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of this approach enables the dynamics of all stages

of deformation to be formulated, from the elastic to

the fracturing stage, on a common theoretical basis.

Here the plasticity is characterized as a stage where

dynamics becomes energy dissipative hence the dis-

placement is unrecoverable; fracture is the final

stage of deformation where the dynamics becomes

totally energy dissipative and the material is no

longer able to react to the external load by deforming

further. This leads to physical-mesomechanical crite-

ria of plastic deformation and fracture of isotopic

materials [11]. With these criteria, it is possible to

visualize the plastic zone at the pre-fracture stage

[12], and diagnose loading hysteresis of materials

after the load is removed [13].

Essentially, the physical-mesomechanical forma-

lism describes deformation by a linear trans-

formation similar to that used by conventional

continuum mechanics. To deal with the non-

linearity in the plastic regime, it allows the transfor-

mation matrix to be coordinate dependent. The

underlying idea is that even in the plastic regime,

the material locally obeys the linear, elastic law,

and the non-linear dynamics can be described by

the interrelationship among these local linear trans-

formations. From the gauge symmetrical viewpoint,

this interrelationship makes the law of elasticity

invariant under the coordinate-dependent transfor-

mation. This is a well-established formalism and

can be found in other branches of physics such as

general relativity and electrodynamics [7]. As the

formalism commonly yields the so-called field

equation, the corresponding theory is categorized

as a field theory. The procedure to derive the

physical-mesomechanical field equation is not nec-

essarily simple. In addition, in the original paper by

Panin et al. [5], some of the key equations are

derived without step-by-step proofs. This situation

seems to hinder this approach from being applied

to engineering problems. Recent studies [14, 15]

have clarified the physical meaning of a number of

intermediate steps necessary to derive the field

equation. The aim of the current paper is to fill

these previous gaps in the equational derivation

through discussions of the physical interpretations

on the intermediate steps and related concepts.

Recent experimental results that support the theo-

retical development are also provided.

2 FORMULATION

2.1 Theoretical overview

The basic postulate of physical mesomechanics is

that even in the plastic regime, deformation is

locally elastic. This makes complete sense because

microscopically the force is always proportional to

the displacement. What makes the macroscopic

deformation non-linear is the existence of defects;

as schematically illustrated in Fig. 1, if a defect

exists segments around it rotate differently. Within

each segment (called the deformation structural ele-

ment), however, deformation is elastic and thereby

can be expressed by a transformation matrix of con-

ventional continuum mechanics: h# = U(xm)h. Here,

h and h’ denote the line element vector before and

after the deformation, and U is the transformation

matrix that represents the deformation. Since the

elastic deformation is different from one deforma-

tion structural element to another, the transforma-

tion matrix is a function of the space coordinates.

The above postulate raises a question: Are these

local transformations completely independent of

each other? The answer should be ‘No’, because as

different parts of the same object experiencing non-

linear deformation there must be some interrela-

tionship among these local linear transformations,

and this interrelationship should describe the non-

linear part of the dynamics. This is where the con-

cept of local symmetry and associated formalism

needs to be considered and this will be elaborated

in the following sections.

2.2 Deformation as a linear transformation

Consider a line element vector in an object under

deformation, as shown in Fig. 2. Here, h and h#
denote the line element vector before and after the

deformation, and j is the displacement vector. As j

depends on the coordinates and the head and tail

of h are located on different coordinate points, h

and h# are not parallel to each other. With U being

the transformation matrix to represent this transfor-

mation, h# and h can be related by

h9 = Uh (1)

Fig. 1 Schematic view of material rotations of four
segments around a defect

Fig. 2 Deformation as a linear transformation
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The difference between h and h#, d h, is due to

the difference in displacement between the coordi-

nate points of the tail and head of h. Hence, it can

be expressed in terms of the distortion matrix b

dh = h9� h =

∂jx

∂x

∂jx

∂y

∂jx

∂z

∂jy

∂x

∂jy

∂y

∂jy

∂z

∂jz

∂x

∂jz

∂y

∂jz

∂z

0
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1
CCCCCCCA

dx
dy
dz

0
@

1
A= b

dx
dy
dz

0
@

1
A = bh (2)

Equation (2) indicates h# = h + bh = (I + b)h

where I is the unit matrix, and comparison of this

matrix with equation (1) enables U and b to be

related as

U = I + b (3)

Now consider if the force law is invariant under

this transformation. In the theory of elasticity, force

is proportional to the stretch or the differential dis-

placement. Therefore, for the theory to be invariant,

the differential must transform in the same fashion

as the vector itself. Otherwise, after the transforma-

tion the elastic force law can not be written in the

same form as before the transformation. This means

that after the transformation, U(dj) must represent

the differential of the transformed displacement, i.e.

U(dj) = d Ujð Þ= dUð Þj + U djð Þ (4)

Here the left-hand side is the transformation of

the differential and the right-hand side is the differ-

ential of the transformed. Apparently, the condition

that ‘the differential transforms in the same fashion

as the vector itself’ holds only if dU = 0, or U is inde-

pendent of the coordinates. From equation (3), this

is equivalent to b being independent of the coordi-

nates. Furthermore, since a component of b is the

first derivatives of displacement, this indicates that

the condition is equivalent to the first derivatives of

displacement being coordinate independent, or the

coordinate dependence of displacement being as

high as the first order, i.e. the deformation is linear.

2.3 Coordinate-dependent transformation

When the deformation is non-linear, the first term

on the right-hand side of equation (4) becomes non-

zero, meaning that the differentials do not transform

in the same form as the vector. In order to make the

elastic force law invariant under the transformation,

it becomes necessary to replace the usual differen-

tiation, d, with a new differentiation operator, D, so

that the right-hand side of equation (4) can be put in

the form D#(Uj), i.e. ‘differentiation of transformed’.

Here a prime (#) is added to emphasize that it repre-

sents the differentiation ‘after’ the transformation.

Equating this to the transformation of the new differ-

ential, the following equation is obtained

U Djð Þ = D9 Ujð Þ (5)

The left-hand side of equation (5) represents the

transformation of the differential and the right-

hand side the differential of the transformed. From

equation (5), it follows that UD = D#U, and therefore

it is necessary that the newly defined differential

transforms in the following fashion

D9 = UDU�1 (6)

as j transforms according to equation (1). Conversely,

if D transforms according to equation (6), the theory

becomes invariant under the coordinate-dependent

transformation U(xm). As a pair, transformations (1)

and (6) are called the gauge transformation associ-

ated with this dynamics.

Comparison of equations (4) and (5) indicates

that D must eliminate the extra term dU, leading to

the following form of Di

Di =
∂

∂xi
� Gi = ∂i � Gi, i = x, y, z (7)

Here, 2Gi represents the removal of the extra

term and is called the gauge term. The resultant

derivatives, Di, are called the covariant derivatives.

Note that on the right-hand side of equation (7), the

first term ∂i represents the physically true infinitesi-

mal change in the vector and the second term is the

apparent change associated with the coordinate

dependence of the transformation. Thus, in order to

describe the underlying physics, this apparent term

must be removed from the differentials. Figure 3

illustrates this schematically.

� = � − ΓΓξξξ

�

�

Γξξ
ξ

Fig. 3 Gauge term as part of differential not repre-
senting deformation
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2.4 Field interaction and stress tensor

From the viewpoint that the gauge term represents

the apparent change of the vector associated with

coordinate dependence of the transformation mat-

rix, the effect can be interpreted as an interaction of

the vector with the field. Therefore, the covariant

derivative can be expressed in terms of vector

potential A as

Dji =
∂ji

∂x
� Gxji

� �
dx +

∂ji

∂y
� Gyji

� �
dy

+
∂ji

∂z
� Gzji

� �
dz[dji � Ai

(8)

In elastic deformation, the rotation matrix repre-

sents rigid body rotation of the material, which

does not involve length change. In equation (8), the

actual change in the length of differential displace-

ment vector is all in dj. Thus, A can be interpreted

as representing the rotation of the local volume ele-

ment. Splitting the distortion matrix into the sym-

metric part (strain matrix) and asymmetric part

(rotation matrix), the differential displacement can

be written in the following form

Dj = b

dx

dy

dz

0
B@

1
CA�

0 �vz vy

vz 0 �vx

�vy vx 0

0
B@

1
CA

dx
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dz

0
B@

1
CA

= dj �
�vzdy + vydz

vzdx � vxdz

�vydx + vxdy

0
B@

1
CA

(9)

Comparison of equations (8) and (9) indicates

that the three components of A can be identified as

Ai = vjdxk � vkdxj, i, j, k = x, y, z (10)

Now consider the interaction with the field

via the vector potential. Figure 4 illustrates an

infinitesimal differential displacement Djs (differ-

ence between the displacement of two neighbour-

ing points). Consider moving from point A to point

B along two paths under the influence of the

potential; the first path is to move along the xn axis

and then the xm axis (clockwise), and the second

path is counter-clockwise (Fig. 4). Because of

the interaction with the field, the differentials

between the two paths are potentially different.

Dropping the second-order differentials, the clock-

wise case is

Dm Dnjsdxnð Þdxm = ∂m∂njsdxndxm � ∂m Gnjsdxnð Þdxm

+ GmGnjsdxndxm

Here from the definition, Gn js dxn can be inter-

preted as Av, and so

Dm Dnjsdxnð Þdxm=∂m∂njsdxndxm�∂mAndxm+
1

js

AmAn

The counter-clockwise case can be expressed

with the vector potential in the same fashion. Thus

the difference between the clockwise and counter-

clockwise case is

Dm Dnjsdxnð Þdxm �Dn Dmjsdxm
� �

dxn

= ∂nAmdxn � ∂mAndxm
� �

+
1

js

Am, An

� �

In the infinitesimal limit, dxn = dxm = ds, and divi-

sion of the above equation by ds leads to

Dm, Dn

� �
s
jsds = ∂nAm � ∂mAn

� �
+

1

dsjs

Am, An

� �
[Fmn (11)

This quantity Fmn, known as the stress tensor,

represents the strength of the interaction with the

gauge field. Before considering its physical mean-

ing, examine how the stress tensor transforms. With

the use of equation (6)

F9mn = D9m, D9n

� �
dxjs = D9mD9n �D9nD9m

� �
dxjs

= UDmU�1UDnU�1 �UDnU�1UDmU�1
� �

dxjs

= U Dm, Dn

� �
U�1dxjs = UFmnU�1

Apparently, F 0mn 6¼ Fmn and the stress tensor is not

invariant under the gauge transformation. However,

from the mathematical identity tr(AB) = tr(BA), it is

found that the trace of the inner product of the

stress tensor is invariant

1

4
tr F 9

mnFmn9
� 	

=
1

4
tr UFmnU�1UFmnU�1
� �

=
1

4
UFmnFmnU�1
� �

=
1

4
tr U FmnFmnU�1

� �� �

=
1

4
tr FmnFmnU�1
� �

U
� �

=
1

4
tr FmnFmn
� �

(12)

Fig. 4 Clockwise and counter-clockwise paths from
the tail to the head of differential displacement
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Now consider the meaning of the stress tensor.

From equation (10), apparently Am and An commute

with each other. Thus the stress tensor for m = x,

n = y, as an example, becomes

Fxy =
∂Ax

∂y
�∂Ay

∂x
=

∂vy

∂y
dz�∂vz

∂y
dy

� �
� ∂vz

∂x
dx�∂vx

∂x
dz

� �

=
1

2

∂

∂y

∂jx

∂z
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� �
dz� ∂
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∂jy
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� �
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 �

�1
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∂
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 �

=
1

2

∂jx
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�
∂jy

∂x

� �
=�vz

Here, note that Ai actually represents displace-

ment ji. In general, Fij represents rotation as

Fij = � vk, i, j, k = x, y, z (13)

At this point, it is necessary to introduce the time

terms. Using the relativistic four-vector notations

[7], the stress tensor with the time components

included can be written as

F0i =
∂A0

∂xi
� ∂Ai

∂x0
=
∂A0

∂xi
� 1

c

∂Ai

∂t
= � 1

c

∂ji

∂t
(14)

Here (x0, x1, x2, x3) = (ct, x, y, z) and c is the phase

velocity of the wave characteristics. In the present

case, c can be interpreted as the transverse wave

velocity, which is given as the square root of the

reciprocal of the product of the density and the

shear modulus. See the appendix for more details.

c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=(em)

p
(15)

2.5 Lagrangian formalism and field equations

Now that the rule of transformation on the gauge in

conjunction with the transformation of the line ele-

ment vector has been found, the part of the true

dynamics associated with the coordinate depen-

dence of the transformation matrix can be

expressed through the analysis of the vector poten-

tial. For this purpose, the Lagrangian formalism

works well. As discussed above, FmnFmn is invariant

under the present gauge transformation. From the

definition, the inner products of covariant vectors

are apparently invariant. Thus the Lagrangian of the

following form is found invariant

L =
1

4m
FmnFmn � gijDmha

i Dnh
b

j C
mn
ab (16)

Here 1/m is the shear modulus and Cmn
ab is the

dimensionless elastic constant of the material [5].

(NB The shear modulus 1/m is proportional to the

spatial derivative of rotation v, which is already

a spatial derivative of displacement (e.g. vz = ∂jy/∂x

2 ∂jx/∂y), this force is proportional to the second-

order spatial derivative of displacement unlike the

usual shear force which is proportional to the shear

strain, a first-order derivative of displacement.)

Substitution of the explicit form of Fmn shown in

equations (13) and (14) into the first term of equa-

tion (16) indicates that this term represents the

energy of the gauge field. The second term is basi-

cally the work done by the elastic field of the mate-

rial. Application of the least action principle leads

to the following Euler–Lagrange equation with

respect to the vector potential Am

∂n

∂L

∂ ∂nAm

� �� ∂L

∂Am

= 0 (17)

Equation (17) yields the following field equations

r � n = j0 (18)

r3v = � 1

c2

∂n

∂t
� j (19)

where v is the angle of rotation, j0[gijha
i ha

j , and

j[gijha
i DV h

b

j Cmn
ab . From equations (13) and (14), v is

found to be related to the velocity v as follows

r3n =
∂v

∂t
(20)

Taking the divergence of equation (19) with the

substitution of equation (15) to c in equation (19)

and the use of equation (18) along with the mathe-

matical identity r � (r3 v) = 0 leads to the follow-

ing relationship between j0 and j

e
∂j0

∂t
= � 1

m
r � j (21)

Assuming that the density e is constant over time,

the left-hand side of equation (21) can be inter-

preted as the change of momentum over time. On

the other hand, the right-hand side of equation (21)

represents the differential of j, which is basically the

longitudinal force [14]. Thus, equation (21) can be

interpreted as ‘the change in momentum in a unit

volume is caused by the difference in the longitudi-

nal force acting on the leading and tailing edge of

the unit volume’; i.e. Newton’s second law. With

these notations, equation (19) can be rewritten as

e
∂n

∂t
= � 1

m
r3vð Þ � 1

m
j (22)
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Equation (22) is the equation of motion governing

the dynamics of a unit volume [14]. The left-hand

side is the product of the mass and acceleration.

The right-hand side is the external force acting on

the unit volume where the first term represents the

restoring force proportional to the shear modulus

1/m and the second represents the longitudinal

force. When the deformation is in the elastic regime,

the longitudinal force is due to the elastic response

of the surrounding materials represented by the

elastic constant Cmn
ab (equation (16)). When the defor-

mation enters the plastic regime, this longitudinal

force becomes velocity damping force through the

mechanism explained in the next section.

3 PLASTIC DEFORMATION AS AN

ENERGY-DISSIPATING PROCESS

3.1 Longitudinal force

The dynamics in the plastic regime is well under-

stood by viewing equation (21) as an equation of

continuity, which reads ‘the change in the quantity

ej0 = (er � n) over time in a closed volume is equal to

the net flow of ej0 into the volume by means of j/m.

Here the quantity r � n is basically the longitudinal

change in displacement per unit volume, i.e. the

stretch corresponding to displacement in unit time.

Thus its flow represents displacement of the

stretched pattern, or in a one-dimensional picture,

‘a stretched spring’ flows as a whole. In other words,

when additional force is applied to an already

stretched spring, it moves as a whole rather than

being further stretched. In order for this to happen,

it is necessary that the spring is detached at the

point where it is supported. If this happens, the

displacement is naturally unrecoverable. Figure 5

illustrates the situation schematically. Figure 5(a)

shows that in the elastic regime, the momentum

of the closed volume changes over time due to

the differential longitudinal force r � j/m (in the

one-dimensional picture, r � j = ∂jx/∂x). Figure 5(b)

shows that in the plastic regime, the entire stretch

moves out of the closed volume; this causes net

momentum loss for the closed volume because the

material near the leading edge of the stretch has

higher velocity than the tailing edge [14].

The interpretation of equation (21) as an equa-

tion of continuity enables it to be rewritten as

1

m
j = W dej0

(23)

where Wd is interpreted as the drift velocity of the

quantity ej0 =r � (ev) which can be viewed as the

divergence of momentum density. As Fig. 5(b) indi-

cates, when the deformation is plastic, this quantity

ej0 flows in the same direction as the velocity v

causing the momentum loss. Thus being propor-

tional to the velocity, the corresponding force j/m

can be interpreted as velocity damping force, i.e.

the work done by the external force is dissipated,

as opposed to stored as the spring energy in the

elastic case (Fig. 5(a)). It seems that equation (21)

represents the momentum conservation that

visco-plastic constitutive models [16] are based

on. Connection between the present formalism and

visco-plasticity is the subject of future study.

It is interesting to consider Wdej0 that appears on

the right-hand side of equation (23) in the elastic

case. Setting the direction of elastic elongation

along the x-axis, this quantity can be expressed as

1

m
jx = Wd

e∂vx

∂x
(24)

where vx is the x-component of the velocity; vx = _jx.

Since it is elastic deformation, the displacement can

be expressed as a longitudinal elastic wave with

angular frequency v0, wave number k0 and ampli-

tude j0 in the form of j0ei(v0t�k0x). Therefore

∂vx

∂x
=

∂

∂x
_jx = iv0

∂jx

∂x
=

iv0

�ik0

∂2jx

∂x2
= � vph

∂2jx

∂x2

where vph is the phase velocity, which can be

expressed in terms of the Young’s modulus and

density as vph = O (E/e). By viewing Wd = vph, equa-

tion (24) becomes

1

m
jx = � vph

2e
∂2jx

∂x2
= � E

∂2jx

∂x2
(25)

Equation (25) represents the differential force at

the leading and tailing boundary of a unit volume

due to the elastic force. Thus, it is found that in the

linear elastic limit where v represents rigid body

rotation and hence r3 v = 0, equation (22) reduces

to the equation of longitudinal elastic wave.

3.2 Plastic deformation and fracture criteria

The argument made in the preceding sections indi-

cates that the onset of plastic deformation of a

linear material can be characterized by coordinate-

dependent rotation, i.e. the left-hand side of

Fig. 5 Schematic illustration of one-dimensional r � j ;
(a) elastic case and (b) plastic case
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equation (19) is non-zero. In addition, the trans-

verse restoring force and longitudinal damping

force represented by the two terms on the right-

hand side of equation (22) are active. Thus, the

plastic deformation criterion [11] of an initially

linear material can be given by

1

m
r3vð Þ 6¼ 0 and

1

m
j 6¼ 0 (26)

It is expected that as plastic deformation devel-

ops, the transverse restoring force weakens and,

instead, the longitudinal damping force tends to

dominate. At the point where the restoring force

vanishes completely, the material totally loses its

restoring mechanism. This can be interpreted as the

pre-fracturing stage. Eventually, both the restoring

force and damping force vanish, and this is when

the material fractures. Thus pre-fracturing criterion

and fracture criterion [11] can be given, respec-

tively, by

1

m
r3vð Þ= 0 and

1

m
j 6¼ 0 (27)

and

1

m
r3vð Þ= 0 and

1

m
j = 0 (28)

3.3 Supporting experimental results

In order to test the plastic deformation and fracture

criteria discussed above, a number of tensile experi-

ments have been conducted with the use of an opti-

cal interferometric technique known as electronic

speckle pattern interferometry. Figure 6 is the

result of an experiment conducted under research

collaboration with O. Umezawa and K. Sunaga of

Yokohama National University. The experiment

was conducted with a 5 mm wide, 30 mm long, and

0.3 mm thick aluminum alloy specimen; the loading

characteristic is shown along with typical interfero-

metric fringe patterns observed: (a) prior to the

yield point, (b) in the middle of the plastic regime,

and (c) immediately before the fracture. In this

experiment, the interferometer is sensitive to the

horizontal component of in-plane displacement.

Thus, dark fringes represent the locations on the

specimen where the horizontal component of the

displacement is integral multiples of a unit value

determined by the interferometer’s setting (0.45

mm). The tensile load was applied vertically. It can

be seen that in stage (a) the fringes are slightly

slanted but nearly horizontal and, relatively speak-

ing, evenly distributed; in stage (b) the fringes are

curved and diagonal, and in stage (c) they are hori-

zontal and their density increases toward the upper

end of the specimen where the fringes are so dense

that a bright X-shaped pattern is apparent. In accor-

dance with criteria (26) and (27), these observations

can be explained as follows. As the interferometer is

sensitive to the horizontal component of displace-

ment (jx), the horizontal (x) and vertical (y) compo-

nent of the transverse restoring force represented

by the fringe pattern can be expressed as

Fx} r3vð Þx =
∂vz

∂y
�∂vy

∂z
!∂vz

∂y
!� ∂

∂y

∂jx

∂y

� �

Fy} r3vð Þy =
∂vx

∂z
�∂vz

∂x
!�∂vz

∂x
! ∂2jx

∂x∂y

� �
¼ ∂

∂y

∂jx

∂x

� �

Thus, generally speaking, if the fringes are hori-

zontal, ∂jx=∂x = 0 and Fy = 0. If the fringes are slanted

(i.e. ∂jx=∂x 6¼ 0, ∂jx=∂y 6¼ 0) and unevenly distributed

in the vertical direction (∂/∂y 6¼ 0), Fx 6¼ 0 and Fy 6¼ 0.

From this viewpoint, the above observations are

explained as follows: in stage (a) the specimen

exerts some level of Fx and Fy. However, judging

from the fact that the fringes are more or less evenly

distributed along the y axis, the forces are small. In

stage (b), both Fx and Fy are substantial. As the

deformation develops toward fracture, Fy practically

vanishes and there is some level of Fx over a large

part of the specimen. The bright pattern due to the

dense fringes represents the damping force propor-

tional to ∂jx=∂x. Previous studies [17, 18] have indi-

cated that this bright pattern of dense fringes has

a strong correlation with the shear band due to the

Portevin–Le Chatelie effect. It is therefore consid-

ered that this pattern results from the associated

Fig. 6 Tensile experiment with Al alloy (2 per cent Mg)
specimen. Pulling rate: 20 mm/s. The loading
characteristic is shown along with typical inter-
ferometric fringe patterns observed: (a) prior to
the yield point, (b) in the middle of the plastic
regime, and (c) immediately before the fracture
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dislocation dynamics. These are consistent with the

intuitive trend of the deformation.

4 CONCLUSIONS

In summary, the derivation of physical-meso-

mechanical field equations has been analysed on

a step-by-step basis, and the physical meaning of

the quantities involved in the equational derivation

has been discussed. The vector potential associated

with the gauge term has been identified as repre-

senting the rotation matrix of local transformation.

This identification has confirmed the validity of the

previous interpretation of transverse force associ-

ated with the rotational nature of material rotation,

and longitudinal force associated with the momen-

tum change of unit volume over unit time. The

transition from the elastic to the plastic regime has

been characterized as the longitudinal force of the

material changing from being proportional to the

displacement to being proportional to the local

velocity. The plastic deformation criterion and frac-

ture criterion derived from these ideas have been

verified through comparison with a tensile experi-

ment conducted with the use of an optical interfer-

ometric technique.
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APPENDIX

Four-vector notation

In order to describe deformation dynamics with the

above-mentioned formalism, it is convenient to use

the four-vector notation used in the relativistic

theories. Consider an infinitesimal volume element

in an elastic material. According to Newton’s

second law, the acceleration of the volume is equal

to the net external force exerted by surrounding

volumes. Figure 7 illustrates the dynamics as a

one-dimensional model. If the normal force is dom-

inant (Fig. 7(a)), the external force acting on the
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volume at the leading edge at s + ds is f(s + ds) =

kndj(s + ds) and that at the tailing edge is f(s) =

knd(s). Here kn denotes the normal elastic constant

(stiffness) and j the displacement; hence dj = (∂j/

∂s)ds is the differential displacement or the stretch.

Consequently, the net force can be expressed in

terms of the displacement as f(s + ds) 2 f(s) = (∂f/

ds)ds = kn(∂2j/∂s2)ds = EA(∂2j/∂s2)ds. Here A is the

cross-sectional area of the volume and E is the

Young’s modulus. Since this is equal to the acceler-

ation term

m du=dtð Þ= mf(∂u=∂t) + (∂u=∂s) ds=dtð Þg ffimf(∂u=∂t)

= m(∂2j=∂t2) = eAds(∂2j=∂t2)

(NB The second-order terms of derivatives (∂u/

∂s)(ds/dt) are neglected above) the following equa-

tion is obtained

∂2j

∂t2
=

E

e
∂2j

∂s2
(29)

Here e is the density. Equation (29) is the well-

known equation of longitudinal elastic wave. By

expressing the differential ds in terms of a Cartesian

coordinate, equation (29) can be written as

∂2j

∂t2
� E

e
(r2j) = 0 (30)

With the use of covariant and contravariant gradi-

ent ∂m = ( 1
c
∂
∂t ,r), ∂m = ( 1

c
∂
∂t , �r), display equation

equation (30) can be written as

∂m

� �
∂mjð Þ=

1

c2

∂2j

∂t2
�r2j = 0 (31)

Comparison of equations (30) and (31) indicates

that c is the phase velocity of the longitudinal elas-

tic wave yielded by equation (29)

c =
ffiffiffiffiffiffiffiffi
E=e

p
(32)

When shear force is dominant (Fig. 7(b)), the same

argument can be repeated to yield an equation of

transverse, elastic wave with the phase velocity

being associated with the shear modulus in place of

the Young’s modulus E in equation (32).

Fig. 7 Phase velocity in four-vector notation: (a) normal
force dominant; (b) shear force dominant
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