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Revealing load hysteresis based on physical-mesomechanical
deformation and fracture criteria

S. Yoshida*, G.A. Gaffney and K. Yoshida

Southeastern Louisiana University, Hammond, LA 70402, USA

Previously derived plastic deformation and fracture criteria are applied to an engineering application. Aluminum plate specimens are
preloaded to various stress levels ranging from the elastic to plastic regime. After released from the preload, these specimens are reloaded
at a stress level much lower than the yield stress. Electronic speckle pattern interferometry is used to observe fringe patterns that differen-
tiate the level of preloading. Results of this study indicate that it is possible to reveal the load hysteresis through analysis of these fringe

patterns.
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1. Introduction

Among a number of unique features, what makes physi-
cal mesomechanics [1] significantly distinctive over other
theories of deformation and fracture, is its capability of de-
scribing different stages of deformation, i.e., the elastic, plas-
tic and fracturing stage, on the same theoretical basis. This
capability is based on the mesomechanical postulate: In the
plastic regime deformation is still locally elastic and the
dynamics can be described by considering the interactions
among the local deformations. The physics underlying this
postulate, known as the local (gauge) symmetry, states as
follows: When a transformation representing a certain phy-
sical process is local (coordinate dependent), the associ-
ated Lagrangian must be invariant under the transforma-
tion so that the physics be the same before and after the
transformation, and that to ensure the invariance a vector
field called the gauge field must be introduced [2]. In the
present context, this can be translated as follows: When an
elastically deforming material enters the plastic regime, de-
formation starts to have a rotational mode; i.e., different
parts of the material have their own degrees of rotation.
This is one of the fundamental postulates of physical meso-
mechanics [1]. Consequently, the antisymmetric component
of distortion tensor, known as the tensor of rigid body rota-
tion in the elastic theories, represents deformation because
different parts of the material experience different rotations.
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In other words, the distortion tensor becomes coordinate
dependent, and in order to preserve the gauge invariance a
new vector field arises and that prescribes the dynamics of
plastic deformation [3]. Similar concepts can be found in
other fields of physics. A good example is that when we
allow local symmetry in the phase transformation of charge
particles, a vector field arises so that the corresponding phy-
sics (quantum mechanics) can be invariant [2]. The dyna-
mics prescribed by this vector field is nothing but electro-
dynamics, and the vector field is the electromagnetic field.
In fact, the field equations resulting from the physical-me-
somechanical gauge symmetry are formulaically analogous
to the well-known Maxwell equations of electrodynamics
[3-5].

Previously, we discussed the physical-mesomechanical
field equations in various occasions and contexts. In [6],
we noted that one of the field equations represents an equa-
tion of motion describing the dynamics in which an unit
volume in a plastically deforming material reacts to the ex-
ternal force through transverse restoring force and longitu-
dinal damping force. When combined with other field equa-
tions, it yields a wave equation whose general solution is a
decaying transverse wave of the displacement field. Here
the oscillatory nature of the displacement field is caused by
the transverse restoring force (restoring torque) and the
decaying nature is due to the longitudinal damping force.
The critical distinction from the elastic regime is that in the
plastic regime the longitudinal force is not proportional to
the stretch but to the local velocity; consequently, the work
done by the external force is not stored in the field as the



elastic energy but dissipates, making the associated defor-
mation unrecoverable. These ideas have led to the plastic
deformation and fracture criteria of initially isotropic and
uniform materials [7]. When a material starts to exert re-
storing torque it is the beginning of plastic regime; at least
part of the longitudinal force becomes energy dissipative.
Subsequently, the material loses the recovery torque and
the longitudinal damping force dominates; this is the pre-
fracturing stage. Complete fracture can be interpreted as
the situation where the material loses its mechanism of ex-
erting the recoverable and damping force completely.

These ideas are supported by experimental observations.
In [8], a plastic deformation wave is observed in an alumi-
num alloy specimen under a tensile load. It is demonstrated
that the wave decays and when it completely decays the
specimen fractures. In [9], a near-crack tip plastic zone is
identified as the region where the plastic deformation crite-
rion is satisfied, which subsequently develops to the pre-
fracturing stage (the critical fracture criterion) and, within
the following tenth of seconds, develops to a complete frac-
ture. In these experiments, the displacement field was ob-
served on a real-time basis with the use of an optical inter-
ferometric technique known as the electronic speckle pat-
tern interferometry [10].

These experiments not only support the physical-meso-
mechanical plastic deformation and fracture criteria but also
indicate the possibility of engineering applications of them.
Apparently, the plastic deformation and fracture criteria
applied in [9] to identify a near crack-tip plastic zone can
be utilized as a method of fracture prediction. In this paper,
we propose another application of the plastic deformation
criterion using the same type of electronic speckle pattern
interferometry as [9]. We demonstrate that by applying a
low-level test tensile-load to previously loaded specimens
and examining the resultant fringe patterns, it is possible to
reveal the loading hysteresis. Based on the transition in the
material response to the external force mentioned above,
i.e., the longitudinal recovery force in the elastic regime,
the combination of recovery torque and longitudinal damp-
ing force in the plastic regime, and the loss of recovery
mechanism in the fracture stage, the fringe patterns are exa-
mined. Below after reviewing the physical-mesomechanical
description of deformation dynamics with focus on the tran-
sition of material responses, we demonstrate this idea us-
ing a commercially available aluminum plates as sample
specimens.

2. Formulations
2.1. Physical mesomechanical field equations and
dynamics

The physical-mesomechanical field equations can be put
in the following form [3, 6]:
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where v is the velocity of the deforming material at (x, y, z),
€ is the density of the medium, p/e and J are, respectively,
the time and spatial component of the charge of symmetry,
 is the angle of the local volume element from its rota-
tional equilibrium, and 1/u is the shear modulus. Applica-
tion of divergence to Eq. (3) with the use of Eq. (1) leads to
an equation of continuity:
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By understanding J/u as the momentum loss associated
with a flow of strain concentration (see below), this equa-
tion of continuity can be interpreted as follows: the only
way for the charge to change its density over time is the net
momentum loss at the boundaries of the flow. Equation (4)
allows us to express the current in the following form

J
n =pW, =e(V-V)W, (%)

where W, is the drift velocity of the charge density p and
Equation (1) was used.

According to fluid dynamics, the change in the momen-
tum p of a unit volume of a flowing medium subject to an
external force in the direction of its velocity per unit time is
given as

dp

4 eV -v)v. (6)
The resemblance between the right-hand sides of Egs. (5)
and (6) indicates that J/u is some sort of force. Indeed, it
is possible to interpret it as the longitudinal force acting on
a unit volume of a deforming material in the direction of
the local velocity [6]. It is also possible to show that in the
elastic limit, J/u represents the elastic force proportional
to the displacement of the unit volume from the equilib-
rium state [11]. These arguments allow us to put J/u in the

following form:
J =OV. 7
u
The quantity ¢ in Eq. (7) corresponds to conductivity in
electrodynamics [5].
Rearrangement of Eq. (3) leads to
sa—vz—l(me)—i. ®)
a  u u
Equation (8) can be interpreted as the equation of motion
governing the unit volume, where the left-hand side repre-
sents the change in momentum and the right-hand represents
the external force. A recent study [6] reveals that the first
term on the right-hand side represents the recoverability
mechanism in plasticity from the shear force associated with
material rotation, and the second term the energy dissipat-
ing force associated with the loss in momentum [6]. Since



Equation (8) holds when the left-hand side is zero leading
to Vx® =-J, it is possible to say that the current flows
along the boundary of rotations. Note that € and p are ma-
terial constants: from this viewpoint, Equation (8) can be
viewed as a constitutive equation as well.

2.2. Plastic deformation and fracture criteria

From the gauge theoretical viewpoint, as mentioned
above, plastic deformation is characterized as the situation
in which the distortion tensor is coordinate dependent. From
this, we can assume that when the left-hand side of Eq. (3)
is non-zero, the condition for plastic deformation is satis-
fied. In fact it is possible to show that when we set the left-
hand side to zero, Equation (3) reduces to the elastic wave
equation [11]. Thus the plastic deformation criterion can
be given as below [7]:

Vxo#0. )
Condition (9) means that if different regions of a material
rotate differently, the deformation is plastic, in consistence
with physical mesomechanical postulate [1]. On the other
hand, if the entire region of the material experiences a com-
mon rotation, the deformation is elastic.

The prefracturing stage can be interpreted as the final
stage of plastic deformation where the material loses its
recoverability mechanism via the first term of the right-hand
side of Eq. (8). The difference from elastic deformation,
where VX is zero, is that the current J is nonzero, caus-
ing the energy dissipation. Thus the critical fracture crite-
rion [7] can be given as

Vxo=0, (10)
J
E=8(V~V)Wd #0. (11)

These equations indicate that by monitoring @ and V-v,
it is possible to diagnose the plastic deformation and frac-
turing stages of the object. Complete fracture can be char-
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Fig. 1. Experimental arrangement

acterized as the stage where even J becomes zero, i.e., the
material loses the resisting mechanism completely. Below,
we demonstrate an idea of monitoring these quantities via
interferometric fringe patterns that represent the displace-
ment field of a deforming object.

3. Experiment

3.1. Displacement measurement with electronic
speckle pattern interferometry

Figure 1 illustrates the experimental arrangement for
this study. We set up a dual beam electronic speckle pattern
interferometry sensitive to in-plane displacement [10] in
front of an aluminum specimen attached to a tensile ma-
chine, using a continuous-wave, helium-neon laser oscil-
lating at 632.8 nm as the light source. We split the laser
beam into two paths on a horizontal plane, configuring the
resultant two beams as two interferometric arms to illumi-
nate the surface of the specimen at the same angle of inci-
dence and created the sensitivity in the direction of the ten-
sile axis. The CCD camera captured the image of the speci-
men at a frame rate of 30 frame/s. We sent captured images
into computer memory and subtracted each image from the
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Fig. 3. Fringe patterns representing uniform stretch (a) and pure rotation (b). The dashed lines in the right picture denote the horizontal components of
the displacement under pure rotation, which a horizontally sensitive interferometer is sensitive to

image captured at a later frame, typically 10-20 frames
later. We set the interval between the images of subtraction
such that the result of subtraction would provide an appro-
priate number of interferometric fringes. Thus the interval
depended on the tensile speed. We monitored the fringes
on a real-time basis using our home-made image process-
ing software.

3.2 Preload and reload test

The specimen used in this study was a 100 mm long,
20 mm wide and 0.5 mm thick rectangular aluminum plate
with shallow notches at the center of the 100 mm sides. We
prepared a number of specimens with these dimensions and
conducted the following experiments. To obtain a base-line
data, we first applied a tensile load to a specimen at a con-
stant head speed of 20 wm/s until it broke. The solid line
labeled “full load” in Fig. 2 shows the loading characteris-
tics of this experiment. Next we prepared four groups of
specimens by preloading them at the following four differ-
ent stress levels; 8.3 N (specimen A4), 9.8 N (specimen B),
10.4 N (specimen C), and 10.7 N (specimen D). Finally,
we reloaded all these specimens up to a stress level of 7.9 N
five times, forming fringe patterns with the electronic speck-
le pattern interferometry shown in Fig. 1. The four preload
levels are indicated in Fig. 2 along with the reloading charac-
teristics of the respective specimens. Note that the maxi-
mum reload level of 7.9 N is within the linear range of the
loading characteristics when the specimen was pulled until
fracture (the full loading characteristics). In the right plot
of Fig. 2, we shift the reloading characteristics on the time
scale so that the initial rise of the reload overlaps the full
loading curve. Notice that all the preloaded specimens show
reloading characteristics perfectly overlapping each other
and the full loading characteristics. This indicates that it is
impossible to reveal the loading hysteresis by examining
the reloading characteristics.

Stage 1 Stage 2

4. Results and discussions

To facilitate the discussion regarding the fringe patterns
in connection with the displacement field of the examined
specimen, let us first consider general pattern of fringes.
Refer to Fig. 3 and consider the fringes observed with an
electronic speckle pattern interferometry setup sensitive to
horizontal displacement. When the specimen experiences
horizontal stretch to the right, for example, the right end of
the specimen displaces the most largely, the left end dis-
places the least and the rest parts displace in proportion to
the distance from the left end. Consequently, the fringe pat-
tern consists of vertical straight lines. If the deformation is
uniform, the vertical lines are equally spaced. On the other
hand, when the specimen experiences pure rotation, the
fringe pattern observed in the same electronic speckle pat-
tern interferometry setup consists of horizontal straight lines.
If the deformation is a combination of these, which is nor-
mally the case, the resultant fringes are mixture of these
patterns.

When reloaded, the preloaded specimens generally show
the following trends. As the applied load was increased from
0 kgfto 7.9 N, the fringe patterns show changes that can be
classified into five stages. Figure 4 shows representative
fringe patterns observed in each stage. The actual stress
level at which the fringe pattern changes from one stage to
the next depends on the preloading condition and the num-
ber of reloading, as indicated by Figs. 5-7.

These transitions in the stage of fringe patterns can be
explained in terms of the recovery mechanism in plasticity
in conjunction with the fracture criterion represented by
Egs. (10) and (11). As the deformation develops, the mate-
rial loses the recoverability mechanism (the plastic recov-
ery force Vxm/u represented by the first term of Eq. (8))
and instead, the energy dissipation mechanism (the current
J/u represented by the second term) dominates. In a two-
dimensional picture on an xy-plane, the plastic recovery

Stage 3

Stage 4 Stage 5

Fig. 4. Representative fringe-pattern observed in each stage. The arrows indicate rotation of the material
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Fig. 5. Fringe patterns observed with reload level of 0.98 (a) and 4.9 N (b)

force and the current can be expressed in terms of the in-
plane displacement and rotation around an axis normal to
the plane. Under the present experimental condition, since
the interferometer has the sensitivity in the horizontal x-
component of the in-plane displacement on the xy-plane,
the plastic recovery force and the current are detected in
the fringe pattern only in the spatial variation of the hori-
zontal displacement as shown below:
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Here , is the z-component of the rotation, # and v are the
x- and y-components of the displacement, and X and y are
the unit vectors. Note that in Egs. (12) and (13) the y- and
z-components of @ and the terms containing v are dropped
because the interferometer does not have sensitivity to these
components. With these expressions, the fringe pattern of
each stage can be explained as below.

In stage 1, the fringe patterns are approximately verti-
cally parallel, indicating that the deformation is basically
elastic. If the deformation is purely elastic, the fringes rep-
resenting displacement u observed in the horizontally sen-
sitive interferometer ought to be equidistant, vertical straight
lines. As the left-most image in Fig. 4 shows, the fringe
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patterns seen in stage 1 are normally not completely paral-
lel indicating that the deformation in this stage is not purely
elastic. This is consistent with the fact that the loading curve
is not completely linear in the initial rising part.

In stage 2, the fringe patterns consist of horizontal wavy
lines, indicating that (Vx®), =0dw,/dy#0 and (VX
X®), =-0dw, [dx # 0. Referring to Eq. (12), this repre-
sents the situation where neither of the x- and y-compo-
nents of the plastic recovery force is zero. Thus it is inter-
preted that in this stage, the material has the recovery mecha-
nism both in parallel and perpendicular to the tensile load.

In stage 3, the fringe patterns consist of horizontal
straight lines. This pattern can be interpreted as (VX o), =
=0w, /dy #0 and (Vxo), =-00,_/dx=0, ie., the ma-
terial has lost the recovery force in the direction perpendi-
cular to the tensile axis but still possesses its component
parallel to the tensile load.

In stage 4, the horizontal lines observed in stage 3 be-
gin to rise. As the load increases, they keep rising until they
are mostly vertical in stage 5. This transition can be inter-
preted as the situation where the material are losing the re-
covery force parallel to the tensile load as well (Vx®), =

= 0w, /dy =0, and the energy dissipation mechanism rep-
resented by Eq. (13) becomes dominant.

In stage 5, the fringes stop rotating and become mostly
vertical, indicating that the recovery force associated with
Vxa is not effective (Vxo), =dw,/dy =0 and (VX

X®), =-0dw,/dx =0). The fringe pattern can be inter-
preted as representing the (du/dx + dv/dy) termin Eq. (13).

While specimens A—D commonly show the transitions
from stage 1 through stage 5, the load level at which the
fringe pattern changes from one stage to the next depends
on the preload and reload conditions. Figure 5(a) shows
typical fringe patterns observed in the third through fifth
reloads in specimen A—D at the reload level of 0.98 N. Here
the rows represent the preload conditions (4-D from the
top to bottom), and the columns represent the reload (third—
fifth reload from the left to right). The fringe patterns seen
in the top two rows (in specimens 4 and B) are typical wavy
fringes observed in stage 2. The fringes seen in the two
right columns in the third row are straight fringes observed
in stage 3. The fringes seen in the bottom row are the rising
fringes observed in stage 4. Notice that in specimen C (third
row), the horizontal fringes are becoming more straight as
the number of reload increases, indicating that the transi-
tion from stage 2 to stage 3 takes place as the reloading
repeats. From this viewpoint, the leftmost pattern in the third
row is an intermediate pattern between the “stage 2 wavy”
and “stage 3 straight” fringes.

Similarly, Figure 5(b) shows typical fringes observed at
the higher reload level of 4.9 N. The row and column ar-
rangements are the same as Fig. 5(a). The fringe patterns
seen in this figure are basically the rising fringes in stage 4.
Notice that in all rows the fringes become more upright as
going from the left to right. This indicates that as the re-



loading repeats, the specimen experiences transition toward
stage 5.

Generally speaking, Figure 5 indicates that the higher
the preloading level or the number of reloading, the speci-
men tends to experience the transitions from the initial to
final stages at lower reload levels. Figures 6 and 7 present
this trend more explicitly, where the former sorts out the
data in terms of the preload conditions and the latter sorts
out in terms of the number of reloading. The dashed line
indicates the variation in the transition from stage 2 to stage
3, i.e., the load level at which the material loses the ability
to exert the recovery force in the direction perpendicular to
the applied load. The dotted line indicates the variation in
the transition from stage 3 to stage 4, i.e., the load level at
which the material loses the recoverability in the direction
parallel to the tensile axis as well. The following observa-
tions are found.

Observation 1. As the reloading is repeated, generally
speaking, the transitions from one stage to the next take
place at lower reload levels.

Observation 2. The above trend is more prominent in
specimens A and B than specimens C and D. In particular,
the reload level that causes the transition from stage 2 to
stage 3 reduces remarkably from the first to second reload-
ing in specimen 4 and B.

Observation 3. In all reloads, specimen 4 and B show
similar trends and specimens C and D show similar trends,
respectively. However, trends observed in the two groups
are different from each other.

Observation 4. Specimens C and B barely show stage 2
fringes, indicating that when this sample is preloaded to the
level of 10.4 N or higher, the critical fracture criterion is
almost satisfied so that the material barely exerts the reco-
very force from the beginning of reloads.

Observation 5. In the first reload, specimens 4 and B
show stage 2 pattern till the end of reload (7.9 N). In the se-
cond reload and after, they show stage 3 pattern. This strong-
ly indicates that the specimen 4 and B experience fatigue in
the first reload, and that the effect caused by the mecha-
nism of fatigue is similar to the effect caused by the tensile
load.

Notice that whereas the above observations and the fea-
tures observed in the fringe patterns enable us to diagnose
the preload level, Figure 2 indicates that the specimens pre-
loaded to different levels show the same reloading chara-
cteristics. This indicates that for the purpose of revealing
loading hysteresis, it is necessary to analyze the spatial distri-
bution of the displacement as seen in the fringe patterns.
The loading characteristic, being representing the total dis-
placement, is unable to reveal the loading hysteresis.

5. Conclusion

In summary, the dynamics of plastic deformation has
been discussed based on the gauge theoretical formalism

of physical mesomechanics. The fracture is formulated as
the final stage of deformation where the material loses its
mechanism of exerting resistive force, and thereby becomes
totally energy dissipative. The constitutive equation of plas-
ticity derived from the physical mesomechanical field equa-
tions has been discussed in connection with the transitional
stage from plastic deformation to fracture. These concepts
have been applied to an attempt of revealing the loading
hysteresis of aluminum specimens. The specimens have been
preloaded to four different stress levels, and after released
from the preload, they are reloaded within the linear range
of the loading characteristics. The change in the displace-
ment field observed in the reloaded specimens has been
analyzed with the use of an in-plane sensitive electronic
speckle pattern interferometry. It has been found that through
analysis of the observed fringe patterns, it is possible to
differentiate the preload conditions one from another. Note
that the reloading characteristics in the corresponding time-
load diagram are found identical among different preload
conditions, and therefore cannot be used to reveal the load-
ing hysteresis. The observed features of the fringe patterns
have been explained in accordance with the derived consti-
tutive equation and fracture criterion.
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