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Abstract

We present a framework for the gradual improvement of model-based controllers. The total time of the learning procedure is
divided into a number of learning intervals. After a learning interval, the model is refined based on the measured data. This
model is used to synthesize the controller that will be applied during the next learning interval. Excitation signals can be
injected into the control loop during each of the learning intervals. On the one hand, the introduction of an excitation signal
worsens the control performance during the current learning interval since it acts as a disturbance. On the other hand, the
informative data generated owing to the excitation signal are used to refine the model using a closed-loop system identification
technique. Therefore, the control performance for the next learning interval is expected to improve. In principle, our objective
is to maximize the overall control performance taking the effect of the excitation signals explicitly into account. However,
this is in general an intractable optimization problem. For this reason, a convex approximation of the original problem is
derived using standard relaxations techniques for Experiment Design. The approximated problem can be solved efficiently
using common optimization routines. The applicability of the method is demonstrated in a simulation study.

Key words: Identification for Control, Experiment Design, Iterative Schemes, Dual Control.

1 Introduction

It is well known that the performance of a model-based
controlled system largely depends on the quality of the
model that is used to synthesize the controller. System
identification provides tools that can be used to con-
struct models using measured input/output data. To-
gether with the model, most of the identification meth-
ods also provide a measure of the model uncertainty.

The relation between the uncertainty of an identified
model and the expected control performance has been
studied in the field of Identification for Control (Gevers,
2005). An important finding was that often few model
features determine the performance of the controller to
a large extent. Therefore, the identification experiments
have to be designed in such a way that these control-
relevant features can be accurately identified (Gevers,
2002). In the earliest contributions, open-loop identifi-
cation experiments were used for this purpose (Gevers
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and Ljung, 1986).
During the nineties, closed-loop identification tech-

niques (Van Den Hof and Schrama, 1995) gained an in-
creasing attention in the Identification for Control com-
munity. A clear advantage of closed-loop identification
is that the normal (closed-loop) operation can continue
while the identification data are collected. In this sense,
the closed-loop identification procedures are intrinsically
less intrusive than the ones based on open-loop data.

The use of closed-loop identification was also sup-
ported by the intuition that the control-relevant features
of the system are naturally emphasized when the sys-
tem is operating in a condition which resembles the de-
sired controlled behavior. In specific cases, it was for-
mally proven that the optimal experimental condition
for control-oriented identification are met when the op-
timal controller (with respect to the same control objec-
tive) is present in the loop (Hjalmarsson et al., 1996).

Note however that the optimal controller is always un-
known. In fact, its determination is the ultimate goal
of the user. Therefore, the optimal experimental con-
ditions can only be approached by adopting iterative
schemes consisting of repeated closed-loop identification
and model-based control design steps (De Callafon and
Van den Hof, 1997; Schrama, 1992).
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An aspect that was not thoroughly investigated in
these contributions was the choice of the excitation sig-
nals fed to the system during the closed-loop experi-
ments, often simply taken as white noise signals for ease
of analysis. However, a careful choice of the excitation
signals can be beneficial both to improve the model accu-
racy and to limit the identification cost (Bombois et al.,
2006). On the one hand, a high level of excitation leads
to informative data sets which can be used to identify
accurate models. On the other hand, the excitation sig-
nals also act as disturbances on the controlled system
and consequently leads to a (temporary) performance
degradation when they are applied. Therefore, there is
a trade-off between the performance degradation due
to the application of the excitation signals and the im-
provement that is expected due to the increased model
accuracy. In the literature, the excitation is said to have
a dual effect on the control performance (Tse and Bar-
Shalom, 1973) for this reason.

In this paper, we consider the problem of designing the
excitation signals in an iterative identification/control
scheme aiming to maximize the overall control perfor-
mance, while guaranteeing a minimum performance level
at all time. In our framework, the total time of the learn-
ing procedure is divided into a number of learning inter-
vals. Excitation signals can be injected into the control
loop during each of these intervals. After an interval,
the measured data are used to refine the model using
closed-loop identification. Based on that model, a new
controller is designed. The controller is applied during
the next learning interval, and so on and so forth for the
following ones.

We define the cost Tk of one interval k as the sum of the
performance degradation due to the difference between
the true system and the identified model (modelling er-
ror cost), and the one due to the presence of the excita-
tion signal (excitation cost) during that interval. Follow-
ing, we determine the excitation signals to be applied in
each interval by minimizing the sum

∑
k Tk of the cost

over all the intervals, subject to a constraint Tk ≤ T̄k on
the cost for each interval. Note that the modelling error
cost in one interval depends on the excitation signals ap-
plied during all the previous intervals since the model is
identified based on the previous data, while the excita-
tion cost depends on the excitation signal applied during
the current interval. Thus, we are here taking the dual
effect of the excitation signals explicitly into account.

It has to be mentioned that the optimization problem
that we would like to solve in order to find these excita-
tion signal is intractable as such. However, using estab-
lished relaxation techniques and tools developed in the
field of Experiment Design (ED), we can derive an ap-
proximation of the original optimization problem that is
convex and can be solved efficiently.

In fact, the problem of designing excitation signals
which guarantee desired properties for the identified
model has been extensively studied in the ED field.
The classic ED approaches consider only two distinct

phases: an identification phase in which the excitation
signal is fed to the system and a model is identified,
and a control phase in which a controller based on the
identified model is applied. The objective is to find com-
promise between the excitation cost in the identification
phase and the modelling error cost in the control phase
(Bombois et al., 2006; Gevers and Ljung, 1986).

A limit of the classic approaches is that if the identifi-
cation phase is too short, it might not be possible to sat-
isfy the performance requirement for the control phase
without violating constraints on the excitation in the
identification phase. One could circumvent this issue by
extending the duration of the identification phase, but
this implies that he/she has to wait a longer time before
having any improvement in the control performance.

Our approach can be seen as an extension of the clas-
sic ED to a situation with several phases (i.e. the learn-
ing intervals), and in which the dual effect of the exci-
tation signal is considered altogether for all the learning
intervals. As we will show in the numerical example, by
considering several learning intervals we can gradually
improve the controller and achieve a better overall per-
formance than in a classic two-phase ED framework.

Our approach has also a certain analogy with the ac-
tively adaptive learning algorithms discussed in Pron-
zato et al. (1996), since it takes explicitly into account
the dual effect of the excitation. However, the approach
in Pronzato et al. (1996) leads to stochastic dynamic op-
timization problems that can be solved only for very spe-
cific model structures and control objectives, while our
approach can be applied to almost any LTI model struc-
ture and control objective. There are indeed important
differences between our approach and the one in Pron-
zato et al. (1996). First, in Pronzato et al. (1996) the in-
put is optimized for the identification and the control ob-
jective altogether, while in our framework the controller
takes care of the control objective and the superposed
excitation signal takes care of the identification objec-
tive. Second, the model is updated at each time instant
in Pronzato et al. (1996), while we perform the iden-
tification only at the end of a learning interval. These
simplifications allow us to use the classical ED tools to
tackle this complicate problem in a wider range of cases.

The rest of this paper is organized as follows. In Sec-
tion 2 the framework is discussed in detail. In Section
3 the ED problem is introduced and the approximated
convex optimization problem is derived. The framework
is applied to a simulation study in Section 5 and conclu-
sions are drawn in Section 6.

2 The Framework
The true system So is the linear time-invariant system

y = Go(q
−1)u+Ho(q

−1)e (1)

where u is the input, y is the output, e is white Gaussian
noise with variance σ2

e , and q−1 is the unit-delay oper-
ator. Go and Ho are stable discrete-time transfer func-
tions; Ho is monic and minimum phase.

2



So is known to belong to a model structure M =
{M(θ), θ ∈ Rp} where θ is the model parameter. The
true system So is described inM by a (unique) true pa-
rameter θo, i.e. ∃!θo | So = M(θo).

In order to reject the disturbance Ho(q
−1)e, we would

like to operate (1) in closed loop. We assume that an ini-

tial model M1 = M(θ̂1) and controller C1 = C(θ̂1) are
available. However, M1 is a relatively poor representa-
tion of the true system So, and the performance of the
initial loop [C1 So] is rather poor.

In the sequel, we will present an iterative model and
controller update procedure whose objective is to grad-
ually improve the accuracy of the model and the con-
trol performance. For this purpose, the total time of the
learning procedure is divided into n learning intervals
of duration N . During each interval, a specially tailored
excitation signal rk is applied to the loop. At the end
of the interval, input and output data are collected and
are used to improve the accuracy of the available model
using prediction error identification. Based on the im-
proved model, the controller is updated and applied to
the true system for the next interval. The procedure is
illustrated in Figure 1 and will be presented in more de-
tails in the next subsection.
Remark 1 If an initial model M1 is not available, or
the uncertainty of M1 is so large that the controller C1

designed using such model could lead to an unstable loop
[C1 So], the first interval can be performed in open loop
(i.e. C1 = 0). Indeed, the true system So is per se stable.
Remark 2 It is possible that the closed-loop system will
be operated for a total time that is longer than the learning
procedure itself. By setting a constraint TN ≤ T̄N on the
total cost in the last interval of the learning procedure, one
can guarantee that the performance T̄N will be maintained
for the rest of the closed-loop operation.
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Fig. 1. The n learning intervals with successive model and
controller updates.

2.1 Iterative identification and control design

Suppose that we are about to start the learning in-
terval k. At this moment, the true system is operated

with a controller C(θ̂k) which has been designed with an

identified model Mk = M(θ̂k). As will become clear in

the sequel, the identified parameter vector θ̂k is normally
distributed around θo with a covariance matrix Pk.

During the N time samples of interval k, an excita-
tion signal rk is applied (see Figure 1) to the closed-

loop system: uk = rk − C(θ̂k)yk. Even though other
choices are possible, we will assume in the sequel that

rk is chosen as a white noise signal filtered by an arbi-
trary FIR filter. At the end of interval k, the data set
Zk = {uk(t), yk(t) | t = 1, · · · , N} is collected and is used

to obtain a more accurate model Mk+1 = M(θ̂k+1). For

this purpose, the parameter vector θ̂k+1 is identified us-
ing not only the new data set Zk, but also all previous

data sets Zk−1, Zk−2,. . . , Z1. Since θ̂k has been deter-
mined using the previous data sets, this can be done by

using θ̂k and its covariance matrix Pk as a regularization

term. Hence, θ̂k+1 is determined as

θ̂k+1 = arg min
θ∈Rp

1

σ2
e

N∑
t=1

ε2k(t, θ) + (θ−θ̂k)>P−1
k (θ−θ̂k) (2)

where εk(t, θ) = H(q−1, θ)−1(yk(t) − G(q−1, θ)uk(t)).

Since θ̂k+1 is determined based on kN data and N has
been chosen relatively large, it is acceptable to use the
asymptotic properties of the prediction error estimate

(Ljung, 1999). Consequently, the parameter vector θ̂k+1
identified in this way is (assumed) normally distributed
around θo with a covariance matrix Pk+1 given by

P−1
k+1 = Ik + P−1

k (3)

where Ik > 0 is the so-called information matrix corre-
sponding to the dataZk: Ik(θo) = N

σ2
e
Ē
(
ψk(t, θo)ψk(t, θo)

>)
with ψk(t, θo) = − ∂εk(t,θ)

∂θ

∣∣∣
θ=θo

(Ljung, 1999). Using

the recursive nature of (3), we have also that

P−1
k+1 = Ik + Ik−1 + ...+ I1 + P−1

1 (4)

whereP1 is the covariance matrix of the initial parameter

vector θ̂1. This covariance matrix is available for instance
if the initial model had been previously identified using
the prediction error framework. If that is not the case,
P−11 can be set to 0 in (4).

Since the updated parameter is estimated with an in-
creasing number of data after each interval, its accuracy
will increase for increasing k. In fact, we can define for

each estimate θ̂k an uncertainty ellipsoid Dk where the

modelling error θo−θ̂k lies with a certain probability α as

Dk , {δ ∈ Rp | δ> P−1
k δ ≤ χ2

p(α)} (5)

where χ2
p(α) is the α-percentile of the chi-squared distri-

bution having p degrees of freedom. Due to (3) and since
Ik > 0, the volume of the uncertainty region decreases
after each interval. Note that this property always holds
if rk is designed as filtered white noises and does not re-
quire rk to be designed in an optimal sense.

The spectrum Φrk of the signal rk can be parametrized
as follows (Jansson and Hjalmarsson, 2005): Φrk(ω) =
Rk(0) + 2

∑m
j=1Rk(j) cos(jω) where Rk(j), j =

0, 1, . . . ,m is the autocorrelation sequence of the signal
rk. The coefficients Rk(j) will be used as decision vari-
ables of the optimal experiment design problem. Using
this linear parametrization of Φrk , the information ma-
trix Ik defined below (3) can be rewritten as an affine
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function of the coefficients Rk (Bombois et al., 2006).
We will hereafter use the notation Ik(θo, Rk) for the
information matrix. Note that since Ik(θo, Rk) is affine
in Rk, P−1k+1 is affine in R1, R2, . . . , Rk due to (4).

Using the data Zk, we have obtained a more accurate

modelMk+1 = M(θ̂k+1). This new model can be used to

design an updated controller C(θ̂k+1). We will suppose
that a control design method has been fixed a-priori and
thus the controller is a function C(·) of the parameter
vector. The choice for the controller design criterion is
not important in the development of our framework.

Since the model M(θ̂k+1) is more accurate than

M(θ̂k), the controller C(θ̂k+1) is very likely to per-

form better than the controller C(θ̂k) that was in the
loop during interval k. However, before applying this
new controller to the true system, it is safer to verify

whether C(θ̂k+1) does not destabilize any of the loops

[C(θ̂k+1) M(θ̂k+1 + δ)] with δ ∈ Dk+1. A necessary and
sufficient condition to perform this robust stability test
can be found in Bombois et al. (2001). If the controller

C(θ̂k+1) passes this test, we have the guarantee that the

loop [C(θ̂k+1) So] is stable (with at least the probability

α related to Dk+1) and the controller C(θ̂k+1) can be
applied during the interval k + 1.
Remark 3 In the eventuality that robust stability is not

validated for the controller C(θ̂k+1), the controller C(θ̂k)
can be kept for the interval k+1. This situation is further
discussed in Remark 7.

2.2 Total cost, modelling error cost, excitation cost

As mentioned in the introduction, one of the objec-
tives of the optimal experiment design problem in this
paper is to minimize the overall cost over the n intervals.
The cost Tk of interval k can be evaluated by comparing
the output yk obtained during this interval and the out-
put that would have been obtained in an ideal situation
(i.e. a situation where we would perfectly know the true
system So). The output yk during interval k is given by

yk(t) =

=ye,k︷ ︸︸ ︷
Ho

1 + C(θ̂k)Go
e(t) +

=yr,k︷ ︸︸ ︷
Go

1 + C(θ̂k)Go
rk (6)

while the output yo of the ideal loop is

yo(t) =
Ho

1 + C(θo)Go
e(t). (7)

The differences between (6) and (7) are the presence of
the term yr,k (which is due to the excitation signal rk)
in (6) and the different controllers present in the two
loops. Indeed, in the ideal loop the controllerC(θo) based
on the true parameter θo is present, while the controller

C(θ̂k) actually present in the loop during the interval k

is designed based on the parameter θ̂k.
The cost Tk can now be defined as the power of the

difference yk−yo between these two outputs. Since rk is
independent of e, the total cost Tk can be split up into

the sum of a modelling error cost Vk (i.e. the power of
ye,k − yo) and an excitation cost Ek (i.e. the power of
yr,k). By applying the Parseval theorem, we get

Tk =

=Vk︷ ︸︸ ︷∥∥∥∥∥ H(θo)

1 + C(θo)G(θo)
− H(θo)

1 + C(θ̂k)G(θo)

∥∥∥∥∥
2

H2

σ2
e

+
1

2π

∫ π

−π

∣∣∣∣∣ Go

1 + C(θ̂k)Go

∣∣∣∣∣
2

Φrk dω︸ ︷︷ ︸
=Ek

. (8)

The modelling error cost Vk represents the perfor-
mance degradation caused by the use of the controller

C(θ̂k) instead of the optimal controller C(θo). The ex-
citation cost Ek represents the performance degradation
caused by the introduction of the excitation signal rk.

The modelling error cost Vk = Vk(θo, θ̂k) is a nonlinear

function of θo and θ̂k and has a global minimum equal

to 0 in θo = θ̂k. If we parametrize the spectrum Φrk
of rk as done in the previous subsection, the excitation
cost Ek is linear in the coefficients Rk(j) (Bombois et al.,

2006). We denote the excitation cost as Ek(θo, θ̂k, Rk) =

R>k c(θo, θ̂k) where Rk ∈ R(m+1)×1 is a vector containing

the coefficients Rk(j), j = 0, 1, . . . ,m and c(θo, θ̂k) ∈
R(m+1)×1 is a nonlinear vector function of θo and θ̂k
(Bombois et al., 2006).

Note that the costs Vk and Ek cannot be evaluated
since they both depend on the unknown true parameter
vector θo. However, we can consider these quantities in
a worst-case sense by computing their maximum value
over the ellipsoid Dk:

Vwc
k , max

δ∈Dk
Vk(θ̂k + δ, θ̂k), Ewc

k , max
δ∈Dk

Ek(θ̂k + δ, θ̂k, Rk).

(9)
For the computation of the worst-case terms (9), we will
here use the approach introduced in (Hjalmarsson, 2009)
and based on a second-order Taylor approximation of

the functions Vk(·, θ̂k) and Ek(·, θ̂k, Rk) around θ̂k:

Vk(θ̂k + δ, θ̂k) ≈ 1

2
δ>V ′′(θ̂k)δ (10)

Ek(θk + δ, θ̂k, Rk) ≈ R>k c(θ̂k, θ̂k)

+R>k Jc(θ̂k)δ +
1

2
δ>
(

m∑
j=0

Ej(θ̂k)Rk(j)

)
δ (11)

where V ′′(θ̂k) and Ej(θ̂k) are the Hessian matrices of

Vk(·, θ̂k) and of the jth entry of c(·, θ̂k), respectively, and

where Jc(θ̂k) is the Jacobian of c(·, θ̂k). Using (10), Vwc
k

can be computed as (Hjalmarsson, 2009)

Vwc
k = min

λk
λk such that P−1

k ≥ 1

λk

V ′′(θ̂k)χ2
α(p)

2
. (12)
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Using (11) and applying S-procedure (Boyd and Van-
denberghe, 2004), Ewc

k can be computed as

Ewc
k = min

γk,τk
γk such that (13)

τk ≥ 0 1
2

∑
j EjRk(j)− τk

P−1
k
χ2

1
2
(R>k Jc)

>

1
2
R>k Jc R>k c(θ̂k, θ̂k) + τk − γk

 ≤ 0

Note that the second-order approximations (10)-(11)

will become more accurate when θ̂k is closer to θo. Con-
sequently, the effects of this approximation will auto-
matically decrease when k becomes larger.
Remark 4 Another approach for obtaining the worst-
case terms Vwc

k and Ewc
k is to compute the maximum

values of Vk(θ̂k + δl, θ̂k) and Ek(θ̂k + δl, θ̂k), respectively
over a number of randomly extracted sample points
δl, l = 1, 2, . . . , ns. It is possible to determine the min-
imum value of ns which guarantees a given worst-case
probability using the theory of Randomized Algorithms.
Since Vwc

k and Ewc
k will be computed inside a convex

optimization problem (see next section), ns can be cho-
sen according to the classic scenario approach (Campi
et al., 2009). If the number of points ns determined ac-
cording to Campi et al. (2009) is prohibitively large, the
more recent results of the so-called sequential approach
(Chamanbaz et al., 2013) can also be applied.

3 Experiment Design
Before interval k = 1, the objective of the ED is to

determine the spectra of the excitation signals for all
the n learning intervals which will minimize (in a worst
case sense) the overall cost over the n intervals while
guaranteeing that the cost of each interval remains below
a given threshold. Let us define the worst-case total cost
T wc
k , Vwc

k + Ewc
k . The ED problem can be expressed as

Ropt = arg min
R

n∑
k=1

T wc
k such that (14)

T wc
k ≤ T̄k, for k = 1, 2, . . . n. (15)

where the variable R , {R1, R2, . . . , Rn} contains the
coefficients parametrizing the excitation spectra for all
the learning intervals. The dual effect of the excitation
signal is incorporated in the problem formulation (14)-
(15). On the one hand, if the excitation spectrum Φrk
during the interval k is “large”, the worst-case total cost
T wc
k is also large due to the contribution of Ewc

k . On the
other hand, this large excitation will lead to a “small”
covariance matrix Pk+1, which in turn gives a small mod-
elling error cost Vwc

k+1 for the next interval (see (12)).
In order to formulate the above optimization prob-

lem as a convex problem, we will use the affine rela-
tion existing between the decision variable R and P−1k

and the fact that P−1k appears linearly in the constraint
of (12). In (13), this it is unfortunately not the case

since P−1k appears in a product with the decision vari-
able τk. To convexify the constraint in (13), we redefine
Ewc
k as the worst case cost over the initial uncertainty

ellipsoid D1 (instead of Dk), which is equivalent to re-
placing Pk by the initial covariance matrix 1 P1 in (13).
This introduces a conservatism, but Ewc

k remains an up-
per bound on Ek. It is furthermore an acceptable ap-
proximation since the actual cost Ek (unlike Vk) is not
related to the modelling error and thus it is not ex-
pected to reduce after each interval. Finally, we will also
have to tackle the so-called “chicken-and-egg” problem,
that is a characteristic of most optimal experiment de-
sign frameworks (Ljung, 1999). Indeed, the constraints
in (12) and (13) are functions of the identified parame-

ter vectors θ̂k, k ≥ 2 that are not available before the
first interval i.e. at the moment when (14)-(15) has to

be solved. As is generally done, θ̂k for all k > 1 will be
replaced by an initial estimate in the optimization prob-

lem. In this case, the initial estimate is θ̂1. We also use

θ̂1 as an estimate of θo in the expression of the infor-

mation matrix Ik: Ik(θo, Rk) ≈ Ik(θ̂1, Rk). It is also to
be noted that, as opposed to other ED frameworks, the
effects of the approximations introduced to tackle the
chicken-and-egg problem (and of the replacement of Pk
by P1 in (13)) will be mitigated by the receding horizon
mechanism proposed later in this paper (see Section 4).

Proposition 5 Let us introduce n scalar variables λ ,
{λ1, λ2, . . . , λn}, n scalar variables t , {t1, t2, . . . , tn},
n scalar variables γ , {γ1, γ2, . . . , γn}, n scalar vari-

ables τ , {τ1, τ2, . . . , τn} and n matrix variables Q ,
{Q1, Q2, . . . , Qn}, Qk ∈ Rm×m. Using (12) (with θ̂k =

θ̂1) and (13) (with θ̂k = θ̂1 and Pk = P1) to compute
Vwc
k and Ewc

k respectively, the ED Problem (14)-(15) cor-
responds to the following convex semidefinite problem

1 If P1 is not available, the nominal excitation cost

R>k c(θ̂k, θ̂k) can be used instead of Ewc
k .
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Ropt = arg min
R,λ,γ,τ,Q

n∑
k=1

λk +

n∑
k=1

γk such that (16)

λk + γk ≤ T̄k (17)

P−1
k︷ ︸︸ ︷

P−1
k−1+ Ik(θ̂1, Rk) ≥ tk

χ2
α(p)V ′′(θ̂1)

2
(18)

τk ≥ 0 1
2

∑
j EjRk(j)− τk

P−1
1
χ2

1
2
(R>k Jc)

>

1
2
R>k Jc R>k c(θ̂1, θ̂1) + τk − γk

 ≤ 0

λk 1

1 tk

 ≥ 0 (19)

Qk −A>QkA C>k −A>QkB
Ck −B>QkA Dk +D>k −B>QkB

 ≥ 0 (20)

for k = 1, . . . , n

with A =
[

0 0
Im−1 0

]
, B = [ 1 0 ... 0 ],

Ck = [Rk(1) Rk(2) ... Rk(m) ] and Dk = Rk(0)
2

.

PROOF. The objective function (16) is the sum of the
worst case modelling error costs λk and excitation costs
γk. The LMIs (19) guarantee the conditions λk ≥ 0,
tk ≥ 0 and tk ≥ 1

λk
simultaneously. This in turn implies

that (18) is equivalent to the constraint in (12). Finally,
(20) guarantees that Φrk(ω) ≥ 0, ∀ω as an application
of the positive real lemma (see Jansson and Hjalmarsson
(2005)) .

4 Receding horizon

By solving the optimization problem (16)-(20) before
the first interval we can design not only the spectrum
Φopt
r1 of the signal r1 that will be applied during this first

interval, but also the spectra of the excitation signals
r2, r3, . . . , rn for all the following intervals. During the
first interval, we generate a signal r1 having the desired
spectrum Φopt

r1 and apply this signal as excitation to the

loop [C(θ̂1) So]. After the execution of this first interval,
the data Z1 are collected and a new parameter vector

θ̂2 is identified using (2). Based on θ̂2, a new controller

C(θ̂2) is designed and applied to the true system So (af-
ter the robust stability check). We could then proceed

with interval 2 by applying to the closed loop [C(θ̂2) So]
a signal r2 having the the spectrum Φopt

r2 obtained from
the solution of the previous optimization problem. How-
ever, we here propose to redesign the spectra Φrk for
k = 2, 3, . . . , n using the newly identified parameter vec-

tor θ̂2. This parameter vector is indeed a more accurate

estimate of θo than the initial estimate θ̂1 since it has
been estimated with twice more data (and consequently
P2 < P1). Consequently, evaluating Ewc

k at interval k ≥ 2
as the worst case of Ek over the new uncertainty ellipsoid

D2 is less conservative than doing it over D1. Moreover,

replacing θo and θ̂k (for k > 2) by θ̂2 instead of θ̂1 is
also more appropriate in order to tackle the chicken and

egg problem since θ̂2 will be generally closer to θo and

θ̂k (for k > 2) than θ̂1.
For the reasons above, the spectra Φrk , k = 2, 3, . . . , n

will be redesigned solving a similar ED problem as the
one presented in Section 3, but using the new esti-

mate θ̂2 and its covariance matrix P2 to evaluate Ewc
k

and to deal with the chicken-and-egg problem. This
spectrum redesign procedure, inspired by the receding
horizon mechanism in MPC control (Maciejowski and
Huzmezan, 1997), will be performed after each interval.
Note that a similar mechanism for the adaptive solution
of an ED problem was adopted in (Stigter et al., 2006).

Owing to the spectrum redesign procedure, the effects
of the approximations on the obtained spectra will be-
come smaller after each interval and the obtained spec-
tra will become increasingly more effective to achieve the
ED objectives. Note that even though the effect of the
approximation may be significant for the very first inter-
vals, our approach will still lead to models having and
increasing accuracy. This is indeed guaranteed whatever
the excitation signal, as long as it is chosen (like in our
case) as filtered white noise.
Remark 6 In principle, a better performance could al-
ways be obtained by reducing the interval length N . The
controller and the excitation signals could be updated
more frequently using a more recent parameter estimate.
In this sense, the best choice would be to set N to just one
time step. However, in the ED procedure we made use
of properties of prediction error identification which are
asymptotic in N . Therefore, we need to choose N suffi-
ciently large for these properties to hold. Dropping this
condition would lead to the same (generally untractable)
formulations obtained in the actively adaptive learning
algorithms (Pronzato et al., 1996). It is hard to quantify
the effect of the interval length N on the overall perfor-
mance in analytical form. Simulation results with differ-
ent values of N will be presented in the next section.
Remark 7 The situation described in Remark 3 where
the robust stability check fails for the controller Ck+1 and
Ck is kept for the interval k + 1 may be a symptom that
the identified model Mk+1 is for some unexpected reason
rather poor. In this circumstance, the result of the ED
procedure (which is based on such model) may also be very
inaccurate. The excitation signal rk+1 can be set in this
case to a white noise signal having the maximum allowed
power. By doing so, the accuracy of the model Mk+2 will
increase in all the directions and the problem most likely
will not occur at the next iteration.

5 Simulation Study
The framework is applied in this section to a simu-

lation example. We consider a Box-Jenkins (BJ) model
structureM = {M(θ), θ ∈ R6}. A model M(θ) in this

structure has G(q−1, θ) = θ1q
−1+θ2q

−2

1+θ5q−1+θ6q−2 , H(q−1, θ) =
1+θ3q

−1

1+θ4q−1 . The true system So = M(θo) is described by
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Fig. 2. Spectra Φrk solution of the first ED problem in Case 1.

θo = [0.8 0 0 −0.6 0.985 0.819]> and the variance
of e is σ2

e = 1. The initial model is M(θ1) with

θ̂1 = [0.676 0.464 0.099 0.6 1.24 0.858]>. The initial co-
variance matrix P1 is

P1=



0.044 −0.022 0 0 0.007 −0.009

−0.022 0.056 0 0 0.008 0.003

0 0 0.0006 0.0004 0 0

0 0 0.0004 0.0004 0 0

0.007 0.008 0 0 0.007 −0.003

−0.009 0.003 0 0 −0.003 0.005


.

The controllers design function is the H2 criterion

C(θ̂k) = arg minK

∥∥∥∥[ H(θ̂k)

1+KG(θ̂k)

√
βKH(θ̂k)

1+KG(θ̂k)

]>∥∥∥∥2
H2

with

β = 0.1. The initial controller is thus C1 = C(θ̂1).
The worst-case terms are computed with probability
α = 0.99.

For the first case considered (Case 1), the total time
Ntot is divided into n = 12 intervals having equal length
N = 200. The constraints on the worst case total cost
are set to T̄k = T̄ h = 0.7 for k = 1, . . . , 6 and T̄k = T̄ l =
0.005 for k = 7, . . . , 12 .

A first ED problem based on the initial model is per-
formed before the execution of interval 1 and the opti-
mal sequence of excitation spectra {Φr1 ,Φr2 , . . . ,Φrn}
is found. The first five spectra of this sequence are re-
ported in Figure 2. The following spectra are zero up to
numerical precision. An excitation signal r1 with spec-
trum Φr1 is generated and the interval 1 is performed
using this excitation signal.

After the execution of the first interval, the data Z1

are collected and used to estimate the parameter θ̂2 and

its covariance P2. Following, the controller C2 = C(θ̂2)
is also designed and the robust stability of the uncertain

closed loop system [C2 M(θ̂2+δ)] with δ ∈ D2 is verified
using the robust stability tools in Bombois et al. (2001).
Subsequently, a new ED problem involving the remain-
ing intervals is formulated and solved. The result is a
new sequence of excitation spectra {Φr2 ,Φr3 , . . . ,Φrn}.
The first element of this sequence is used to realize the
excitation signal r2 implemented in the interval 2 and
the procedure is iterated for all the following intervals.

The spectra of the excitation signals actually fed to
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Fig. 3. Spectra Φrk of the excitation signals actually applied
to the system in Case 1.
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Fig. 4. Total cost Tk vs. time t in Case 1 (n = 12), Case 2
(n = 6), Case 3 (n = 4) and Case 4 (n = 2) intervals. The
green circles denote the time instants corresponding to the
start of a learning interval.

the system in the RH implementation are reported in
Figure 3. Note that these spectra are significantly dif-
ferent from the ones computed before the first interval
(Figure 2). Furthermore, only the spectra relative to the
first 3 intervals are non-zero. Owing to the RH mecha-
nism, the algorithms detects that the excitation in the
intervals 4 and 5 is no longer required. By removing the
excitation in these intervals, the overall performance im-
proves significantly.

In the top left plot of Figure 4 the experimental total
cost T ek is reported 2 , together with the constraint T̄k
and the worst case total cost T wc,RH

k of interval k dy-

namically constructed during the operation 3 . T wc,RH
k

reaches the constraint T̄k for the first three intervals and
decreases in the following ones, so that it can satisfy the
new level of the constraint for k = 7, . . . , 12. The experi-
mental total cost T ek is always below T̄k as expected. T ek
increases from interval 1 to 2, since more excitation is
applied in the second interval. In the following intervals,
T ek decreases and is close to zero for k ≥ 4.

In Figure 5 the Bode diagrams of Go and of identified

the models G(θ̂1), G(θ̂2), G(θ̂3), G(θ̂4) are reported. For

2 T ek is the sample-based approximation of total cost Tk.
3 T wc,RH

k is the worst-case total cost corresponding to the
excitation signal actually applied in the interval k.
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Fig. 5. Bode plot of Go, G(θ̂1), G(θ̂2), G(θ̂3), G(θ̂4).

the identified models, the 99% uncertainty region is indi-
cated by the colored area. The improvement of the mod-
els and the reduction of their uncertainty regions over
the first four learning intervals is evident in this plot.

In order to investigate the influence of the interval
length, we applied the ED framework to the same system
in three more cases dividing the total time Ntot = 2400
into n = 6 intervals having equal length N = 400 (Case
2), into n = 4 intervals having equal length N = 600
(Case 3), and into n = 2 intervals having lengths N1 =
1800, N2 = 600, respectively (Case 4). The constraints
T̄k are set to T̄ h = 0.7 in the first n/2 intervals and to
T̄ l = 0.05 for the last n/2 intervals.

The experimental total cost T ek , the worst case T wc,RH
k

and the constraint T̄k for all the cases are reported in
Figure 4. It appears that the average over time of both

T ek and T wc,RH
k is lower when a larger number of shorter

intervals is selected. The best performance is obtained
in Case 1, followed by the Cases 2,3,4.

Note that Case 4, where only n = 2 intervals are
considered, corresponds to a classical experiment design
problems made up of an identification phase (interval 1)
and a control phase (interval 2). In this case, the con-
straint T̄ h = 0.7 is kept for a longer time than in the
other cases since the length of the first interval is cho-
sen as N1 = 1800. This was done because it was not
possible to satisfy the constraint T wc

2 ≤ 0.005 without
violating T wc

1 ≤ 0.7 having two intervals of equal length
N = 1200 samples.

6 Conclusions

We have presented a new procedure for the gradual
update of a model-based controller. Our framework is
based on an iterative control procedure consisting of suc-
cessive closed-loop identification and model-based con-
troller design steps. Tools from Experiment Design are
used to design the excitation signals for all the inter-
vals aiming to maximize a measure of the overall per-
formance, while guaranteeing a minimum performance

at all time. In the future, we would like to extend the
framework to nonlinear dynamical systems.
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