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INTRODUCTION 

 Pressure ulcers (PU) affect almost half of the patients in reanimation or geriatric units. They 

are localized injuries that affect the skin and underlying soft tissues, usually below a bony prominence. 

The main suspected causes are the excessive pressure intensity (internal tissue strains above 50 % for 

about 10 minutes) or prolonged compression (internal strains above 20 % for about two hours) [1]. 

Specific forms of PU, termed Deep Tissue Injuries (DTI), are defined as pressure-related injury to 

subcutaneous tissues such as skeletal muscles [2]. DTI start in deep tissues underneath an intact skin 

and progress outward rapidly, causing substantial subcutaneous damages before being visible. 

Prevention through daily examination lacks efficiency because of the nature of DTI: when visual 

symptoms appear, it is often too late to prevent dramatic injuries. Measuring surface pressures is 

believed to be effective in alerting patients at risk against focal pressures that may cause soft tissues 

injury [3], but these measurements cannot predict dangerous internal tissue loading [4]. For example, 

similar pressures may be observed under the buttocks of a heavy paraplegic person with sharp ischial 

tuberosity (IT) and a thin person with blunt ITs; however, their susceptibility to DTI depends on the IT 

curvature as well as the thickness of the soft tissues which lead to different internal strains creating the 

injuries [5]. It is consequently crucial to monitor these internal strains. The only way to estimate these 

strains from the skin surface pressures is to build a patient-specific biomechanical model of the soft 

tissues and the bony prominences. PU are frequent in reanimation and geriatric patients, especially at 

two locations: the buttocks (below the ischial tuberosities and the sacrum) and the foot (below the 

heel). In this study, we therefore introduce two generic models of the buttocks and of the foot that can 

be used as a foundation to create patient-specific biomechanical models with the objective of 

personalized PU prevention. 

METHODS 

Our foot and buttocks models have been developed using the 3D biomechanical simulation 

platform, Artisynth [6]. The models are composed of bones and soft tissues, including skin, muscles 

and fat. On top of these, the foot model includes ligaments and joints. The surfaces of these structures 

(skin, muscles and bones) are inspired by the surfaces from the zygote database (www.zygote.com) for 

the foot and segmented from a young healthy subject for the buttocks. Using an automatic Finite 

Element (FE) mesh generator [7], the surfaces were filled with elements based on a hexahedral grid, 



completed with wedges and tetrahedrons to maximize the accuracy and to ensure continuity between 

structures. The bones are modeled as rigid solids. Figures 1 and 2 plot the corresponding FE meshes.  

 

Figure 1. (a) Finite element model of the buttocks; (b) frontal and (c) and sagittal cross sections 

showing the three layers of materials defining the buttocks model: skin (in grey), fat (in yellow) and 

muscles (in red); the bones are represented in white and are simulated as fixed nodes; (d) CT scan slice 

showing the ischial tuberosity surrounded by muscles and fat tissues. 

  

Figure 2. Top: the four types of materials defining the lower leg FE model: skin (only one layer of 

elements around the leg), muscles (in red), fat (in yellow), and Achilles tendon. Bottom: clusters of the 

nodes with VM strains above 20 %. The maximum VM strain (57 %, in red) is located under the heel, 

at the interface between fat and calcaneus. 

The buttocks FE mesh (Fig. 1) models the soft tissues representing the skin, muscles and fat using 

three different Neo Hookean materials, as those tissues undergo large deformations following an hyper 

elastic behavior, with Young moduli set to 200 kPa for the skin, 100 kPa for the muscles, and 30 kPa 

for the fat. All materials have a Poisson ratio of 0.49. 

For the foot FE mesh (Fig. 2), the soft tissues are modeled as four different Neo Hookean 

materials with Young moduli set to 200 kPa for the skin, 100 kPa for the muscles, 1 GPa for the 

tendon, and 30 kPa for the fat. All materials have a Poisson ratio of 0.495, except for the fat with a 

value of 0.49 [5]. The 26 foot bones are modeled as rigid body surfaces coupled to the nearby FE 

nodes. The 33 foot joints are simulated by pivots connecting each bone with its neighbors. 

RESULTS  



 Biomechanical models can be used to simulate the behavior of the buttocks or the foot under 

different constraints. They can compute the internal strains and stresses in the subcutaneous tissues 

under various external patterns of pressures applied at the skin surface, and therefore predict the risks 

for DTI development. For example, the bottom panel of figure 2 plots the levels of internal strains due 

to the contact of the lower leg on a soft cushion. This kind of simulations could allow specifically 

assessing the influence of the calcaneus bone geometry on the risk of PU creation, or the influence of 

the cushion stiffness. In this case, a cushion with a soft stiffness seems to limit the risk in terms of 

short term PU creation, while cushions mildly inflated under one of the sections of the leg leads to a 

risk of PU creation in a time period around two hours (since the 20 % VM strain threshold is reached 

in all cases [1]). The same kind of behavior can be observed for the buttocks. Thanks to these 

biomechanical models, it is consequently possible to define a time threshold, a pressure threshold, or a 

cushion stiffness threshold, that should prevent PU. 

DISCUSSION  

 Our biomechanical models allow simulating the foot and buttocks with a realistic behavior in 

terms of surface and internal pressures. These constraint analyses resulting from a prescribed load 

could consequently determine if and when pressure ulcers may appear. Our future works will aim at 

automatically creating patient-specific models from these generic models and to couple them 

interactively with data provided by the “TexiSense Smart Sensor” that could provide a daily 

personalized PU prevention [8]. 
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