
HAL Id: hal-01092746
https://hal.science/hal-01092746

Submitted on 9 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Intrusive Scheduling of TCP Flows
Urtzi Ayesta, Lionel Bertaux, Denis Carvin

To cite this version:
Urtzi Ayesta, Lionel Bertaux, Denis Carvin. Non-Intrusive Scheduling of TCP Flows. IFIP Networking
2015 Conference, May 2015, Toulouse, France. �hal-01092746�

https://hal.science/hal-01092746
https://hal.archives-ouvertes.fr

Non-Intrusive Scheduling of TCP Flows

U. Ayestaa,b,c,d, L. Bertauxa,d, D. Carvina,d
aCNRS, LAAS, 7 avenue du colonel Roche, 31400 Toulouse, France

bIKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
cUPV/EHU, Univ. of the Basque Country, 20018 Donostia, Spain
dUniv. de Toulouse, INP, INSA, LAAS, 31400 Toulouse, France

December 9, 2014

Abstract

We investigate how to build a non-intrusive scheduled TCP. For the flows of a given origin-
destination pair, the objective is to schedule their TCP segments (according to some desired
criteria) without modifying the network bandwidth-share used by these flows, which in turn
ensures friendliness with respect to the rest of the network. We show that in order for a
scheduling algorithm to be strictly non-intrusive, a sufficient and necessary condition is that the
sender’s and receiver’s buffers are infinite. We then show that, under the additional condition
that segments are neither lost or reordered, the number of active TCP flows can be minimized by
size-based schedulers, and we propose a new scheduler FAIR, which guarantees that the transfer
time of every TCP flow for the origin-destination pair is reduced. We develop SCHED TCP, a
user space implementation of our scheme in order to evaluate its performance on the Internet.
Our experiments illustrate the non-intrusive property of SCHED TCP, and also illustrate that
the performance gain with SCHED TCP can be considerable. Our scheme is scalable, and it
could be incrementally deployed on the Internet improving the user experience on every origin-
destination pair. The main application domain of our approach correspond to situations in
which there are many TCP concurrent connections within the same origin-destination pair,
this might happen as a consequence of HTTP 1.1, Web 2.0 applications using AJAX (Google
Maps etc.), Split TCP, Parallel Sockets, and also with the use of ChromeBook’s where the user
accesses to all services through the same back-end server infrastructure.

1 Introduction

The last twenty years have witnessed a tremendous effort to understand and optimize the per-
formance of congestion control algorithms over the Internet. Many variants of TCP have been
proposed and studied, and the interaction of congestion control and buffer dynamics have also
thoroughly been investigated. Without this list being exhaustive, researchers have looked at ways
to improve the performance of TCP by modifying various aspects of the Additive Increase Multi-
plicative Decrease behavior of TCP, or by modifying the way packets are handled in buffers. An
important stream of research, promoted by the advocates of the diffserv architecture, has been
to look at how to improve the quality of experience by implementing service differentiation and
priorities in the routers, see [11]. Several works have shown that the implementation in routers of

1

scheduling policies can improve the performance, particularly in the case of overload or close-to-
saturation regimes, see for instance [33] and [10].

In spite of all these efforts, the actual number of changes and modifications that have been
implemented in real protocols and systems is rather small. The main reason for this is that even
though such proposals definitely improve the efficiency locally, there is little understanding as to
what would be the impact if they were implemented globally at the scale of the Internet. An
argument against the deployment of scheduling disciplines in routers is presented in [36], where
the authors show that the performance in a network where each node implements a size-based
scheduling can be extremely poor.

The above provides us with the motivation to undertake a different approach. We focus on
a pair of origin and destination nodes, and we develop a scheme to implement scheduling policies
on TCP flows in a non-intrusive and transparent way with respect to the rest of the network. In
other words, the TCP segments of a given origin-destination are scheduled – according to some
policy that can be freely chosen – without modifying the bandwidth share assigned by the network
to this particular set of flows. This permits to build new schedulers that improve the performance
for a set of flows sharing the same origin-destination pair, without having any harmful impact on
the rest of the flows being transmitted over the Internet.

We now mention the main contributions of this paper. In the first main contribution we
develop gtcp, a general congestion-control algorithm that can interchange the contents of segments
from the flows within a given origin-destination pair in a non-intrusive way, that is, without
modifying the bandwidth-share assigned to this set of flows. We also establish that having an
infinite sender’s and receiver’s buffer is sufficient and necessary in order for gtcp to be non-intrusive.
In the second main contribution, we apply classical results from scheduling theory to show that
in the absence of packet losses and packet reordering, scheduling disciplines that favor TCP flows
based on the unsent amount of data or data already sent minimize the transfer time and the
number of on-going flows. We also develop FAIR, a scheduler that reduces the transfer time of
each flow when there is no packet loss nor packet reordering on the network path. In our third
main contribution we develop SCHED TCP, a user space implementation of our scheme in order to
evaluate its performance on the Internet. Our experiments illustrate the non-intrusive property
of SCHED TCP, and also illustrate that the performance gain with SCHED TCP can be considerable.
Our scheme is scalable, and it could be incrementally deployed on the Internet improving the user
experience on every origin-destination pair.

It is important to highlight that all the above positive and beneficial results do not inflict any
harm to the rest of the network, and that gtcp and SCHED TCP can work with any TCP version like
New Reno [20], CUBIC [23] or Compound [35]. These two aspects would permit an incremental
deployment of SCHED TCP over the entire Internet improving the performance of flows on every
origin-destination pair. The main application domain of our approach correspond to situations
in which there are many TCP concurrent connections within the same origin-destination pair,
for instance this might happen as a consequence of HTTP 1.1 [18], Web 2.0 applications using
AJAX (Google Maps etc.) [31], Split TCP [12], Parallel Sockets [34], and also with the use
of ChromeBook’s [2] where the user accesses to all services through the same back-end server
infrastructure.

Our work shares similarities with the approaches of [27, 9, 33, 13], but there are two main
differences. The first one is that our approach ensures that the bandwidth share taken by an origin-

2

destination pair remains unmodified with respect to what would happen under standard TCP, and
the second one is that we do not necessarily require implementing a size-based scheduling policy.
In our approach the congestion-control and scheduling features of TCP are decoupled, and for any
origin-destination pair we are free to choose how flows are scheduled. Size-based scheduling is an
appealing option since it enables to derive mathematical properties of the approach. However,
other solutions are also equally viable, like giving priority to real-time, multimedia or interactive
traffic over best-effort one, or by following an arbitrary order that would be optimized by the
application layer.

The rest of the paper is organized as follows. In Section 2 we provide a brief overview of
the related literature, in Section 3 we develop gtcp and in Section 4 we show how classical results
from scheduling theory can be used to improve the performance of TCP flows. In Section 5 we
present a discussion on the technical conditions needed to be non-intrusive, and Section 6 presents
the results we have obtained with SCHED TCP.

2 Related work

There are two main research bodies that are related to our proposal, one deals with modification
and improvements of the TCP stack, and the other with the implementation of scheduling policies
in IP networks. We briefly review some of the main results in these two areas.

The number of TCP modifications that have been proposed over the years is huge. Without
aiming at being exhaustive, we mention some of the most significative ones: modification of the
initial window [7], faster start proposals [26], handling more efficiently packets losses as done with
ECN [28, 19], SACK [21] or RCP [15], or improving the estimation of the available bandwidth as
done with TCP Westwood [17]. There have been dozens of new TCP proposed, and current Linux
implementations deploy TCP CUBIC [23] whereas Windows implements TCP Compound [35].
These TCP versions only modify the congestion algorithm, but do not add new functionalities.
Modern approach to Transport protocol design requires to split Transport layer [16] into sub-layers
that can be shared between applications or between connexions. This approach has been followed
by MPTCP [4] which enables to enhance available bandwidth by using all the network interfaces
and paths between two hosts.

The diffserv architecture was described in [11], here each packet is classified into a limited
number of traffic classes and each router on the network is configured to differentiate traffic based
on its class. An example is [25] where interactive traffic is given priority over the rest. In order
to preserve the quality of service, researchers have also advocated other solutions like admission
control [24] or active queue management [6]. Authors of [13] have considered the scheduling of
application traffic in computer clusters. Another stream of works have investigated the impact of
giving priority in buffers to packets based on the size of the flows [27], [9] and [33]. The latter
works draw from classical scheduling theory that giving preference to short tasks is beneficial in
a single-server queue. Well-known results are that among size-aware policies, Shortest-Remaining
Processing Time (SRPT) minimizes the number of tasks in the system [32], and that among size-
unaware policies Least Attained Service (LAS) minimizes stochastically the number of tasks in the
system when the service time distribution has a decreasing hazard-rate (DHR), see [30]. We refer
to [37] for a survey with the most important scheduling results.

3

3 Non-intrusive scheduled TCP: decoupling of congestion control
and scheduling

In this section, we show that it is possible to schedule the segments of a set of application flows
sharing the same origin-destination route, without modifying the bandwidth share that would have
been perceived using a standard TCP implementation. In the ensuing we will use the term tcp to
refer to a standard TCP implementation, regardless of the specific TCP version. In other words,
if V tcp(t) denotes the amount of traffic that has been injected in a given route by TCP up to time
t, we will show that under the condition that the sender and receiver buffers are unbounded, a
more general congestion-control gtcp can arbitrarily interchange the contents of the segments using
a policy π, in such a way that V gtcpπ(t) = V tcp(t), ∀t. The latter property implies that gtcp is
non-intrusive with respect to the reference protocol tcp. This opens up the path to optimize the
quality of service perceived by this set of flows, without incurring any harm on the other flows
sharing the network. To build such a non-intrusive gtcp, we will need to be able to emulate at all
times what would have been the state of every flows under tcp. In turn, this would enable gtcp to
inject segments into the network at the exact same times as what tcp would have done. We note
that naive solutions like combining all TCP flows into one single flow do not allow to achieve this
goal.

In order for gtcp to be able to implement an arbitrary scheduling policy π, gtcp will need to
keep two separate state representations for every flows: the virtual that keeps track of the state
under tcp and the real one. Every time a packet is going to be sent (which depends on the virtual
states), the scheduler π will choose which flow will really send its contents (this can depend on
both the real and virtual states, and on other contextual information such as the QoS). In order
to achieve our goal, we will show that is sufficient for gtcp, to encapsulate in all its segments,
information on both the virtual TCP flow (which enables to keep track of the state of every virtual
TCP flow) and on the real TCP (which enables to update the real state).

The rest of the section is as follows. In Subsection 3.1 we describe how a non-intrusive gtcp
can be built for any scheduling policy π by describing in detail the algorithms that deal with the
main events in a network, namely, arrival of application data (wri), reception of acknowledgement
(ack), and retransmission timeout (rto). In Subsection 3.2 we state the formal result, establishing
that if the sender and receiver’s buffers are unbounded, it is possible to implement any scheduling
policy π such that V gtcp(t) = V tcp(t), ∀t.

3.1 Algorithmic framework : maintaining virtual queues

As depicted in the upper plane of Figure 1, TCP can be modeled as a multiple-server multiple-
queue system, where each server is associated to a transmission queue (or queue). Our approach
decouples queues and servers with a scheduling policy π and guarantees that servers’ activities
remain the same. In our convention, a service (or a sequence number) is the transmission of a
segment, it starts with the first transmission attempt and is completed on the reception of its
ack. The service can be preempted upon reception of three duplicate ack’s, which will trigger π
to choose a packet (not necessarily the same) for transmission. As a result, a server offers services
in parallel, whose duration and order of completion depend on the network and on tcp. The total
amount of traffic produced by the servers is captured by the function V tcp(t).

4

Pending Segment

tcp

gtcp

V
i

q i i
a - s

i
q

V (t)tcp

V (t)gtcp

In-Flight Segment

Figure 1: The two planes of gtcp. While in the underlying plane the second queue is prioritized,
we maintain in the upper plane the virtual states of queues.

We consider an established state without any optional behavior. For the sake of clarity, we
assume the size l of arrivals in queues to be multiples of the maximum segment size mss. As a
consequence all the packets have the maximum segment size. This assumption is not really required
in order to build gtcp, but it greatly simplifies the exposition, see Remark 1 for a discussion on
how to handle variable segment sizes.

In tcp, the possibility for server i to transmit a new segment depends on its state variables
which are :

• qi: Size of transmission of queue i

• si: Highest in-flight sequence number

• ai: Highest cumulatively acknowledged sequence number

• cwndi: Size of congestion window

• rwndi: Size of receiver window (remote host)

In order to be standard compliant [8], a new segment cannot be sent by server i if cri = 0 or qi = 0.
Here, cri denotes the transmission credit and is expressed as cri = min(cwndi, rwndi) + ai − si.
With gtcp, we decouple queues from servers, as a consequence qi will depend on π. As a substitute
for qi, we introduce qvi , the virtual size of queue i which keeps track of the value of qi under tcp.

Server i evaluates its state to offer new services on the occurrence of events which are either
(i) wrili : l bytes arrive to queue i or (ii) acks,s

′

i,j : segment s′ of queue j is acknowledged with the
service s of server i. Algorithm 1 details the actions to perform on the occurrence of the event
wrili.

On the arrival of l data in queue i (recall that l is proportional to mss), server i updates
the size of its virtual queue qvi to compensate the arrival in its real queue qi, and it offers new
services up to its limitation based on its virtual queue. After each service, server i updates its

5

Algorithm 1 on wri(i, l)

qvi ⇐ qvi + l // qi ⇐ qi + l
while cri > 0 and qvi > 0 do

serve(i, si)
si ⇐ si +mss // cri ⇐ cri −mss
qvi ⇐ qvi −mss // qj ⇐ qj −mss

end while

state as follows: it increments its sequence number (which decreases its transmission credit), and
decrements the size of its virtual queue qvi . The latter means that server i virtually dequeues
the data from queue i and consider that the served queue is virtually unchanged. The actions
undertaken in the case where server i offers service s are given in pseudo-code in Algorithm 2.

Algorithm 2 serve(i, s)

j, s′ ⇐ schedule() // implements π

P s,s
′

i,j ⇐ tcp head(i, s) | sched head(j, s′) | data()

send(P s,s
′

i,j) // generate sens,s
′

i,j

set timer(P s,s
′

i,j) // schedule rtosi
associate((i, s), (j, s′))
mark(j, s′)

When server i is about to transmit a segment s, it first asks to the external function schedule

which segment s′ of which queue j it must serve. The function schedule implements the scheduling
policy π specified by gtcp. Then server i builds a packet containing the service identification (i, s),
the data identification (j, s′) and the data. Both identifiers are associated and the segment of data

is marked as in-flight for the scheduler. We denote the transmission event by sens,s
′

i,j . Note here
that policy tcp is the particular case of gtcp when the scheduler π assigns (j, s′) = (i, s).

On the receiver side, the counterpart of event sens,s
′

i,j is rcvs,s
′

i,j . When this event takes place,

the receiver produces the acknowledgement event acks,s
′

i,j and advertises rwndi. Additionally, it
keeps the association (i, s) and (j, s′). In the case of multiple reception of the same service (ac-
knowledgment loss, poor RTT estimation. . .), the same association is immediately acknowledged.

As we explained above, an acks,s
′

i,j event can trigger the transmission of a packet by server i. The
reaction to this event is described in Algorithm 3.

On the reception of an ack, server i updates its congestion state. In particular, server i
modifies the value of cwndi, rwndi, ai (and consequently cri) but also performs other actions like
timers’ cancelation, RTT estimation, etc. Since these actions depend on the version of TCP, we
encapsulate them in the up cong state function which returns the acknowledgement type (number
of duplication). If the acknowledgement is a third duplicate, a retransmission is triggered, which
means that the service is preempted. Thus, we can serve another application and associate an
additional segment to this service. If the acknowledgement is not a third duplicate, new services are
offered with the serve function. In the case of a cumulative acknowledgement, the acknowledged
segment of queue is released. All the other segments that were associated to the service are

6

Algorithm 3 on ack(i, s, j, s′)

ack type ⇐ up cong state()
if ack type = third dupack then

serve(i, s)
else
if ack type = cumulack then

unmark all associations of((i, s))
remove all associations((i, s))
free tx buf((j, s′))

end if
while cri > 0 and qvi > 0 do

serve(i, si)
si ⇐ si +mss // cri ⇐ cri −mss
qvi ⇐ qvi −mss // qj ⇐ qj −mss

end while
end if

unmarked and will be reconsidered by the scheduler for future transmission.
Finally, we have the rtosi event, which is a retransmission time-out. This even is processed

by the sender like the detection of a third duplicate acknowledgement.

3.2 Formal statement

Based on this algorithmic framework, we have:

Proposition 1 In any given sample-path, it is possible to adopt any arbitrary scheduling policy π
such that ∀t, V gtcp(t) = V tcp(t) if and only if the sender and receiver buffers are not bounded.

Proof. Let T tcp(t) = {ti ∈ [−∞, t[i ∈ N} denote the set of event times up to time t under
the standard tcp, with the convention that ∀p < q, tp ≤ tq. Equivalently let T gtcp(t) denote
te set of event times with gtcp. To specify which event occurs at these instants, we define a
function Etcp : T tcp(t) → E tcp, where E tcp is the set of possible events that can occur at time
t. The function Egtcp is defined equivalently. To define Egtcp we only consider the events that

impact TCP’s behavior, namely, Egtcp = {wrilj , ack
s,s′

i,j , rto
s
i , sen

s,s′

i,j , dat
s,s′

i,j } where i, j are a queue

and server identifier at time t, respectively, and l, s, s′ ∈ N3. E tcp is the same as Egtcp with the
restriction that necessarily s = s′ and i = j. It is easy to see that we have: V gtcp(t) = |{t′ ∈
T gtcp(t) | ∃(i, s), (j, s′) s.t. Egtcp(t′) = sens,s

′

i,j }| × mss, which states that the total amount of
traffic injected up to time t equals the number of segments sent before t multiplied by their size.
V tcp(t) is similarly defined.

By construction of Algorithms 1-3, for any policy π of gtcp, we have T gtcp(t) = T tcp(t), and
the following equivalence:

(∃ (i, s) | Etcp(t′) = sensi)

⇐⇒ (∃ (i, s), (j, s′) | Egtcp(t′) = sens,s
′

i,j).

7

As a result, we have V gtcp(t) = V tcp(t), ∀t, regardless of the policy π implemented by gtcp. For
the above argument to hold the sender and receiver buffers must be infinite. If the sender buffer
were finite, it is possible to find a sequence of TCP flows arrivals, such that under π the buffer
overflows and segments are lost, whereas the virtual buffer remains small. The latter can happen
on the sender’s side for a low priority queue which is significantly less served than under tcp. On
the receiver’s side, it can happen for a priority queue which delivers a much larger amount of data
than under tcp, the receiver window becoming possibly less than the congestion window. Such
events will alter the future events in such a manner that their corresponding algorithm can not be
called and it is no longer possible to preserve T gtcp(t) = T tcp(t) from that moment on. �

Remark 1 (On arrivals that are not a multiple of mss) In this case we could encounter the
situation where the size of a service is greater than the size of the prioritized queue. We would
thus need to encapsulate several segments of different queues in the same service. The price of this
situation is that it requires an enhanced mechanism to associate one service to a set (or several
sets if retransmission) of queue segments that have different sizes.

The unboundedness of the buffers is needed in order for gtcp to be non-intrusive, but is not
required to implement an arbitrary scheduler in reality. This is investigated in Section 6, where
we will show that SCHED TCP, a user space implementation of gtcp, is qualitatively non-intrusive,
(i.e. at a coarser time-scale than the one of the packet).

4 Scheduling: optimality of size-based policies

In Section 3 we have shown that the congestion control and scheduling aspects of TCP can be
totally decoupled. As a consequence, a source can efficiently schedule TCP segments without
any harmful impact on any other active data transmission in the network. The properties of the
scheduling algorithm were hidden behind the function schedule used in Algorithms 2.

The objective of this section is to elaborate on how size-based scheduling and priority poli-
cies can improve the performance perceived by flows using the same origin-destination pair. In
particular, we will discuss how these disciplines can reduce the transfer time of flows and also the
number of on-going flows. Throughout this section we assume that all the data of a given flow
is available to be scheduled. If an application transmits data over the same TCP connection at
discontinuous time intervals, for the purposes of this section each of these transmissions can be
seen as a separate flow.

4.1 Equivalence with a queue with time-varying capacity

Our scheduling problem is different from the classical problem studied in the literature. In the
classical problem, tasks receive reliable service “instantaneously” and depart as soon as their re-
quired service time has been served, whereas in our setting, segments are scheduled on transmission
epochs, and a while later, when the ack is received, we consider the information to be successfully
transmitted.

In order to establish optimality results, we need to assume the absence of segment losses, and
also of segment reordering. The results of Section 6 indicate that, in the presence of segment losses

8

C(t)

t

V (t) [#mss]

mss

Figure 2: Function C(t) that captures the instantaneous data transmission. The black dots repre-
sent time epochs in which a segment is transmitted.

and segment reordering, size-based scheduling will still provide a significant performance gain, see
also Remark 2. Since neither data segments nor ack’s are reordered, we can equivalently assume
that a segment is successfully transmitted as soon as it departs from the sender’s buffer, and we can
thus say that a flow departs the system as soon as its last data segment is sent. Let N π(t) denote
the set of flows that have unsent segments at time t and let Nπ(t) = |N π(t)| denote the number
of flows present at time t. The assumption that segments are neither lost nor reordered directly
implies that minimizing Nπ(t) is equivalent to minimizing the number of active flows measured at
the reception of ack’s.

As explained in Section 3, our scheme enables that the total number of transmitted segments
at time t, V gtcp(t), is independent of how segments are scheduled by the scheduler π implemented
in gtcp. Let ti, i = 1, 2, . . . , denote the transmission epoch of the i-th segment under tcp. It will be
proven useful to consider a capacity function C(t) = mss×

∑
i:ti≤t δ(t− ti), where δ(·) is the Dirac

delta function. Figure 2 depicts the function C(t) in a particular example. The function C(t) can
be seen as time-varying capacity function, and it captures the instantaneous rate at which data is
being transmitted, that is, at time t data is instantaneously transmitted at rate C(t). It is easy to
see that for all t,

∫ t
−∞C(s)ds = V tcp(t), so under the function C(t), a segment is instantaneously

transmitted at times ti, i = 1, 2, . . . ,.
The problem of determining an optimal scheduling algorithm π can now be cast as a problem

of optimal scheduling in a single-server queue with a time-varying service capacity C(t). As we
will show in Subsection 4.3, this allows us to use known results from the literature to establish
optimality results. Note that we have dropped the dependency of C(t) on π to highlight that, as
shown in Proposition 1, we can implement a scheduler π while preserving the bandwidth share
at all time epochs, i.e., V gtcp(t) = V tcp(t), ∀t. This result is critical in order to compare the
performance of scheduling disciplines. We will now introduce the main size-based disciplines that
we will need in the rest of the section.

4.2 Scheduling disciplines

The discipline implemented by gtcp, denoted by π, specifies which flow is served at time t. A
selected flow will receive instantaneous service at rate C(t). Since C(t) is formed by Dirac delta
functions, this implies that if t 6= ti, then the rate is 0, and that if t = ti, a segment with

9

mss amount of data will be sent. Depending on the information available to the scheduler, two
important classes of disciplines are: (i) size-aware if the required service times of flows is known
and (ii) age-based if the amount of received service is known (but not the required service time).
The notions of required service time and received service commonly used in the scheduling literature
must be here understood as amount of segments a flow must transmit and amount of segments
already transmitted by a flow, respectively. Well-known disciplines are:

• Least Attained Service (LAS) is an age-based discipline which serves the flow that has received
the least amount of service, which as explained above, in our terminology means the TCP
flow that has transmitted the least number of segments.

• Shortest-Remaining-Processing-Time (SRPT) is a size-aware discipline that serves the flow
with the smallest remaining service time.

• Fair TCP (FAIR) is a size-aware discipline, which serves the flow that will finish next under
tcp.

(FAIR) is inspired by the Fair Sojourn Protocol introduced in [22]. In the absence of segment losses
and segment reordering, if the scheduler is size-aware, and if gtcp knows the behavior of tcp, it is
possible for gtcp the scheduler to infer exactly which would be the next flow under tcp.

It will also be useful to consider priority policies that apply a priority among different type
of flows. Here a type might refer for instance to the application: web, VoIP, P2P etc.

4.3 Optimality results

Proposition 2 below summarizes our main theoretical results that illustrate how size-based schedul-
ing improves the performance of the flows in a given origin-destination pair. We will need the notion
of hazard-rate. Let P(S = k) denote the probability that a flow requires to transmit k segments.

The hazard rate of a distribution is then given by h(k) := P(S=k)
P(S≥k) , and when h(k) decreases in k

we say that the distribution is of type decreasing hazard rate (DHR). Flow size distributions on
the Internet are commonly modeled with distributions of type DHR, see for example [14].

Proposition 2 Under the conditions of Proposition 1, if segments are neither lost nor reordered,
we have:

• If the scheduler is SRPT, then {NSRPT(t)}t≥0 ≤ {Ngtcp(t)}t≥0, where gtcp can implement any
arbitrary size-aware discipline.

• If the service time distribution is DHR, then P(NLAS(t) > k) ≤ P(Ngtcp(t) > k), ∀k, where
gtcp can implement any arbitrary age-based discipline.

• If the scheduler is FAIR, then TFAIRi ≤ T tcpi , where Ti denotes the transfer time of the i-th
flow.

• If flows are classified into types, then E(Nµ-rule) ≤ E(Ngtcp), where µ-rule denotes the
priority discipline that gives full service to the type (present in the system) with smallest
mean number of segments.

10

Proof. The proofs are applications of known results to the system with instantaneous transfer
time C(t), see Appendix A for more details. �

By a straightforward application of Little’s Law, we then obtain the following corollary:

Corollary 1 SRPT, LAS, FAIR, µ-rule minimize the mean transfer time of flows in each of the
settings described in Proposition 2.

Remark 2 (On the necessity of absence of segment losses and reordering) These assump-
tions are required to establish the optimality results of Proposition 2. To explain this, consider the
case of SRPT and that at a given time there are two flows, one with R1(t) = 1 and the other one
R2(t) = 2. SRPT will schedule flow 1, but if this segment is lost or reordered, flow 2 might receive
the ack’s earlier and as a consequence finish its transmission earlier. This would imply that SRPT
is not optimal in the sample-path sense as stated in Proposition 2. For LAS we can construct sim-
ilar counterexamples. Regarding FAIR, if there are losses or reordering it is not possible to predict
exactly which flow will finish next. As a consequence, it will no longer hold that FAIR reduces the
transmission time of all flows. Nevertheless, the results of Section 6 indicate that in the presence
of segment reordering and losses, the performance gain of SRPT, LAS and FAIR with respect to tcp
is considerable.

5 On the technical conditions

This section presents a discussion on the impact of various of the conditions mentioned in Propo-
sitions 1 and 2, namely, (i) schedulability of traffic, (ii) unbounded buffers, (iii) size of segments
and (iv) absence of segment losses and reordering.
(i) Schedulability of traffic. The possibility to schedule transmission queues only arises when several
queues sharing the same route are non-empty at the same time. In order to obtain an idea of the
amount of traffic that satisfies this assumption, we have analyzed thirty minutes of TCP/IPv4
traffic captured from Seattle to Chicago in March 2014 on an OC192 backbone link of a Tier1
ISP [1]. Since it is not possible to infer the state of a TCP transmission queue in the Internet, we
approximate the number of non-empty queues by the number of active flows. A flow is considered
active from the time of its first data segment until the time of its last one, and we say that two
flows compete on a route if their activity period overlap. Table 1 summarizes our results, where we
represent the number of routes that have competing flows, the total number of competing flows,
and the total data volume carried by competing flows. The main conclusion is that even though

Table 1: Proportion of schedulable traffic

Total Shared/Competing Ratio

Routes (number) 1788796 102981 5.7%

Flows (number) 5155554 937033 18.1%

Flows (volumes in KB) 261769672 152530580 58.2%

only 18.1% of the flows compete, they carry 58.2% of the total data volume. This illustrates that,

11

in addition to applications mentioned in the introduction, the transmission of big data files can be
a domain of interest for our scheme, and in particular we can think of cloud deployment, database
replication and distributed analysis as considered in [13].
(ii) Unbounded buffers. On the sender side, infinite buffers are only necessary for low priority
queues and can be emulated by a blocking call on the corresponding socket. Thus, if low priority
applications are able to wait like in the case of file transfers, we can consider that the sender
buffer is infinite. On the receiver side, it is reasonable to consider that the buffer is infinite when
congestion window is always less than the receiver window. The latter naturally happens when
the congestion is in the network and not on the receiving host. For instance, the approach of [29],
in which the receiver’s window is dynamically adjusted, would ensure that the receiver window is
always larger than the congestion window.
(iii) Size of segments. In Remark 1 we explained that it was possible to handle different segment
sizes at the price of adding a layer of complexity to our scheme. Using the publicly available
statistics from CAIDA [3], in Figure 3 we depict the cumulative distribution function of TCP/IPv4
segment sizes during years 2002 and 2014. We observe that most of the segments correspond to

0 200 400 600 800 1000 1200 1400 1600
Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

u
ti

o
n
 o

f
se

g
m

e
n
t

si
ze Ethernet V2

PPPoE

GRE+IPsec

X.25 / minimal MTU

Header + options

Header

2002
2014

Figure 3: Distribution of TCP/IPv4 segment sizes in 2002 and in 2014 on all probing points of
CAIDA

a Maximum Transmission Unit (MTU) of an Internet Technology, and that at least 60% of data
segments are full-sized segments.
(iv) Absence of segment losses and reordering. These assumption was needed in order the opti-
mality results of Proposition 2 to hold. In the presence of segments losses and reordering, it is
not possible to prove any optimality result, but we nevertheless expect that gtcp can provide an
important performance gain over tcp. We also note that if ECN [19] were deployed, the optimality
results of Proposition 2 would hold even with losses. From the losses point of view, the worst-case
scenario is the loss of the last ack for a flow. In such a case, a server would detect the loss with
the rto event and all the data sent up to this event would not have been from a priority flow.

12

6 Implementation and Experimental Results

We present an implementation of gtcp along with experimental results for different scheduling
policies.

6.1 SCHED TCP, an implementation of gtcp

A congestion control algorithm can be implemented either by relying on an existing Transport
protocol or by deploying a new one (as a version of TCP for example). From an implementation
point of view, the easiest way to obtain a congestion control gtcp that mimics Algorithm 1 of Section
3 is to maintain as many active connections as tcp would have, letting each of these connections use
tcp congestion control. In turn, the latter guarantees that we can replicate the event generation
of tcp, and we can thus obtain V gtcp(t) = V tcp(t), ∀t. The shared scheduling layer of gtcp can
be deployed on top of these tcp connections as an intermediate layer between applications and
connections. This approach follows the current trend in Transport protocol design [16], which we
already mentioned in Section 2.

App App

SCHED_TCP

Algo 4

TCP TCP

Fair

1 n

1 n

i
App

iTCP

LAS
SRPT

π V
iq

Figure 4: SCHED TCP implementation with n applications and n TCP connections.

The implementation of gtcp used for experiments is a scheduling layer between applications
and legacy TCP connections illustrated by Figure 4. This user space program is coded in C on
Linux 3.2 and referred to as SCHED TCP.

SCHED TCP distributes application flows among TCP connections at the sender side and re-
arranges them at the receiver’s side. The scheduling component π is in charge of selecting the
prioritized flow, while the main component encapsulates data in a scheduling header that identifies
the selected flow and forward them to TCP. Algorithm 4 is an implemented solution inspired
from Algorithm 1 and 2, where the schedule function refers to the scheduling policy π being
implemented. When a TCP connection is ready to accept new data in its sending buffer, it checks
the state of its virtual queue and chooses the highest priority data flow depending on the scheduling
policy π. In the state depicted by Figure 4, the connection TCP1 has space in its sending buffer

13

and is thus ready to accept new data coming from the application chosen by the scheduling policy
π. The schedule function of Algorithm 4 implements tcp, SRPT, LAS and FAIR policies described
in Section 4.3.

Algorithm 4 On connection ready(i)

if qvi > 0 then
j, s′ ⇐ schedule() // implements π
P s

′
j ⇐ sched head(j, s′) | data()

enqueue(i,P s
′
j) // equivalent to sens,s

′

i,j

qvi ⇐ qvi −mss // qj ⇐ qj −mss
end if

Compared to the theoretical behavior of gtcp, SCHED TCP has some limitations due to the
use of legacy TCP connections. Since transmission credit is managed by TCP, it is not possible to
preempt a low priority segment once it has been queued in the socket i.-e. parts of transmission
buffers are not shared among flows. More specifically, the scheduling discipline π of SCHED TCP

can choose the amount of data given to TCP connections while gtcp allows to choose the exact
segment sent on the network. Despite this difference, the following section shows that SCHED TCP

provides a significant performance gain over tcp.

6.2 Experimental Results and comparison of policies

In this sub-section we present measurements done on a real network with SCHED TCP deployed on a
origin-destination pair consisting of two desktop computers (see Figure 5). The origin is located in
our research lab and the destination is in a home network with poor Internet connection (bandwidth
equivalent to 350kBps). We note that in a real network is impossible to compare the performance
of two protocols under the same traffic conditions. In order to counteract the non-replicability of
the experiments, we repeat each experiment 100 times and then take an average.

Internet

Client Server
Lab Gateway ISP Gateway

Data Flows

Figure 5: Testbed used for the first experiment.

Non-intrusiveness. In Figure 6 we depict the average throughput of flows for tcp and SRPT

policies. We generate three flows at predefined starting times and as explained above, we repeat
the experiment 100 times. In the top figure all three flows are handled by tcp, whereas in the
figure below SCHED TCP handles the flows long and short, and tcp handles the flow sample. Upon
arrival at t = 5s, SCHED TCP gives full priority to short, and as a consequence short finishes its
transmission around t = 11s. On the other hand, long finishes its transmission at around t = 25s
in both cases. The throughput obtained by sample at any time is similar in both cases, which
illustrates the non-intrusiveness of SCHED TCP.

14

0 5 10 15 20
Time (s)

0

50

100

150

200

250

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

(K
B

p
s)

Long Short Sample

0 5 10 15 20
Time (s)

0

50

100

150

200

250

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

(K
B

p
s)

Long Short Sample

Figure 6: Average throughput of 2 flows scheduled with tcp (top) and with SRPT (bottom) that
compete with 1 sample flow with tcp policy.

Performance of size-based disciplines. In order to compare the performance of the scheduling
policies of Section 4.3, we now consider a more realistic traffic scenario experimented on the
production network of our lab (still a real network, but less bandwidth limitations). New flows
are generated according to a Poisson process of rate λ. The flow size is assumed to follow a
Pareto distribution, that is, if S denotes the size of a flow, we consider that P(S > x) = 1

(1+cx)α ,
∀x ≥ 0. Pareto distribution is of DHR type, and has been commonly used to describe the file
size distribution on the Internet. We set α = 3 and c = 10−7, which gives an average file size
E(S) = 5MB. The capacity of the link is C = 12MBps, and the segment size 1448B. The value of

λ is obtained by fixing the overall load in the system to 0.9, that is, λE(S)·1448
C = 0.9. The results

we report come from 100 independent experiments.
Figure 7 shows the distribution of the number of active connections. We observe that SRPT

and FAIR minimize the number of active connections, and that even though LAS is better than
tcp, its performance is worse that than SRPT and FAIR. The latter shows that the fact of being
size-aware, gives a significant advantage to both SRPT and FAIR.

Figure 8 shows the distribution of transfer time per flow. As in the case of the number
of connections, size-aware policies SRPT and FAIR provide a significant performance gain. It is
noteworthy to mention that SRPT and FAIR outperform LAS and tcp regardless of the file transfer
duration. We also see that LAS improves the transfer time of short flows. However, for flows that
last more than 6 seconds, LAS is less efficient than tcp. This is expected since LAS gives priority to
new flows at the expense of older ones.

In Figure 9 we depict the transfer time for every simulated flow. A dot in (x, y) means that
a flow of size x has finished its transfer at time y. We observe that as the flow size increases, the

15

0 2 4 6 8 10 12 14

Number of application flows, N

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

u
ti

o
n

tcp

SRPT

LAS

FAIR

Figure 7: Distribution of the number of active connections (regardless of size) with tcp, SRPT, LAS
and FAIR policies.

0 2 4 6 8 10

Transfer time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

u
ti

o
n

tcp

SRPT

LAS

FAIR

Figure 8: Distribution of flow transfer time with different scheduling policies.

dispersion of the transfer time increases under LAS and tcp, and that the dispersion stays much
smaller under SRPT and FAIR. This means that size-aware are not only better in terms of transfer
time, but that they also increase the predictability of the performance, that is, all flows of the same
size will have a similar transfer time.

Table 2 shows various statistics on the transfer time. Taking tcp as a reference, we show
the percentage of flows that finish faster and slower. We see that with SRPT and FAIR, more than
88% of the flows finish their transfer earlier than with tcp, and that only 3% of the flows do finish
later. LAS reduces the transfer time for nearly 60% of the flows, whereas the performance is worse
for 25% of the flows. We also give the average gain and loss, which refer to the average reduction
(increase) of the transfer time among flows that finish earlier (later). The overall conclusion is that
SRPT and FAIR provide a similar performance gain, and that being size-aware provides a significant
advantage to both SRPT and FAIR.

16

Figure 9: Transfer time in seconds against flow size in MB. A dot in (x, y) means that a flow of
size x has finished its transfer at time y.

Table 2: Statistics on transfer time of different scheduling policies.

Faster Slower Equal Gain Loss

LAS 61% 25.6% 13.2% -0.57s +314ms

SRPT 88.8% 3.2% 8% -1.11s +28ms

FAIR 89.6% 2.4% 7.9% -1.13s +33ms

7 Conclusions and future work

The main objective of this paper is to show that the congestion control and scheduling features
of TCP can be efficiently decoupled. We have introduced gtcp, a new protocol that permits to
implement any scheduling policy among the flows sharing any given route, while preserving the
overall impact of these flows on the network. The experiments with SCHED TCP on a real network
with have shown that the performance gain can be significant, and that this gain comes at no cost
for other flows.

We have focused on size-based scheduling disciplines. This choice allowed us to derive opti-
mality results for gtcp, but the scheduler of gtcp need not be restricted to this particular class of
policies. For instance, one could consider giving priority to a certain type of traffic, like interactive
traffic, web, email or Skype, over the rest. More generally, the end user could define his own
scheduler π, aiming at maximizing his own particular notion of quality-of-service.

SCHED TCP could be incrementally deployed, improving the performance of the flows of any
given route, and without harming the performance of any other flow on the network. It could be

17

implemented on the end-hosts, or between two proxies within the network in order to aggregate
traffic.

References

[1] The CAIDA UCSD anonymized internet traces 2014, equinix-chicago, 03-20-2014.
”http://www.caida.org/data/passive/passive 2014 dataset.xml”.

[2] Chromebook. http://en.wikipedia.org/wiki/Chromebook.

[3] The web site of the cooperative association for internet data analysis (caida).
http://www.caida.org/.

[4] M. Handley ands O. Bonaventure A. Ford, C. Raiciu. TCP extensions for multipath operation
with multiple addresses. RFC6824, January 2014.

[5] S. Aalto and U. Ayesta. SRPT applied to bandwidth-sharing networks. Annals of Operations
Research, 170:3–19, 2009.

[6] R. Adams. Active queue management: A survey. Communications Surveys Tutorials, IEEE,
15(3):1425–1476, Third 2013.

[7] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s initial window. RFC3390, October
2002.

[8] M. Allman and V. Paxson. TCP congestion control. RFC5681, 2009.

[9] K.E. Avrachenkov, U. Ayesta, P. Brown, and E. Nyberg. Differentiation between short and
long TCP flows: Predictability of the response time. In Proceedings of INFOCOM, 2004.

[10] E. Biersack, B. Schroeder, and G. Urvoy-Keller. Scheduling in practice. SIGMETRICS
Perform. Eval. Rev., 34(4):21–28, March 2007.

[11] S. Blake, D. BlaD. Black. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for
differentiated services. RFC2475, February 1998.

[12] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. Performance enhancing proxies
intended to mitigate link-related degradations. RFC 3135 (Request For Comments, 2001.

[13] M. Chowdhury, M. Zaharia, J. Ma, M.J. Jordan, and I. Stoica. Managing data transfers in
computer clusters with orchestra. SIGCOMM Comput. Commun. Rev., 41(4):98–109, August
2011.

[14] M. Crovella, M. Taqqu, and A. Bestavros. A practical guide to heavy tails. chapter Heavy-
tailed Probability Distributions in the World Wide Web, pages 3–25. Birkhauser Boston Inc.,
Cambridge, MA, USA, 1998.

[15] N. Dukkipati, M. Mathis, Y. Cheng, and M. Ghobadi. Proportional rate reduction for TCP.
In IMC, pages 155–170, 2011.

18

[16] B.Ford et al. Breaking up the transport logjam. In HOTNETS’08.

[17] M. Saverio et al. TCP westwood: Bandwidth estimation for enhanced transport over wireless
links. In ACM MOBICOM 2001.

[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext transfer protocol – http/1.1. RFC 2616 (Request For Comments, 1999.

[19] S. Floyd. TCP and explicit congestion notification. ACM Computer Communication Review,
24(5):10–23, 1994.

[20] S. Floyd and T. Henderson. The newreno modification to TCP’s fast recovery algorithm.
RFC2582, April 1999.

[21] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An extension to the selective acknowl-
edgement (sack) option for tcp. RFC2883, July 2000.

[22] E. Friedman and S. Henderson. Fairness and efficiency in processor sharing protocols to
minimize sojourn times. Proceedings of ACM SIGMETRICS, pages 229–337, 2003.

[23] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly high-speed TCP variant. Operating
Systems Review, 42(5):64–74, 2008.

[24] L. Massoulié and J. Roberts. Arguments in favour of admission control for tcp flows. In
Proceedings of ITC-19, pages 33–44, 1999.

[25] W. Noureddine and F. Tobagi. Improving the performance of interactive TCP applications
using service differentiation. In Proceedings of IEEE INFOCOM, pages 31–40, 2002.

[26] V. Padmanabhan and R. Katz. TCP fast start: A technique for speed-ing up web transfers.
In Proceedings of IEEE GLOBECOM, 1998.

[27] I. Rai, G. Urvoy-Keller, and E. Biersack. LAS scheduling approach to avoid bandwidth
hogging in heterogeneous TCP networks. In Proceedings of IEEE HSNMC, 2004.

[28] K.K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion Notification
(ECN) to IP. RFC3168, September 2001.

[29] P. Ravis, J. Manish, and C. Dovrolis. Socket buffer auto-sizing for high-performance data
transfers. J. of Grid Computing, 1:361–376, 2003.

[30] R. Righter and J.G. Shanthikumar. Scheduling multiclass single server queueing systems to
stochastically maximize the number of successful departures. PEIS, 3:323–334, 1989.

[31] F. Schneider, S. Agarwal, T. Alpcan, and A. Feldmann. The new web: Characterizing ajax
traffic. volume 4979 of Lecture Notes in Computer Science, pages 31–40. Springer Berlin,
2008.

[32] L.E. Schrage. A proof of the optimality of the shortest remaining processing time discipline.
Operations Research, 16(3):687–690, 1968.

19

[33] B. Schroeder and M. Harchol-Balter. Web servers under overload: How scheduling can help.
In 18th ITC 2003, 2003.

[34] H. Sivakumar, S. Bailey, and R. L. Grossman. Psockets: The case for application-level network
striping for data intensive applications using high speed wide area networks. In Proceedings
of the 2000 ACM/IEEE Conference on Supercomputing, 2000.

[35] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP approach for high-speed
and long distance networks. In Proceedings of IEEE INFOCOM, 2006.

[36] I.M. Verloop, S.C. Borst, and R. Núñez-Queija. Stability of size-based scheduling disciplines
in resource-sharing networks. Performance Evaluation, 62:247–262, 2005.

[37] G. Weiss. A tutorial in stochastic scheduling. In J.K. Lenstra P. Chretienne, E.G. Coffman
and Z. Liu, editors, Scheduling Theory and Its Applications. Wiley, 1995.

20

Appendix A: Proof of Proposition 2

The proofs are applications of known results to the modified system with instantaneous transfer
time C(t), and we provide a sketch. To be specific let us consider the case of SRPT. Since SRPT is size-
aware, the scheduler has precise information of how many segments each flow needs to transmit
in total. Let us assume that gtcp implements a scheduler π, and let Rgtcp(t) = (Rgtcpn (t);n ∈
{1, 2, . . .}) denote the ordered vector of unsent segments at time t, with the first element Rgtcp1 (t)
being the largest number of unsent segments, and let Rgtcp(t) denote the total number of unsent
segments at time t. Since the total number of sent segments V gtcp(t) = V tcp(t) is independent of
the scheduling discipline π deployed by gtcp, it follows directly that the total number of unsent
segments Rgtcp(t) = Rtcp(t) is also independent of π.

We can now invoke [5, Proposition 1], which holds for arbitrary capacity functions C(t),
to show that SRPT preserves over time a relation on the cumulative remaining amount of unsent
segments. We have that for any π that gtcp may implement, and k ∈ {1, 2, . . .}

∞∑
n=k

RSRPTn (t) ≤
∞∑
n=k

Rgtcpn (t). (1)

We can now give a direct argument to show the optimality of SRPT. Let us assume thatNgtcp(t) = n.
Then, by (1) we have

∑∞
j=n+1R

SRPT
j (t) ≤

∑∞
j=n+1R

gtcp
j (t) = 0, implying that NSRPT(t) ≤ n =

Ngtcp(t).
The proof of LAS is a direct adaptation of [30, Theorem 2.1]. The DHR assumption intuitively

implies that the more service a flow receives, the larger its expected remaining service time is. This
explains why the policy LAS is optimal, since by serving flows that have receive less amount of
service, the scheduler “guesses” correctly which flow is more likely to finish the transmission earlier.
The proof in [30, Theorem 2.1] uses an interchange argument to show that any policy that does
not follow LAS in a decision epoch is necessarily sub-optimal.

The result of FAIR is by construction, and is a direct application of [22]. Under FAIR all flows
will finish their transmission earlier than what they would under tcp, except the flow that transmits
the last segment before an inactivity period which will finish at exactly the same moment. To see
this we observe that under FAIR, the selected flow will transmit at much higher rate than under tcp.
In fact, under FAIR, the selected flow gets to transmit in all the next available transmission epochs
until it finishes the transmission. It is then trivial to observe that all flows will finish transmission
earlier than what they would under tcp. An exception is the last flow, when RFAIR(t) = 1, this
implies that there is only one flow active, and we then necessarily have Rtcp(t) = 1. This last flow
will finish its transmission exactly at the same time under FAIR and tcp.

21

