Upper and Lower Bounds for Competitive Online Routing on Delaunay Triangulations

Nicolas Bonichon, Prosenjit Bose, Jean-Lou de Carufel, Ljubomir Perković,
André van Renssen

- To cite this version:

Nicolas Bonichon, Prosenjit Bose, Jean-Lou de Carufel, Ljubomir Perković, André van Renssen. Upper and Lower Bounds for Competitive Online Routing on Delaunay Triangulations. 2014. hal-01092761

HAL Id: hal-01092761

https://hal.science/hal-01092761

Preprint submitted on 16 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Upper and Lower Bounds for Competitive Online Routing on Delaunay Triangulations*

Nicolas Bonichon ${ }^{1}$, Prosenjit Bose ${ }^{2}$, Jean-Lou De Carufel ${ }^{2}$, Ljubomir Perkovici ${ }^{3}$, and André van Renssen ${ }^{4}$
1 LaBRI, Bordeaux University, Bordeaux, France bonichon@labri.fr
2 School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca, jdecaruf@cg.scs.carleton.ca
3 School of Computing, DePaul University, Chicago, USA
lperkovic@cs.depaul.edu
4 National Institute of Informatics, Tokyo, Japan
andre@nii.ac.jp

Abstract

Consider a weighted graph G where vertices are points in the plane and edges are line segments. The weight of each edge is the Euclidean distance between its two endpoints. A routing algorithm on G has a competitive ratio of c if the length of the path produced by the algorithm from any vertex s to any vertex t is at most c times the length of the shortest path from s to t in G. If the length of the path is at most c times the Euclidean distance from s to t, we say that the routing algorithm on G has a routing ratio of c.

We present an online routing algorithm on the Delaunay triangulation with competitive and routing ratios of 5.90 . This improves upon the best known algorithm that has competitive and routing ratio 15.48 . The algorithm is a generalization of the deterministic 1-local routing algorithm by Chew on the L_{1}-Delaunay triangulation. When a message follows the routing path produced by our algorithm, its header need only contain the coordinates of s and t. This is an improvement over the currently known competitive routing algorithms on the Delaunay triangulation, for which the header of a message must additionally contain partial sums of distances along the routing path.

We also show that the routing ratio of any deterministic k-local algorithm is at least 1.70 for the Delaunay triangulation and 2.70 for the L_{1}-Delaunay triangulation. In the case of the L_{1}-Delaunay triangulation, this implies that even though there exists a path between two points x and y whose length is at most $2.61|[x y]|$ (where $|[x y]|$ denotes the length of the line segment $[x y])$, it is not always possible to route a message along a path of length less than $2.70|[x y]|$. From these bounds on the routing ratio, we derive lower bounds on the competitive ratio of 1.23 for Delaunay triangulations and 1.12 for L_{1}-Delaunay triangulations.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, G.2.2 Graph Theory

Keywords and phrases Delaunay triangulation, online routing

[^0]
© N. Bonichon, P. Bose, J.-L. De Carufel, L. Perković, A. van Renssen;
licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

1 Introduction

Navigation in networks or in graphs is fundamental in computer science. It leads to applications in a number of fields, namely geographic information systems, urban planning, robotics, and communication networks to name only a few. Navigation often occurs in a geometric setting that can be modeled using a geometric graph which is defined as a weighted graph G whose vertices are points in the plane and edges are line segments. Let the weight of each edge be the Euclidean distance between its two endpoints. Navigation is then simply the problem of finding a path in G from a source vertex s to a target vertex t. When complete information about the graph is available, numerous path finding algorithms exist for weighted graphs (e.g., Dijkstra's algorithm [17]).

The problem is more challenging when only local information is provided. To illustrate this, suppose that a message is traveling along edges of G. We are interested in a routing algorithm that makes forwarding decisions based on limited information related to the current position of the message in G. If the message is currently at vertex v, such information could be limited to the coordinates of v and its neighbors in the graph. Such an algorithm is called local or 1-local. More generally, when the coordinates of neighbours that are at most k hops away from v are available, we say that the algorithm is k-local. A routing algorithm that uses only local information is called an online routing algorithm. Given a constant $c \geq 1$, an online routing algorithm has a competitive ratio of c or is c-competitive if the length of the path produced by the algorithm from any vertex s to any vertex t is at most c times the length of the shortest path from s to t in G. If the length of the path is at most $c|[s t]|$, where $|[s t]|$ is the Euclidean length of the line segment $[s t]$, we say that the routing algorithm has a routing ratio of c. Since $|[s t]|$ is a lower bound on the length of the shortest path from s to t in G, the routing ratio is an upper bound on the competitive ratio.

Competitive online routing is not always possible (refer to [4, 19] for instance) and even when it is, a small competitive ratio may not be. In this paper, we are interested in competitive online routing algorithms for classes of geometric graphs that have "good paths". A graph G is a κ-spanner (or has a spanning ratio of κ) when for any pair of vertices u and v in G, there exists a path in G from u to v with length at most $\kappa|[u v]|$ (see $[1,2,5,7,8,13,14,20]$ for instance). In several cases, the proof of existence of these paths rely on full knowledge of the graph. Therefore, a natural question is to ask whether we can construct these paths using only local information. We do not have a general answer to that question. Nevertheless, there exist c-competitive online routing algorithms for several of these classes of geometric graphs (see $[6,9,11,14,15,16]$). In this paper, we focus on the most important geometric graph, the Delaunay triangulation.

A Delaunay triangulation is a geometric graph G such that there is an edge between two vertices u and v if and only if there exists a circle with u and v on its boundary that contains no other vertex of G. Dobkin et al. [18] were the first to prove that the Delaunay triangulation is a spanner. Xia [20] proved that the spanning ratio of the Delaunay triangulation is at most 1.998 which currently best known the best upper bound on the spanning ratio. The best lower bound, by Xia et al. [21], is 1.593. If circle is replaced with equilateral triangle in the definition of the Delaunay triangulation, then a different triangulation is defined: the $T D$-Delaunay triangulation. Chew proved that the $T D$-Delaunay triangulation [16] is a 2 -spanner and that the constant 2 is tight. If we replace circle with square then yet another triangulation is defined: the $L_{1^{-}}$or the L_{∞}-Delaunay triangulation, depending on the orientation of the square. Bonichon et al. [3] proved that the L_{1} - and the L_{∞}-Delaunay triangulations are $\sqrt{4+2 \sqrt{2}}$-spanners and that the constant is also tight.

Ideally, we would like the routing ratio to be identical to the spanning ratio. In the case of $T D$-Delaunay triangulations, Bose et al. [11] found an online routing algorithm that has competitive and routing ratios of $\frac{5}{\sqrt{3}}$. They also showed lower bounds of $\frac{5}{\sqrt{3}}$ on the routing ratio and of $\frac{5}{3}$ on the competitive ratio. In his seminal paper, Chew [16] described an online routing algorithm on the L_{1}-Delaunay triangulation that has competitive and routing ratios of $\sqrt{10} \approx 3.162$. We show in this paper that there is separation between the spanning ratio and the routing ratio in the case of the L_{1} and L_{∞}-Delaunay triangulations. We show lower bounds of 2.707 on the routing ratio and of 1.122 on the competitive ratio (Theorem 10). In this paper, we also present an online routing algorithm on the Delaunay triangulation that has competitive and routing ratios of 5.90 (Theorem 3). This improves upon the previous best known algorithm that has competitive and routing ratios of 15.48 [9]. Our algorithm is a generalization of the deterministic 1-local routing algorithm by Chew on the L_{1}-Delaunay triangulation [15] and the $T D$-Delaunay triangulation [16]. Although the generalization of Chew's routing algorithm to Delaunay triangulation is natural, the analysis of its routing ratio is non-trivial and relies on new techniques. An advantage of Chew's routing algorithm is that it does not require the message header to contain any information other than the coordinates of s and t. All previously known competitive routing algorithms on the Delaunay triangulation [9, 12] require header to store partial sums of distances along the routing path. in the header of the message. See Table 1 for a summary of these results.

Shape	triangle	square	circle
spanning ratio UB	$2[16]$	$2.61[3]$	$1.998[20]$
spanning ratio LB	$2[16]$	$2.61[3]$	$1.593[21]$
routing ratio UB	$5 / \sqrt{3} \approx 2.89[11]$	$\sqrt{10} \approx 3.16[15]$	$1.185+3 \pi / 2 \approx 5.90(\mathrm{Thm} \mathrm{3)}$
routing ratio LB	$5 / \sqrt{3} \approx 2.89[11]$	$2.707(\mathrm{Thm} 10)$	$1.701(\mathrm{Thm} \mathrm{9)}$
competitiveness LB	$5 / 3 \approx 1.66[11]$	$1.1213(\mathrm{Thm} 10)$	$1.2327(\mathrm{Thm} \mathrm{9)}$

Table 1 Upper and lower bounds on the spanning ratio and the routing ratio on Delaunay triangulations defined by different empty shapes. We also provide lower bounds on the competitiveness of k-local deterministic routing algorithms on Delaunay triangulations.

2 Chew's Routing Algorithm

In this section we present the routing algorithm. This algorithm is a natural adaptation to Delaunay triangulations of Chew's routing algorithm originally designed for L_{1}-Delaunay triangulations [15] and subsequently adapted for $T D$-Delaunay triangulations [16].

We consider the Delaunay triangulation defined on a finite set of points P in the plane. In this paper, we denote the source of the routing path by $s \in P$ and its destination by $t \in P$. We assume that an orthogonal coordinate system consisting of a horizontal x-axis and a vertical y-axis exists and we denote by $x(p)$ and $y(p)$ the x - and y-coordinates of any point p in the plane. We denote the line supported by two points p and q by $p q$, and the line segment with endpoints p and q by $[p q]$. Without loss of generality, we assume that $y(s)=y(t)=0$ and $x(s)<x(t)$.

When routing from s to t, we consider only (the vertices and edges of) the triangles of the Delaunay triangulation that intersect $[s t]$. Without loss of generality, if a vertex (other than s and t) is on $[s t]$, we consider it to be slightly above $s t$. Therefore, the triangles that intersect $[s t]$ can be ordered from left to right. Notice that all vertices (other than s and t)
from this ordered set of triangles belong to at least 2 of these triangles.
The routing algorithm can be described as follows. When we reach a vertex p_{i} (initially $p_{0}=s$), we consider the rightmost triangle T_{i} that has p_{i} as a vertex. Let x and y be the other two vertices of T_{i} and denote by C_{i} the the circle circumscribing T_{i}. Let w_{i} (w as in west) be the leftmost point of C_{i} and let r_{i} be the rightmost intersection of C_{i} with $[s t]$. The line segment $\left[w_{i} r_{i}\right]$ splits C_{i} in two arcs: the upper one, defined by the clockwise walk along C_{i} from w_{i} to r_{i} and the lower one, defined by the counterclockwise walk along C_{i} from w_{i} to r_{i}. Both arcs include points w_{i} and r_{i}. Because T_{i} is rightmost, x and y cannot both lie on the interior of the same arc so we can assume that x belongs to the upper arc and y belongs to the lower arc. The forwarding decision at p_{i} is made as follows:

- If p_{i} belongs to the upper arc, we walk clockwise along C_{i} until we reach vertex x.
- If p_{i} belongs to the lower arc, we walk counterclockwise along C_{i} until we reach y.

If $p_{i}=w_{i}$ we apply the first (upper arc) rule.
Once we reach $p_{i+1}=x$ or y, we repeat the process until we reach t. Note that because the two vertices of T_{i} other than p_{i+1} are not both below or both above line segment [st], T_{i} must be the leftmost triangle that has p_{i+1} as a vertex. Unless $p_{i+1}=t, p_{i+1}$ is a vertex of at least another triangle intersecting [st], so T_{i} cannot be the rightmost triangle that has p_{i+1} as a vertex.

Figure 1 shows an example of a route computed by this algorithm.

Figure 1 Illustration of Chew's routing algorithm. The empty circles of the rightmost triangles are drawn in gray and their edges are drawn in black. The edges of the obtained path and the associated arcs are thicker.

Because the routing decision can always be applied, because the decision is based on the rightmost triangle and progress is made from left to right, and because P is finite, we can conclude that the following results by Chew from [15] extend to Delaunay triangulations. The following is Lemma 2 in [15]:

- Lemma 1. The triangles used $\left(T_{0}, T_{1} \ldots, T_{k}\right)$ are ordered along $[s t]$. Although not all Delaunay triangulation triangles intersecting [st] are used, those used appear in their order along $[s t]$.

In Figure 1 the triangles T_{i} are drawn with blue edges. The following corollary is in [15] as well:

- Corollary 2. The algorithm terminates, producing a path from s to t.

3 Routing Ratio

In this section, we prove the main theorem of this paper.

- Theorem 3. The Chew's routing algorithm on the Delaunay triangulation has a routing ratio of at most $(1.185043874+3 \pi / 2) \approx 5.89743256$.

As shown in Figure 2, Chew's algorithm has routing ratio at least 5.7282 (see Section 4).

Figure 2 On the right is a Delaunay triangulation that illustrates the lower bound on the routing ratio of Chew's algorithm. The path obtained by the algorithm is shown in dark gray; it has length $5.7282|[s t]|$, a bit greater than $(1+3 \pi / 2)|[s t]|$. The left image zooms in on what happens close to point s.

We devote this section to the proof of Theorem 3.

3.1 Preliminaries

We start by introducing additional definitions, notations, and structural results about Chew's routing algorithm. Some of the notations are illustrated in Figure 3.

We denote by $|[p q]|$ the Euclidean length of the line segment $[p q]$, and by $|\mathcal{P}|$ the length of a path \mathcal{P} in the plane. Given a path \mathcal{P} from p to q and a path \mathcal{Q} from q to $r, \mathcal{P}+\mathcal{Q}$ denotes the concatenation of \mathcal{P} and \mathcal{Q}. We say that the path \mathcal{P} from p to q is inside a path \mathcal{Q} that also goes from p to q if the path \mathcal{P} is inside the region delimited by $\mathcal{Q}+[q p]$. Note that if \mathcal{P} is convex and inside \mathcal{Q} then $|\mathcal{P}| \leq|\mathcal{Q}|$. Given a path \mathcal{P} and two points p and q on \mathcal{P}, we denote by $\mathcal{P}<p, q>$ the sub-path of \mathcal{P} that goes from p to q.

Let $s=p_{0}, p_{1}, \ldots, p_{k}=t$ be the sequence of vertices visited by Chew's routing algorithm. If some p_{i} other than s or t lies on the segment [st], we can separately analyze the routing ratio of the paths from s to p_{i} and from p_{i} to t. We assume, therefore, that no p_{i}, other than $s=p_{0}$ and $t=p_{k}$, lies on segment $[s t]$.

For every edge $\left(p_{i}, p_{i+1}\right)$, there is a corresponding oriented arc of C_{i} used by the algorithm which we refer to as $\mathcal{R}<p_{i}, p_{i+1}>$ (shown in gray in Figures 1 and 3). The orientation (clockwise or counterclockwise) of $\mathcal{R}<p_{i}, p_{i+1}>$ is the orientation taken by the routing algorithm when going from p_{i} to p_{i+1}. Let \mathcal{R} be the union of these arcs. We call \mathcal{R} the routing path from s to t. The length of the path $s=p_{0}, p_{1}, \ldots, p_{k-1}, p_{k}=t$ along the edges of the

Delaunay triangulation is smaller than the length of \mathcal{R}. In the remainder of this section, we analyze the length of \mathcal{R} to obtain an upper bound on the length of the path along the edges of the Delaunay triangulation.

3.2 Worst Case Circles C_{i}^{\prime}

In order to bound the length of \mathcal{R}, we work with the circles C_{i}^{\prime} defined as follows. Let A_{1} and A_{2} be two circles that go through p_{i} and p_{i+1} such that A_{1} is tangent to [st] and the tangent of A_{2} at p_{i} is vertical. We define C_{i}^{\prime} to be A_{2} if A_{2} intersects [st] twice and A_{1} otherwise. Let w_{i}^{\prime} be the leftmost vertex of C_{i}^{\prime} and O_{i}^{\prime} the center of C_{i}^{\prime}. In the example of Figure 3, $w_{1}^{\prime}=p_{1}$ and $w_{3}^{\prime} \neq p_{3}$.

Note that if $\left[p_{i} p_{i+1}\right]$ crosses [st], then C_{i}^{\prime} is A_{2}. We consider three types of circles C_{i}^{\prime} :

- Type $A_{1}: p_{i} \neq w_{i}^{\prime}$ and $\left[p_{i-1} p_{i}\right]$ does not cross $[s t]$.
- Type $A_{2}: p_{i}=w_{i}^{\prime}$ and $\left[p_{i-1} p_{i}\right]$ does not cross [st].
- Type B : $\left[p_{i-1} p_{i}\right]$ crosses $[s t]$.

In Figure $3, C_{0}^{\prime}, C_{1}^{\prime} \ldots C_{4}^{\prime}$ are respectively of type $A_{2}, B, B, A_{1}, A_{2}$. Note that if C_{i}^{\prime} is of type B, then $p_{i}=w_{i}^{\prime}$. We use the expression "type A " instead of "type A_{1} or A_{2} ".

Given two points p, q on C_{i}^{\prime}, let $\mathcal{A}_{i}<p, q>$ be the arc on C_{i}^{\prime} from p to q whose orientation (clockwise or counterclockwise) is the same as the orientation of $\mathcal{R}<p_{i}, p_{i+1}>$ around C_{i}. Notice that $\left|\mathcal{R}<p_{i}, p_{i+1}>\left|\leq\left|\mathcal{A}_{i}<p_{i}, p_{i+1}>\right|\right.\right.$.

Let t_{i} be the first point p_{j} after p_{i} such that $\left[p_{i} p_{j}\right]$ intersects st. Notice that $t_{k-1}=t$. We also set $t_{k}=t$. In Figure $3, t_{0}=p_{1}, t_{1}=p_{2}, t_{2}=p_{3}$ and $t_{3}=t_{4}=t_{5}=t$. In addition, let $t_{i}^{\prime}=\left(x\left(t_{i}\right), 0\right)$ and $s_{i}=\left(x\left(w_{i}^{\prime}\right), 0\right)$.

- Lemma 4. For all $0<i \leq k$:

$$
\begin{align*}
x\left(s_{i-1}\right) & \leq x\left(s_{i}\right) \tag{1}\\
x\left(s_{i}\right) \leq x\left(t_{i-1}\right) & \leq x\left(t_{i}\right) \tag{2}
\end{align*}
$$

Proof. We first prove (1). If $p_{i}=w_{i}^{\prime}$ then $x\left(s_{i}\right)=x\left(p_{i}\right)$. Since p_{i} lies on C_{i-1}^{\prime} and $x\left(s_{i-1}\right)$ is the x-coordinate of the leftmost point of C_{i-1}^{\prime}, we have that $x\left(s_{i-1}\right) \leq x\left(p_{i}\right)=x\left(s_{i}\right)$. If $p_{i} \neq w_{i}^{\prime}$ then C_{i}^{\prime} is of type A_{1}. We assume without loss of generality that p_{i} lies above st. If w_{i}^{\prime} is on or in the interior of C_{i-1}^{\prime} then (1) holds. Otherwise, the rightmost intersection of C_{i-1}^{\prime} with st must be to the left of the intersection of $w_{i}^{\prime} p_{i}$ and $s t$. This, in turn, implies (1)

We now prove (2). We first observe that $t_{i-1}=p_{j}$ and $t_{i}=p_{j^{\prime}}$ for some $i \leq j \leq j^{\prime}$. Using inequality (1), we have that $x\left(s_{i}\right) \leq x\left(s_{j}\right) \leq x\left(p_{j}\right)=x\left(t_{i-1}\right)$, so the first inequality in (2) holds. The second inequality trivially holds when $j=j^{\prime}$, so we assume otherwise. In that case, $p_{j}, p_{j+1}, \ldots, p_{j^{\prime}-1}$ must all be on the same side of $s t$. Without loss of generality, we assume that $p_{j^{\prime}}$ lies above $s t$. This implies that $\left[p_{j^{\prime}-1} p_{j^{\prime}}\right]$ crosses $[s t]$ and therefore C_{j-1}^{\prime} is of type B. Moreover, $p_{j^{\prime}-1}=w_{j^{\prime}-1}^{\prime}$ and $p_{j^{\prime}-1}$ lies below st. On the other hand, p_{j} lies below st and on C_{j-1}^{\prime}, which is of type B and whose center O_{j-1}^{\prime} is above st. Note that $p_{j^{\prime}-1}$ and $p_{j^{\prime}}$ lie outside of C_{j-1}^{\prime} and that $x\left(w_{j-1}^{\prime}\right) \leq x\left(w_{j^{\prime}-1}^{\prime}\right)$ (recall that $\left.w_{j^{\prime}-1}^{\prime}=p_{j^{\prime}-1}\right)$. Therefore, if q is the intersection of $\mathcal{A}_{j^{\prime}-1}<p_{j^{\prime}-1}, p_{j^{\prime}}>$ and $s t$, no point of C_{j-1}^{\prime} below st and outside of $C_{j^{\prime}-1}^{\prime}$ has an x-coordinate larger than $x(q)$. Since $x(q)<x\left(p_{j^{\prime}}\right)$, the second inequality in (2) holds.

3.3 Proof of Theorem 3

In this section, we prove our main theorem. Given two points p and q such that $x(p)<x(q)$ and $y(p)=y(q)$, we define the path $\mathcal{S}_{p, q}$ as follows. Let C be the circle above $p q$ that is

Figure 3 Illustration of Lemma 6 on the example of Figure 1. The empty circles of the Delaunay triangulation and the routing path \mathcal{R} are drawn in gray. Worst cast circles C_{i}^{\prime}, paths \mathcal{P}_{i}, and segments of height $\left|y\left(t_{i}\right)\right|$ are drawn in black. Lengths $\left|\left[t_{i-1}^{\prime} t_{i}^{\prime}\right]\right|$ are represented by dashed horizontal segments.
tangent to $p q$ at q and tangent to the line $x=x(p)$ at a point that we denote by p^{\prime}. The path $\mathcal{S}_{p, q}$ consists of $\left[p p^{\prime}\right]$ together with the clockwise arc from p^{\prime} to q on C. We call $\mathcal{S}_{p, q}$ the snail curve from p to q. Note that $\left|\mathcal{S}_{p, q}\right|=(1+3 \pi / 2)(x(q)-x(p))$. We also define the path \mathcal{P}_{i} to be $\left[s_{i} w_{i}^{\prime}\right]+\mathcal{A}_{i}<w_{i}^{\prime}, p_{i+1}>$ for $0 \leq i \leq k-1$ (see Figure 3).

We start with a lemma that motivates these definitions.

- Lemma 5. $\left|\mathcal{P}_{k-1}\right| \leq\left|\mathcal{S}_{s_{k-1}, t}\right|$

Proof. This follows from the fact that \mathcal{P}_{k-1} from s_{k-1} to t is convex and inside $\mathcal{S}_{s_{k-1}, t}$.
The following lemma is the key to proving Theorem 3.

- Lemma 6. For all $0<i<k$ and $\delta=0.185043874$,

$$
\begin{equation*}
\left|\mathcal{P}_{i-1}\right|+\left|y\left(t_{i-1}\right)\right| \leq\left|\mathcal{P}_{i}<s_{i}, p_{i}>\left|+\left|\mathcal{S}_{s_{i-1}, s_{i}}\right|+\left|y\left(t_{i}\right)\right|+\delta\right|\left[t_{i-1}^{\prime} t_{i}^{\prime}\right]\right| . \tag{3}
\end{equation*}
$$

Moreover, if C_{i-1}^{\prime} is of type A (then $t_{i-1}=t_{i}$), the previous inequality is equivalent to

$$
\begin{equation*}
\left|\mathcal{P}_{i-1}\right| \leq\left|\mathcal{P}_{i}<s_{i}, p_{i}>\left|+\left|\mathcal{S}_{s_{i-1}, s_{i}}\right| .\right.\right. \tag{4}
\end{equation*}
$$

This lemma is illustrated in Figure 3. We first show how to use Lemma 6 to prove Theorem 3, then we prove Lemma 6 in Section 3.4.

Proof of Theorem 3. By Lemma 4, $\sum_{i=1}^{k-1}\left|\left[t_{i-1}^{\prime} t_{i}^{\prime}\right]\right|<|[s t]|$ and $\sum_{i=1}^{k}\left|\mathcal{S}_{s_{i-1}, s_{i}}\right|=\left|\mathcal{S}_{s, t}\right|$. By summing the $k-1$ inequalities from Lemma 6 and the inequality from Lemma 5 , we get

$$
\sum_{i=1}^{k}\left|\mathcal{P}_{i-1}\right|+\left|y\left(t_{0}\right)\right|<\sum_{i=1}^{k-1}\left|\mathcal{P}_{i}<s_{i}, p_{i}>\left|+\left|\mathcal{S}_{s, t}\right|+\left|y\left(t_{k-1}\right)\right|+\delta\right|[s t]\right| .
$$

The fact that $t_{k-1}=t$ implies $y\left(t_{k-1}\right)=0$. Therefore, since $\mathcal{P}_{i-1}=\mathcal{A}_{i-1}<p_{i-1} p_{i}>+$ $\mathcal{P}_{i-1}<s_{i-1}, p_{i-1}>$, we have

$$
|\mathcal{R}| \leq \sum_{i=1}^{k} \mathcal{A}_{i-1}<p_{i-1} p_{i}><\left|\mathcal{S}_{s, t}\right|+\delta|[s t]| \leq(1.185043874+3 \pi / 2)|[s t]|
$$

which completes the proof.

3.4 Proof of the Key Lemma

In this section, we prove Lemma 6. We will make use of the following lemma whose proof is in the Appendix.

- Lemma 7. Let $\theta=\angle w_{i-1}^{\prime} O_{i-1}^{\prime} p_{i}$ and $\alpha=\angle w_{i}^{\prime} O_{i}^{\prime} p_{i}$ be the angles defined using the orientations $\left.\mathcal{A}_{i}<p_{i-1}, p_{i}\right\rangle$ and $\left.\mathcal{A}_{i}<p_{i}, p_{i+1}\right\rangle$, respectively. Then

$$
\begin{equation*}
0 \leq \alpha<\theta<3 \pi / 2 \tag{5}
\end{equation*}
$$

Proof of Lemma 6. Notice that if C_{i-1}^{\prime} is of type A, then $\left|y\left(t_{i-1}\right)\right|=\left|y\left(t_{i}\right)\right|$. Hence, in this case, it sufficient to prove

$$
\begin{equation*}
\left|\mathcal{P}_{i-1}\right| \leq\left|\mathcal{P}_{i}<s_{i}, p_{i}>\left|+\left|\mathcal{S}_{s_{i-1}, s_{i}}\right| .\right.\right. \tag{6}
\end{equation*}
$$

For the rest of the proof, we consider three cases depending on the types of C_{i-1}^{\prime} and C_{i}^{\prime}.

- C_{i-1}^{\prime} is of type A and C_{i}^{\prime} is of type A_{2} or B. In this case, $p_{i}=w_{i}^{\prime}$ from which $x\left(s_{i}\right)=x\left(p_{i}\right)$ follows. Let X be the orthogonal projection of p_{i} onto $s_{i-1} w_{i-1}^{\prime}$. Then

$$
\begin{equation*}
\left|\left[s_{i-1}, X\right]+\mathcal{S}_{X, p_{i}}\right|=\left|\mathcal{P}_{i}<s_{i}, p_{i}>\left|+\left|\mathcal{S}_{s_{i-1}, s_{i}}\right|\right.\right. \tag{7}
\end{equation*}
$$

Since the path \mathcal{P}_{i-1} is convex and inside the path $\left[s_{i-1}, X\right]+\mathcal{S}_{X, p_{i}}$ (see Figure 4), we get

Figure 4 Illustration of the case when C_{i-1}^{\prime} is of type A and C_{i}^{\prime} is of type A_{2} or B.
$\left|\mathcal{P}_{i-1}\right| \leq\left|\left[s_{i-1}, X\right]+\mathcal{S}_{X, p_{i}}\right|$. Applying Inequality (7) completes the proof of this case.

- C_{i-1}^{\prime} is of type A and C_{i}^{\prime} is of type A_{1}. (See Figure 5.) Let b_{i} the lowest point of C_{i}^{\prime}. Let X and Y be respectively the projections of s_{i-1} and b_{i} on the line $y=y\left(b_{i-1}\right)$. We consider the snail curve $\mathcal{S}_{s_{i}, b_{i}}=\mathcal{P}_{i}<s_{i}, p_{i}>+\mathcal{A}_{i}<p_{i}, b_{i}>\left(\mathcal{A}_{i}<p_{i}, b_{i}>\right.$ see Figure 5).

Let $\mathcal{G}=\mathcal{S}_{X, Y}$. We have:

$$
\begin{equation*}
\left|\mathcal{P}_{i}<s_{i}, p_{i}>\left|+\left|\mathcal{S}_{s_{i-1}, s_{i}}\right|+\left|\mathcal{A}_{i}<p_{i}, b_{i}>\left|=\left|\mathcal{S}_{s_{i-1}, b_{i}}\right|=|\mathcal{G}| .\right.\right.\right.\right. \tag{8}
\end{equation*}
$$

Figure 5 Illustration of the case when C_{i-1}^{\prime} is of type A and C_{i}^{\prime} is of type A_{1}.

Let $\mathcal{B}=\left[X s_{i-1}\right]+\mathcal{P}_{i-1}$ and $Z \neq X$ be the intersection of $X p_{i}$ with \mathcal{G}. Denote by \mathcal{Y} the path from p_{i} to Z that is homothetic to \mathcal{B}. Note that \mathcal{B} and \mathcal{Y} are both homothetic to $\mathcal{G}<X, Z>$. Hence,

$$
\begin{equation*}
|\mathcal{B}+\mathcal{Y}|=|\mathcal{G}<X, Z>| \tag{9}
\end{equation*}
$$

Let $C_{i}^{\prime \prime}$ be the curve obtained by translating down C_{i}^{\prime} until b_{i} lies on Y. Denote by \mathcal{R} and W the images of $\mathcal{A}_{i}<p_{i}, b_{i}>$ and p_{i} by the same translation, respectively. The circle $C_{i}^{\prime \prime}$ is tangent to the circular section of $\mathcal{S}_{s_{i-1}, b_{i}}$ at Y. Moreover, the radius of $C_{i}^{\prime \prime}$ is smaller than the radius of the circular section of $\mathcal{S}_{s_{i-1}, b_{i}}$. Hence, it does not intersect $\mathcal{S}_{s_{i-1}, b_{i}}$. This implies that if \mathcal{R} intersects the line $p_{i} Z$, the intersection points must be in $\left[p_{i} Z\right]$. We can show that \mathcal{R} does not intersect \mathcal{Y}. Since $\mathcal{A}_{i}<p_{i}, b_{i}>$ is convex and lies inside $\left[W p_{i}\right]+\mathcal{Y}+\mathcal{G}<Z, Y>$, we have

$$
\begin{equation*}
|\mathcal{R}| \leq\left|\left[W p_{i}\right]+\mathcal{Y}+\mathcal{G}<Z, Y>\right| \tag{10}
\end{equation*}
$$

Summing (9) and (10), and removing $|\mathcal{Y}|$ and $\left|\left[b_{i} Y\right]\right|=\left|\left[X s_{i-1}\right]\right|$ from both sides, we get $\left|\mathcal{P}_{i-1}\right|+\left|\mathcal{A}_{i}<p_{i}, b_{i}>|\leq|\mathcal{G}|\right.$. Using (8) and removing $\left.| \mathcal{A}_{i}<p_{i}, b_{i}>\right|$ from both sides, we get (6).

- C_{i-1}^{\prime} is of type B and C_{i}^{\prime} is of type A or B. In this case, $w_{i-1}^{\prime}=p_{i-1}$ and $t_{i-1}=p_{i} \neq t_{i}$. We consider the case where $\left|y\left(p_{i-1}\right)-y\left(p_{i}\right)\right|<\left|y\left(p_{i-1}\right)-y\left(t_{i}\right)\right|$ first (refer to Figure 6). Recall that $\mathcal{P}_{i-1}=\mathcal{A}_{i-1}<p_{i-1} p_{i}>+\left[s_{i-1} p_{i-1}\right]$ and let \mathcal{P}^{*} be the curve obtained by translating

Figure 6 Illustration of the case when C_{i-1}^{\prime} is of type B and $\left|y\left(p_{i-1}\right)-y\left(p_{i}\right)\right|<\left|y\left(p_{i-1}\right)-y\left(t_{i}\right)\right|$.
$\mathcal{P}_{i}<s_{i}, p_{i}>$ to the left until s_{i} lies on s_{i-1}. Denote the highest point of \mathcal{P}^{*} by X. Notice that $x\left(p_{i}\right)-x(X)=x\left(s_{i}\right)-x\left(s_{i-1}\right), \mathcal{A}_{i-1}<p_{i-1} p_{i}>$ is convex and $\mathcal{A}_{i-1}<p_{i-1} p_{i}>$ is inside $\left[p_{i-1} s_{i-1}\right]+\mathcal{P}^{*}+\mathcal{S}_{X, p_{i}}$, which is also convex. Consequently, we get

$$
\begin{equation*}
\left|\mathcal{A}_{i-1}<p_{i-1} p_{i}>\left|\leq\left|\left[p_{i-1} s_{i-1}\right]\right|+\left|\mathcal{S}_{s_{i-1}, s_{i}}\right|+\left|\mathcal{P}_{i}<s_{i}, p_{i}>\right| .\right.\right. \tag{11}
\end{equation*}
$$

Moreover, since $\left|y\left(p_{i-1}\right)-y\left(p_{i}\right)\right|<\left|y\left(p_{i-1}\right)-y\left(t_{i}\right)\right|$, we have

$$
\begin{equation*}
\left|\left[s_{i-1} p_{i-1}\right]\right|+y\left(t_{i-1}\right) \leq\left|y\left(t_{i}\right)\right|-\left|\left[s_{i-1} p_{i-1}\right]\right| . \tag{12}
\end{equation*}
$$

Summing (11) and (12), we get

$$
\left|\mathcal{P}_{i-1}\right|+\left|y\left(t_{i-1}\right)\right| \leq\left|\mathcal{P}_{i}<s_{i}, p_{i}>\left|+\left|\mathcal{S}_{s_{i-1}, s_{i}}\right|+\left|y\left(t_{i}\right)\right| .\right.\right.
$$

Notice that we did not need the additional potential $\delta\left|\left[t_{i-1}^{\prime} t_{i}^{\prime}\right]\right|$ in this case.
For the rest of the proof, we can assume that $\left|y\left(p_{i-1}\right)-y\left(p_{i}\right)\right| \geq\left|y\left(p_{i-1}\right)-y\left(t_{i}\right)\right|$. If we assume that p_{i} lies above st, then t_{i} must lie below st. The point t_{i} is outside of C_{i-1}. By Lemma 4, $x\left(p_{i}\right)=x\left(t_{i-1}\right)<x\left(t_{i}\right)$. Moreover, all points p on C_{i-1}^{\prime} or inside of it, and such that $x\left(p_{i}\right)<x(p)$ are in the interior of C_{i-1}. Therefore, t_{i} is outside of C_{i-1}^{\prime}.

Recall that by Lemma 7, if $\theta=\angle w_{i-1}^{\prime} O_{i-1}^{\prime} p_{i}$ and $\alpha=\angle w_{i}^{\prime} O_{i}^{\prime} p_{i}$, then $0 \leq \alpha<\theta<3 \pi / 2$. Without loss of generality, assume that the radius of C_{i-1}^{\prime} is 1 and the radius of C_{i}^{\prime} is R. Then we have $\left|\mathcal{P}_{i}<s_{i}, p_{i}>\right|=(1+\alpha) R$ and $\left[s_{i} t_{i-1}^{\prime}\right]=(1-\cos (\alpha)) R$. Let D be the difference between the left-hand side and the right-hand side of inequality (3). We can write D as

$$
\begin{aligned}
D & =\left|\mathcal{S}_{s_{i-1}, s_{i}}\right|+\left|\mathcal{P}_{i}<s_{i}, p_{i}>|+\delta|\left[t_{i-1}^{\prime} t_{i}^{\prime}\right]\right|+\left|y\left(t_{i}\right)\right|-\left|\mathcal{P}_{i-1}\right|-\left|y\left(t_{i-1}\right)\right| \\
& =(1+3 \pi / 2)(1-\cos (\theta)-(1-\cos (\alpha)) R)+(1+\alpha) R+\delta\left|\left[t_{i-1}^{\prime} t_{i}^{\prime}\right]\right|+\left|y\left(t_{i}\right)\right|-\theta-\sin (\theta)
\end{aligned}
$$

It remains to prove that $D>0$.
We first consider the case where $\theta \leq \pi / 4$, which implies that $\alpha<\pi / 4$ as well. Let $p_{i}^{\prime} \neq p_{i}$ be the intersection of C_{i-1}^{\prime} with the horizontal line through p_{i}. Since $\theta \leq \pi / 4$, we have $x\left(p_{i}^{\prime}\right)>x\left(O_{i}^{\prime}\right)$.

Since $\left|y\left(p_{i-1}\right)-y\left(p_{i}\right)\right|<\left|y\left(p_{i-1}\right)-y(p)\right|$ for all points p outside of C_{i-1}^{\prime} such that $x\left(p_{i}\right) \leq x(p) \leq x\left(p_{i}^{\prime}\right)$, it follows that $x\left(t_{i}\right)>x\left(p_{i}^{\prime}\right)$. Note that $\angle w_{i-1}^{\prime} O_{i-1}^{\prime} p_{i}^{\prime}=\pi-\theta$, as illustrated in Figure 7. Since $\left|\left[t_{i-1}^{\prime} t_{i}^{\prime}\right]\right|>\left|\left[t_{i-1} p_{i}^{\prime}\right]\right|=2 \cos (\theta)$ (recall that $p_{i}=t_{i-1}$), we have

Figure 7 Illustration of the case of when C_{i-1}^{\prime} is of type B and $\left|y\left(p_{i-1}\right)-y\left(p_{i}\right)\right| \geq\left|y\left(p_{i-1}\right)-y\left(t_{i}\right)\right|$.

$$
\begin{aligned}
D & \geq(1+3 \pi / 2)(1-\cos (\theta)-(1-\cos (\alpha)) R)+(1+\alpha) R+2 \delta \cos (\theta)-\theta-\sin (\theta) \\
& \geq R[1+\alpha-(1+3 \pi / 2)(1-\cos (\alpha))]+(1+3 \pi / 2)(1-\cos (\theta))+2 \delta \cos (\theta)-\theta-\sin (\theta) .
\end{aligned}
$$

There exists an $\alpha_{0}>\pi / 4$ such that $1+\alpha-(1+3 \pi / 2)(1-\cos (\alpha))$ is positive for all $\alpha \in\left[0, \alpha_{0}\right]$. Therefore, to prove that $D>0$ (and therefore that inequality (3) holds), it is sufficient to prove that

$$
0 \leq(1+3 \pi / 2)(1-\cos (\theta))+2 \delta \cos (\theta)-\theta-\sin (\theta)
$$

If we take $\delta=0.185043874$, we can show that this inequality is true using elementary calculus arguments.

To complete the proof, it remains to consider the case where $\theta \in[\pi / 4, \pi]$. If $\alpha \leq \alpha_{0}$, we have $D \geq(1+3 \pi / 2)(1-\cos (\theta))-\theta-\sin (\theta)$, which is positive for all $\theta \in[\pi / 4, \pi]$. If $\alpha \in\left[\alpha_{0}, \pi\right], 1+\alpha-(1+3 \pi / 2)(1-\cos (\alpha))$ is negative and decreasing. Thus, since $\alpha \leq \theta$ and $R<1$, we obtain

$$
\begin{aligned}
D & \geq 1+\theta-(1+3 \pi / 2)(1-\cos (\theta))+(1+3 \pi / 2)(1-\cos (\theta))+\delta\left|\left[t_{i-1}^{\prime} t_{i}^{\prime}\right]\right|+\left|y\left(t_{i}\right)\right|-\theta-\sin (\theta) \\
& \geq 1-\sin (\theta)+\delta\left|\left[t_{i-1}^{\prime} t_{i}^{\prime}\right]\right|+\left|y\left(t_{i}\right)\right| .
\end{aligned}
$$

This lower bound is trivially positive, hence inequality (3) holds in all cases.

4 Lower Bounds

In this section, we provide lower bounds on the routing ratio and the competitive ratio of any k-local routing algorithm on the Delaunay triangulation and the $L_{1^{-}}$and $L_{\infty^{\prime}}$-Delaunay triangulation.

- Theorem 8. The routing ratio of Chew's routing algorithm on Delaunay triangulations is at least 5.7282.

Proof. Let C_{0} and C_{1} be two circles such that the west point of C_{0} lies on the x-axis and the west point w_{1} of C_{1} lies on C_{0} and below the x-axis. Let s be the west point of C_{0} and let t the rightmost intersection of C_{1} with the x-axis. Let $p_{1}=w_{1}$ and p_{2} be the intersections of C_{0} and C_{1}. We perturb the configuration such that s lies slightly below the x-axis and p_{1} lies slightly above the horizontal line through w_{1} (see Figure 2). This implies that the first two edges of the path computed by Chew's algorithm are $\left[s p_{1}\right]$ and $\left[p_{1} p_{2}\right]$.

Next, we add circles C_{i} with west point w_{i} such that t lies on C_{i}, p_{i} lies slightly above w_{i}, and point p_{i+1} lies slightly above p_{i}. We place circles until t is the lowest point of C_{j} for some j. Finally, we add points $p_{j}, p_{j+1}, \ldots, p_{k}$ (for some integer k) on the $\mathcal{A}_{j}<p_{j} t>$. We slightly perturb the configuration such that all chords reach t (see Figure 2). Observe that by placing sufficiently many vertices between p_{2} and p_{j}, we create an almost vertical path from p_{2} to p_{j}. The routing path computed by Chew's algorithm tends to $\left[s p_{1}\right]+\left[p_{1} p_{2}\right]+\mathcal{S}_{p_{2}, t}$.

We now pick C_{0} to be the circle with center at $O_{0}=(-0.7652277146,0)$ and radius 0.2369448832 and we pick C_{1} to be the circle with center $O_{1}=(0,-0.0320133045)$ and radius 1. This leads to a routing path whose length approaches 11.4660626 as j and k approach infinity. Since the distance between s and t is 2.00166 , this implies that the routing ratio of Chew's algorithm is at least 5.7282. ${ }^{1}$

We note that this lower bound is strictly larger that $\left|\mathcal{S}_{s, t}\right| /|[s t]|=1+3 \pi / 2$. Next we show that no deterministic k-local routing algorithm on Delaunay triangulations can have routing ratio less than 1.7018.

- Theorem 9. There exist no deterministic k-local routing algorithm on Delaunay triangulations with routing ratio at most 1.7018 or that is 1.2327 -competitive.

Proof. Let C_{0} be the circle with center $O_{0}=(1,0)$ and radius 1 and let C_{1} be the circle with center $O_{1}=(1.4804533538,0.2990071425)$ and radius 1.2285346394 . Let s be the leftmost intersection of C_{0} with the x-axis and let t be the rightmost intersection of C_{1} with the x-axis. Let points A and B be the intersections of C_{0} and C_{1} such that A lies above the x-axis. Let A^{\prime} and B^{\prime} be the vertices on $O_{0} A$ and $O_{0} B$ outside C_{0} such that $\left|\left[A A^{\prime}\right]\right|=\left|\left[B B^{\prime}\right]\right|=0.0718725166$ (see Figure 8). These points (referred to as shield vertices by Bose et al. [10]) will ensure that no shortcuts between points on C_{0} and points on C_{1} are created.

Next, we place points densely on the arcs of C_{0} and C_{1} that are not contained in the other circle. To ensure that $A A^{\prime}$ and $B B^{\prime}$ are edges of the Delaunay triangulation, we leave small gaps along the arcs close to each shield vertex. Since all points of C_{0} (respectively C_{1}) are co-circular, any planar triangulations of them is a valid Delaunay triangulation. Next, we perturb the points in order to both break co-circularity and to choose the triangulation of the interior of the circles (see Figure 8). We compute a triangulation where the shortest paths between t and any point of point set P does not use any chord except $[A B]$. Let q be the point on C_{0} such that $q A^{\prime}$ is the tangent of C_{0} at q and let q^{\prime} the reflection of q over the x-axis.

Now let us consider any deterministic k-local routing algorithm. We consider two point sets: The first one is described above (see Figure 8) and the second one is obtained from

[^1]

Figure 8 One of the two point sets used to provide a lower bound on the routing ratio on Delaunay triangulations.
the first one by reflecting the part of the point set that lies to the right of $q q^{\prime}$ over the x axis. No deterministic k-local routing algorithm can distinguish between the two instances before it reaches $q^{\prime \prime}$, a k-neighbor of q or q^{\prime}, depending on if the routing algorithm followed the arc towards q or q^{\prime}. Since vertices are densely placed on the arc of $C_{0}, q^{\prime \prime}$ is arbitrary close to q or q^{\prime}. Hence, any deterministic k-local algorithm must route to the same vertex $q^{\prime \prime}$ in both instances. Either $q^{\prime \prime}$ is close to q or q^{\prime}. In one of the two instances this leads to a non-optimal route: On the instance of Figure 8, the length of the arc from s to q is 0.477998 and the shortest paths from q to t go via vertex A and have length 4.0693551467 . The Euclidean distance from s to t is 2.6720456033 . Hence, on one of the two instances the length of the computed path is at least $1.7018 \cdot|[s t]|$. The shortest path between s and t in this configuration is of length 3.6888 , this configuration gives a lower bound on the competitiveness of any routing algorithm of 1.2327 .

Finally, we look at the routing ratio and competitiveness of any deterministic k-local routing algorithm on the $L_{1^{-}}$and L_{∞}-Delaunay triangulations.

- Theorem 10. There exists no deterministic k-local routing algorithm for the L_{1} - and L_{∞}-Delaunay triangulations that has routing ratio less than $(2+\sqrt{2} / 2) \approx 2.7071$ or that is $\frac{2+\sqrt{2} / 2}{1+\sqrt{2}} \approx 1.1213$-competitive.

Proof. The proofs for the $L_{1^{-}}$and L_{∞}-Delaunay triangulations are very similar as one can be created from the other by rotating the point set. We present only the point set of the L_{∞}-Delaunay triangulation. First, we place the source vertex s at the origin. Given some values $\epsilon>0$ and $d<1$, we then place k vertices close to point $q=(\epsilon,(2-\sqrt{2}) / 4)$ and $q^{\prime}=(2 \epsilon,-(2-\sqrt{2}) / 4)$ (see Figure 9). Next, we place a vertex A at $(3 \epsilon, 1-d+\epsilon)$, vertex B at $(1+2 \epsilon, 1-d)$, and destination t at $(1+3 \epsilon, 0)$. Finally, we place vertices densely on $[B t]$ and on $\left[q^{\prime} B^{\prime}\right]$, where B^{\prime} is picked such that $q^{\prime}, B, t, B^{\prime}$ forms a parallelogram. As ϵ approaches 0 , the resulting L_{∞}-Delaunay triangulation approaches the one shown in Figure 9.

Now, consider any deterministic k-local routing algorithm. We consider two point sets: The first one is described above (see Figure 9) and the second one is obtained from the first one by reflecting the part of the point set that lies to the right of $q q^{\prime}$ over the x-axis. Since

Figure 9 One of the two point sets used to provide a lower bound on the routing ratio on L_{∞}-Delaunay triangulations.
there are k points between s and q and between s and q^{\prime}, the only information the k-local routing algorithm has before getting close to q or q^{\prime} consists of the vertices to the left of $q q^{\prime}$. If the first step made by the algorithm is towards a vertex close to q, we consider the point set shown in Figure 9. Otherwise, we consider the reflected point set instead. We note that $|[s q]|=(2-\sqrt{2}) / 4$ and that the shortest paths from q to t have length $\min (\mid[q A]+[A B]+$ $[B t]\left|,\left|\left[q q^{\prime}\right]+\left[q^{\prime} B\right]+[B t]\right|\right)=\min (1-d-(2-\sqrt{2}) / 4+1+1-d,(2-\sqrt{2}) / 2+\sqrt{2}+1-d)$. If we pick $d=(2-\sqrt{2}) / 4$), the length of both paths is equal to $3-3(2-\sqrt{2}) / 4$. This leads to a path from s to t of length $2+\sqrt{2} / 2$. Since the Euclidean distance between s and t approaches 1 as ϵ approaches 0 , this gives a lower bound on the routing ratio of any deterministic k-local routing algorithm on the $L_{1^{-}}$and $L_{\infty^{\prime}}$-Delaunay triangulations.

Finally, we observe that on the point set shown in Figure 9, the length of shortest path from s to t is $1+\sqrt{2}$. This gives a lower bound of $\frac{2+\sqrt{2} / 2}{1+\sqrt{2}}$ on the competitive ratio of any deterministic k-local routing algorithm.

References

1 L. Barba, P. Bose, J. D. Carufel, A. van Renssen, and S. Verdonschot. On the stretch factor of the Theta-4 graph. In Algorithms and Data Structures - 13th International Symposium, WADS 2013, London, ON, Canada, August 12-14, 2013. Proceedings, pages 109-120, 2013.
2 L. Barba, P. Bose, M. Damian, R. Fagerberg, W. L. Keng, J. O'Rourke, A. van Renssen, P. Taslakian, S. Verdonschot, and G. Xia. New and improved spanning ratios for Yao graphs. In 30th Annual Symposium on Computational Geometry, SOCG'14, Kyoto, Japan, June 08-11, 2014, page 30, 2014.
3 N. Bonichon, C. Gavoille, N. Hanusse, and L. Perković. The stretch factor of $L_{1^{-}}$and L_{∞}-Delaunay triangulations. In Proceedings of the 20th Annual European Symposium on Algorithms (ESA), volume 7501 of Lecture Notes in Computer Science, pages 205-216. Springer, 2012.
4 P. Bose, A. Brodnik, S. Carlsson, E. D. Demaine, R. Fleischer, A. López-Ortiz, P. Morin, and J. I. Munro. Online routing in convex subdivisions. Int. J. Comput. Geometry Appl., 12(4):283-296, 2002.
5 P. Bose, P. Carmi, S. Collette, and M. H. M. Smid. On the stretch factor of convex Delaunay graphs. JoCG, 1(1):41-56, 2010.
6 P. Bose, P. Carmi, M. Couture, M. H. M. Smid, and D. Xu. On a family of strong geometric spanners that admit local routing strategies. Comput. Geom., 44(6-7):319-328, 2011.

7 P. Bose, J. D. Carufel, P. Morin, A. van Renssen, and S. Verdonschot. Optimal bounds on Theta-graphs: More is not always better. In Proceedings of the 24th Canadian Conference on Computational Geometry, CCCG 2012, Charlottetown, Prince Edward Island, Canada, August 8-10, 2012, pages 291-296, 2012.
8 P. Bose, M. Damian, K. Douïeb, J. O'Rourke, B. Seamone, M. H. M. Smid, and S. Wuhrer. $\pi / 2$-angle Yao graphs are spanners. Int. J. Comput. Geometry Appl., 22(1):61-82, 2012.
9 P. Bose, J.-L. De Carufel, S. Durocher, and P. Taslakian. Competitive online routing on Delaunay triangulations. In 14th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), 2014.
10 P. Bose, L. Devroye, M. Löffler, J. Snoeyink, and V. Verma. Almost all Delaunay triangulations have stretch factor greater than $\pi / 2$. Computational Geometry, 44(2):121-127, 2011.

11 P. Bose, R. Fagerberg, A. van Renssen, and S. Verdonschot. Competitive routing in the half- θ_{6}-graph. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pages 1319-1328, 2012.
12 P. Bose and P. Morin. Online routing in triangulations. SIAM J. Comp., 33(4):937-951, 2004.

13 P. Bose, P. Morin, A. van Renssen, and S. Verdonschot. The θ_{5}-graph is a spanner. Comput. Geom., 48(2):108-119, 2015.
14 P. Bose, A. van Renssen, and S. Verdonschot. On the spanning ratio of Theta-graphs. In Algorithms and Data Structures - 13th International Symposium, WADS 2013, London, ON, Canada, August 12-14, 2013. Proceedings, pages 182-194, 2013.
15 L. P. Chew. There is a planar graph almost as good as the complete graph. In Proceedings of the Second Annual Symposium on Computational Geometry (SoCG), pages 169-177, 1986.

16 L. P. Chew. There are planar graphs almost as good as the complete graph. Journal of Computer and System Sciences, 39(2):205-219, 1989.
17 E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1:269271, 1959.
18 D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost as good as complete graphs. Discrete \mathcal{G} Computational Geometry, 5(4):399-407, Dec. 1990.
19 S. Durocher, D. G. Kirkpatrick, and L. Narayanan. On routing with guaranteed delivery in three-dimensional ad hoc wireless networks. Wireless Networks, 16(1):227-235, 2010.
20 G. Xia. The stretch factor of the Delaunay triangulation is less than 1.998. SIAM J. Comput., 42(4):1620-1659, 2013.
21 G. Xia and L. Zhang. Toward the tight bound of the stretch factor of Delaunay triangulations. In $C C C G, 2011$.

Appendix

Figure 10 Illustration of Lemmas 11 and 7.

- Lemma 11. Let O_{i} be the center of C_{i} and let $\angle w_{i-1} O_{i-1} p_{i}$ and $\angle w_{i} O_{i} p_{i}$ be the angles defined using orientations of $\mathcal{R}\left\langle p_{i-1}, p_{i}\right\rangle$ and $\left.\mathcal{R}<p_{i}, p_{i+1}\right\rangle$, respectively. Then (as illustrated in Figure 10), for every $1 \leq i \leq k$,

$$
0 \leq \angle w_{i} O_{i} p_{i}<\angle w_{i-1} O_{i-1} p_{i}<3 \pi / 2 .
$$

Proof. Without loss of generality, we assume that p_{i-1} and p_{i} belong to the upper arc from w_{i-1} to r_{i-1} of C_{i-1}. This implies that the orientation of $\mathcal{R}<p_{i-1}, p_{i}>$ is clockwise and that p_{i} lies above st. Because r_{i-1} is the rightmost intersection of C_{i-1} with st, it follows that $\angle w_{i-1} O_{i-1} r_{i-1}<3 \pi / 2$, which implies the third inequality. Also, the first inequality holds because the angles are defined to be non-negative.

Consider the triangles which intersect [st] that have p_{i} as a vertex. Let $C_{i-1}=$ $C_{i}^{0}, C_{i}^{1}, \ldots, C_{i}^{l}=C_{i}$ be the circles circumscribing these triangles, ordered from left to right. Let O_{i}^{j} be the center and w_{i}^{j} be the leftmost point of circle C_{i}^{j}. The lemma will follow if we show that $\angle w_{i}^{j} O_{i}^{j} p_{i}<\angle w_{i}^{j-1} O_{i}^{j-1} p_{i}$ for every $j=1, \ldots, l$. Let p_{i}, q_{j} and q_{j}^{\prime} be the vertices of the triangle circumscribed by C_{i}^{j-1}, in clockwise order. Then q_{j} must lie below the x-axis and O_{i}^{j} must lie on the perpendicular bisector of segment $\left[p_{i} q_{j}\right]$ and in the half-plane defined by $p_{i} O_{i}^{j-1}$ not including w_{i}^{j-1}. This implies that $\angle p_{i} O_{i}^{j-1} w_{i}^{j-1}>\angle p_{i} O_{i}^{j} w_{i}^{j}$.

Proof of Lemma 7 This lemma is illustrated in Figure 10. Consider the circles C_{i-1} and C_{i} with centers O_{i-1} and O_{i}, respectively. Without loss of generality, we assume that p_{i-1} and p_{i} belong to the upper arc from w_{i-1} to r_{i-1} of C_{i-1}. This implies that the orientation of $\mathcal{R}<p_{i-1}, p_{i}>$ is clockwise and that $y\left(p_{i}\right) \geq 0$. The center O_{i-1}^{\prime} of C_{i-1}^{\prime} lies on the half-line defined by the perpendicular bisector of $\left[p_{i-1} p_{i}\right]$, starting at
O_{i-1} and intersecting $\left[p_{i-1} p_{i}\right]$. This implies that a) $\angle w_{i-1}^{\prime} O_{i-1}^{\prime} p_{i}>\angle w_{i-1} O_{i-1} p_{i}$ and b) $\angle w_{i-1}^{\prime} O_{i-1}^{\prime} p_{i-1}<\angle w_{i-1} O_{i-1} p_{i-1}$. In the context of circle C_{i}, inequality b) becomes $\angle w_{i}^{\prime} O_{i}^{\prime} p_{i}<\angle w_{i} O_{i} p_{i}$ and the second inequality in (5) follows from Lemma 11. Let r be the rightmost intersection of C_{i-1}^{\prime} with $s t$. It follows that $\angle w_{i-1}^{\prime} O_{i-1}^{\prime} r \leq 3 \pi / 2$. Since p_{i} lies on $\mathcal{A}_{i-1}<w_{i-1}^{\prime}, r>$, the third inequality in (5) holds. Finally, the first inequality in (5) holds since either $p_{i}=w_{i}^{\prime}$ or p_{i} lies on $\mathcal{A}_{i}<w_{i}^{\prime}, p_{i+1}>$ that is clockwise oriented.

[^0]: * N. Bonichon partially supported by ANR grant JCJC EGOS ANR-12-JS02-002-01 and LIRCO. P. Bose partially supported by NSERC. A. van Renssen supported by JST, ERATO, Kawarabayashi Large Graph Project.

[^1]: ${ }^{1}$ GeoGebra files that describe the 2 first examples presented in this section are available at the following url: http://www.labri.fr/perso/bonichon/DelaunayRouting/

