assumed in the published evaluations where
the link is shared by a very large number of permanent
bottlenecked TCP flows.

In fact, it is necessary to account for the random
nature of traffic at flow level. At normal link loads, the
large number of flows that are observed to share link
bandwidth are necessarily limited in rate by constraints
that are exogenous to the considered link. The number
of bottlenecked flows, whose rate is determined by the
considered link through the action of the congestion
control algorithms, is typically very small (i.e., 0, 1 or
2, . . . flows) with high probability.



8

Fig. 7. From left to right, utilization and cwnd size as a function of time for: - 1TCP New Reno flow with a 20 buffer packet, - 1
HSTCP flow and 1 TCP New Reno flow with a 625 packet buffer (bandwith delay product), - 4 HSTCP flows with a 625 packet buffer.
The scheduling discipline is Fair Queueing.

We have conducted a preliminary performance eval-
uation by means of simulation. The results show that
the previously recommended reduction in buffer capacity
to 20 packets is rather too drastic. For the considered
configuration, a buffer of 100 packets seems a more
appropriate choice allowing reasonable throughput while
maintaining low packet latency. The buffer must be sized
to accommodate near coincident packet arrivals from
independent non-bottlenecked flows (this requirement
can be evaluated using a simple queuing model) while
preserving sufficient free space to allow a single flow to
efficiently utilize the residual link capacity. For a link of
arbitrary capacity, a buffer size of one or two hundred
packets appears as a reasonable choice. We are currently
developing a mathematical model in order to more
precisely determine required buffer size as a function
of bottlenecked and non-bottlenecked flow loads.

Use of new high speed TCP versions can significantly
reduce the required buffer size. A smaller buffer is
sufficient to maintain high throughput when the window
additive increase rate is higher and the multiplicative
decrease rate is smaller than legacy TCP, as in the
proposed HSTCP congestion avoidance algorithm. It
is clear, however, that the fairness and convergence
properties of these new protocols are less than perfect.

Bandwidth sharing would be further enhanced by the
implementation of per-flow fair queuing in router queues.
Fair queuing enables the coexistence of legacy and high
speed TCP versions by avoiding the above mentioned
fairness and convergence problems. Fair queuing also
ensures low packet latency for non-bottlenecked flows,
including any streaming flows within the traffic mix. Fi-
nally, we recall that under the realistic traffic conditions
discussed here, fair queuing is both scalable and feasible
since the number of flows with packets to be scheduled
at any instant is only measured in hundreds for any link
capacity.

REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
Proceeding of ACM SIGCOMM ’04, Portland, Oregon, September 2004.

[2] C. Villamizar and C. Song, “High performance TCP in ANSNET,”
Computer Communications Review, V. 24 N. 5, October 1994, pp. 45-
60.

[3] G. Raina and D. Wischik, “Buffer sizes for large multiplexers: TCP
queueing theory and instability analysis,”NGI’05.

[4] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,
“Part III: routers with very small buffers,”ACM SIGCOMM Computer
Communication Review, v.35 n.3, July 2005.

[5] A. Kortebi, S. Oueslati, and J. Roberts, “Cross-protect: implicit service
differentiation and admission control,”IEEE HPSR 2004, Phoenix, USA,
April 2004.

[6] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts,“Evaluating the
number of active flows in a schedular realizing fair statistical bandwidth
sharing,” Sigmetrics’05, Banff, Canada, June 2005.

[7] D. Wischik and N. McKeown, “Part I: buffer sizes for core router,” ACM
SIGCOMM Computer Communication Review, v.35 n.3, July 2005.

[8] S. Floyd, “Highspeed TCP for large congestion windows,”RFC 3649,
Experimental, December 2003.

[9] C. Jin, D.X. Wei, and S.H. Low, “Fast TCP: Motivation, architecture,
algorithms, performance,”Proceedings of IEEE Infocom, Hong Kong,
March 2004.

[10] T. Kelly, “Scalable tcp : Improving performance in highspeed wide area
networks,” .

[11] Y-T. Li, D. Leith, and R.N. Shorten, “Experimental evaluation of TCP
protocols for high-speed networks,”Hamilton Institute, NUI Maynooth,
2005.

[12] G. Raina, D. Towsley, and D. Wischik, “Part II: control theory for buffer
sizing,” ACM SIGCOMM Computer Communication Review, v.35 n.3,
July 2005.

[13] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts, “On the
scalability of fair queueing,” ACM HotNets-III, San Diego, USA,
November 2004.

[14] S. Keshav, “Congestion control in computer networks,”PhD Thesis,
published as UC Berkeley TR-654, September 1991.

[15] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “The characteristics
and origins of internet flow rates,”Proceedings of ACM SIGCOMM,
Aug. 2002, Pittsburgh, PA.

[16] S. Ben Fredj, T. Bonald, A. Proutière, G. Régnié, and J.W. Roberts,
“Statistical bandwidth sharing: a study of congestion at flow level,”
SIGCOMM 2001, San Diego, CA, USA, August 2001.

[17] S. Oueslati and J. Roberts, “A new direction for qualityof service: Flow
aware networking,”NGI 2005, Rome, April 18-20, 2005.

[18] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walkingthe tightrope:
Responsive yet stable traffic engineering,”ACM SIGCOMM 2005.

[19] J. Cao, W. Cleveland, D. Lin, and D. Sun, “Internet traffic tends toward
Poisson and independent as the load increases,” 2002.

[20] B. Suter, T. V. Lakshman, D. Stiliadis, and A. Choudhury,“Design
considerations for supporting TCP with per-flow queuing,”Proc. of
INFOCOMM ’98, Apr. 1998.

[21] J. Roberts A. Kortebi, S. Oueslati, “Implicit service differentiation using
deficit round robin,”Proceedings of ITC 19, Beijing, August 2005.


