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A large range of physical problems containing rotating symmetry exhibit
azimuthal waves, from electromagnetic waves in nano photonics crystal to
seismic waves in giant stars. When this symmetry is broken, clockwise and
counter-clockwise waves are split into two distinct modes which can become
unstable. This paper focuses on a theoretical study of symmetry breaking
in annular cavities containing N flames prone to azimuthal thermo-acoustic
instabilities. A general dispersion relation for not perfectly axisymmetric cav-
ities is obtained and analytically solved when coupling factors are small. It
provides an explicit expression of the frequencies and growth rates of all az-
imuthal modes of the configuration. This analytical study unveils two param-
eters affecting the stability of the mode: (1) a coupling strength correspond-
ing to a mean flame effect and (2) a splitting strength due to the symmetry
breaking when flames are different. This theory has been validated using a
3D Helmholtz solver and a good agreement is found. When only two types
of flames are introduced in the annular cavity, the splitting strength is found
to depend independently on two parameters: the difference between the two
burner types and the pattern used to distribute the flames along the az-
imuthal direction. To first-order, this theory suggests that the most stable
configuration is obtained for perfectly axisymmetric configuration. Therefore,
breaking symmetry by mixing different flames cannot improve the stability
of the annular combustor independently of the flame distribution pattern.
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Nomenclature

αi Normalized abscissa of the ith flame
ǫ Wavenumber perturbation
γ(±2p) ±2pth Fourier coefficient of the FTF distribution
Γi Coupling parameter of the ith burner
λ Acoustic wavelength
K Reduced splitting strength
S0 Splitting strength
ω Angular frequency
ρ0 Mean density of the hot gas
ρ0u Mean density of the cold gas
Σ0 Coupling strength
τi FTF time-delay of the ith burner
θ Azimuthal angle in the annular cavity
c0 Mean sound speed in the hot gas
c0u Mean sound speed in the cold gas
f complex frequency
k = ω/c0 Wavenumber
Lc and Rc Half perimeter and radius of the annular chamber
Li Length of the ith burner
N Number of burners
ni FTF amplitude of the ith burner
p Azimuthal mode order
p′i Pressure fluctuations in the annular cavity
p′b,i Pressure fluctuations in the ith burner

q± = p′ ± ρ0c0u′ Acoustic propagating waves
Ri Propagation matrix of the ith annular sector
Sc Cross section of the annular chamber
Si Section of the ith burner
Ti Interaction matrix
u′
i Azimuthal velocity fluctuations in the annular cavity

w′

b,i Axial velocity fluctuations in the ith burner
z Axial coordinate in the burners
Zi Upstream impedance of the ith burner
Ztr Translated or equivalent impedance of the burner and flame
ANR Annular Network Reduction
ATACAMAC Analytical Tool to Analyze and Control Azimuthal Mode in Annular

Combustor
FTF Flame Transfer Function

1. Introduction

A wide range of physical problems, from nano photonics crystal (Borisnika 2006) and
molecules (Creighton 1982) to giant stars (Lavely 1983), take place in torus or disks: they
contain rotating symmetries and can therefore exhibit azimuthal/transverse oscillations
such as electromagnetic waves (Pang et al. 2007), acoustic waves (Krebs et al. 2002;
Noiray et al. 2011; Parmentier et al. 2012; Bauerheim et al. 2014b), surface waves (Feng
& Sethna 1989; Simonelli & Gollub 1989), magneto static spin-waves† (Hoffmann et al.

† Spin waves are propagating disturbances in the ordering of magnetic materials.
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Figure 1. a) Sketch of a configuration with rotating symmetries (top) and its associated spec-
trum (bottom). Two waves (clockwise (CW) and counter-clockwise (CCW)) can exist and have
the same frequency f0: the mode is ”degenerate”. When the rotating symmetry is broken (b),
the degenerate mode at f0 is split into two distinct waves with different yet close frequencies f1
and f2 (bottom).

2007; Guslienko et al. 2008; Barman et al. 2010; Kammerer et al. 2011) or solid vi-
brations (Creighton 1982; Perrin & Charnley 1973; Lin & Parker 2000a,b; Kumar &
Krousgrill 2012). When the rotating symmetry is perfect, these modes occur in doubly-
degenerate pairs with two independent oscillations (a clockwise and a counter-clockwise
waves) at the same frequency (a, in figure 1, left). However, when systems with rotational
symmetry are modified either in their geometry or by spatially varying their properties
or their boundary conditions, degenerate pairs can split into two distinct modes with
different yet close frequencies (b, in figure 1, right). In some applications, the splitting
frequency ∆f can be fairly large and therefore cannot be ignored (e.g. ∆f = 0.25 GHz
for spin-wave modes in small ferromagnetic elements (Hoffmann et al. 2007)).
In many applications, this splitting can lead to catastrophic effects, requiring stud-

ies to understand their underlying nature and methods to suppress them. For instance,
photonics crystal (i.e. devices where several electromagnetically micro cavities are cou-
pled with a specific pattern to form ”photon molecules”) with high quality-factor are
essential for the development of the next generation of optoelectronic components but
undesired symmetry breaking and associated non-degenerate modes reduce their overall
performances. To tackle this problem, Borisnika (2006) proposed arrangement patterns
with enhanced symmetry characteristics which reduce effects of non-degenerate modes
and improve the quality factors of the devices.
In applications based on magnetic disks which exhibit spin-waves (Hoffmann et al.

2007; Guslienko et al. 2008; Barman et al. 2010; Kammerer et al. 2011), theoretical
models show that the splitting is a consequence of the interaction of the azimuthal mode
with the vortex core gyrotropic motion. Both simulations and experiments have confirmed
that removing the vortex core from the disk suppresses mode splitting (Hoffmann et al.
2007). This suggests that theory, simulations or experiments can unveil the splitting
origins and offer methods to suppress them.
In configurations where symmetry breaking is well described theoretically (Mazzei et al.

2007), scientists can willingly perform symmetry breaking to analyze the phenomenon
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responsible for this splitting. For example, in ultra-high quality factor whispering gallery
mode resonators (WGMs), a small imperfection (similar to the case b in figure 1) or a
deposited particle can scatter light from one of the two cavity modes (counter-clockwise
for instance) into free space as well as in the opposite direction (i.e. clockwise). Scientists
can then exploit this splitting to accurately determine particle sizes (Mazzei et al. 2007;
Kippenberg 2010). A similar methodology is used in helioseismology (Lavely 1983; Koso-
vichev 1999; Tripathy et al. 2000) where the internal solar structure and dynamics can
be inferred from observed frequencies which can be split either by rotation, asphericity
or the magnetic field of the star.
In the particular field of fluid mechanics, symmetry breaking phenomena are less stud-

ied due to complex geometries, high non-linear levels and complex physics. In simple
configurations (square and quasi-square channels), such a splitting effect has been stud-
ied for surface waves (Feng & Sethna 1989; Simonelli & Gollub 1989). Results show that
the symmetry of the configuration has dramatic effects on the dynamics. The degenerate
case yields no time-dependent patterns. However, setups where the two components are
separated in frequency, even by a small amount (about 1%), can lead to chaotic states (Si-
monelli & Gollub 1989). Similarly Davey et al. (Davey & Salwen 1994) investigate the
linear stability of the first circumferential mode in both a circular and an elliptic pipe.
They show analytically that the circular problem has a double degenerate eigenvalue f0
while the ellipticity of the latter configuration splits the doublets into two distinct eigen-
values f0±∆f/2. The imaginary part of the splitting frequency ∆f is non-zero and thus
the ellipticity of the cross-sectional area always makes the flow less stable. This splitting
mechanism induced by the symmetry reduction (from the axisymmetry group S1 of the
circular problem to the mirror symmetry group Z2 associated to the elliptic cross-section)
is briefly discussed in its fundamental mathematical aspects in (Guckenheimer & Ma-
halov 1992) and applied to the instability of a vortex filament in a non-circular cylinder.
Such a symmetry reduction also plays a crucial role on the oscillations of droplets due
to a-sphericity (Cummings & Blackburn 1991) and/or Coriolis forces if the droplet is
rotating (Busse 1984).
Recently, symmetry breaking has been also investigated in complex annular gas tur-

bines (figure 2) (Noiray et al. 2011; Parmentier et al. 2012) which exhibit azimuthal
acoustic waves produced by thermo-acoustic instabilities (O’Connor & Lieuwen 2014 -
under review). Such combustion instabilities remain a severe problem in the development
of modern gas turbines. Lean premixed combustors, designed to reduce significantly nitric
oxides emissions are especially prone to these oscillations which can lead to vibrations
and structural damage (Lieuwen & Yang 2005; Schuermans et al. 2003; Krebs et al. 2002).
These unsteady phenomena come from the interaction between acoustics and heat release
fluctuations which act as a volume acoustic source (Strahle 1972). In annular combustion
chambers (figure 2), these instabilities often take the form of azimuthal modes (Schuer-
mans et al. 2003; Krebs et al. 2002; Parmentier et al. 2012; Bauerheim et al. 2014b;
Worth & Dawson 2013a,b).

In real engines, usually, identical burners are distributed regularly along the azimuthal
direction (figure 2). Therefore, perfectly axisymmetric configurations have been inten-
sively investigated using theoretical (Parmentier et al. 2012; Bauerheim et al. 2014b;
Stow & Dowling 2001; Pankiewitz & Sattelmayer 2003; Stow & Dowling 2003), acoustic
and LES tools (Evesque & Polifke 2002; Kopitz et al. 2005; Staffelbach et al. 2009; Wolf
et al. 2012) and more rarely experiments (Krebs et al. 2002; Worth & Dawson 2013b,a;
Bourgouin et al. 2013). Annular chambers exhibit specific azimuthal modes which can be
standing or spinning in the azimuthal direction (Evesque et al. 2003; Sensiau et al. 2009).
Azimuthal modes are often ”degenerate”: two modes are found at the same frequency
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Figure 2. a) A typical 3D configuration of an industrial annular combustion chamber equipped
with N = 24 burners with or without CBO and b) Network model of the annular chamber
( ) with N = 24 burners. The annular plenum ( ) is removed for the sake of simplicity.

(two counter-rotating spinning modes for example). These two modes can combine and
switch, leading to combustors which exhibit standing, spinning or mixed modes for vari-
ous times, changing from one mode to another one at random instants. The simultaneous
existence of these modes was observed numerically (Wolf et al. 2012) and experimentally
in laboratory setups (Worth & Dawson 2013b; Bourgouin et al. 2013) and even in real gas
turbines (Krebs et al. 2002). Mode switching has been postulated to be due to random
turbulent fluctuations (Noiray & Schuermans 2013). Azimuthal modes are not necessarily
degenerate leading to a more complicated situation where the configuration is strongly
affected by symmetry modifications as shown by studies of sound produced by bells
(Perrin & Charnley 1973) where non-degenerate but very close azimuthal modes (also
called ”non-degenerate singlets”) lead to ”warble”, an undesired modulation due to the
coupling of two modes with different but very close frequencies.
The effect of asymmetry on the eigenfrequencies and nature of azimuthal modes in an-

nular chambers is still an open question. Earlier work of Oefelein & Yang (1993) focused
on symmetry breaking using baffles to prevent combustion instabilities in the F-1 rocket
engines. They suggested that asymmetry can be introduced to control unstable modes
using passive techniques. Stow & Dowling (2003) applied azimuthal variations using
Helmholtz resonators on an annular academical test bench. Similarly, Berenbrink & Hoff-
mann (2001) and Krueger et al. (2000) (reviewed by Culick & Kuentzmann (2006)) broke
the symmetry of an annular engine by using CBOs (Cylindrical Burner Outlet, figure 2-a,
bottom) to modify the time-delay τi of some of the 24 flames and control instabilities in a
N = 24 burners industrial combustor. They varied the number of CBOs installed among
the 24 burners showing that adding CBOs improved stability. However, it was not clear
if the stabilization was due to the CBO devices rather than, as argued by the authors, to
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symmetry breaking in this particular case. Lately, Moeck et al. (2010) and Gelbert et al.
(2012) carried out an annular Rijke experiment with heating grids acting like flames.
They introduced circumferential variations through asymmetric power distributions of
the grids to modify the azimuthal modes behavior and noticed that the staging pattern
can split degenerate azimuthal modes (doublets) into non-degenerate pairs (singlets) as
suggested in (Perrin & Charnley 1973) for bells if the system’s symmetry is changed. Re-
cently, experimental (Worth & Dawson 2013b,a) and theoretical (Bauerheim
et al. 2014a) studies have shown that the azimuthal flow itself can break the
rotating symmetry. This flow gyration can be generated by the compressor
or diffuser outlet, by the swirlers or even by effusive plates in modern gas
turbines. Worth & Dawson (2013a,b) have shown that changing the rotating
direction of some swirlers can modify the stability and the structure of the
observed acoustic mode. This mean flow effect has been analytically unveiled
by Bauerheim et al. (2014a) demonstrating that the mean azimuthal Mach
number is one parameter controlling the symmetry breaking affecting both
the stability and the mode nature.
A few theories consider the effect of asymmetry on the existence and nature of az-

imuthal modes (standing, spinning or mixed). Schuermans et al. (2006) suggest that
standing modes are observed for low amplitudes but that, at higher amplitudes, one of
the two rotating modes eventually dominates. However, Sensiau et al. (2009) have shown
that even in the linear regime, any change in symmetry can lead to the appearance of
one rotating mode dominating the other one: when the symmetry of the configuration
is broken, the standing azimuthal mode is changed into two counter-rotating azimuthal
modes with different growth rates so that one of them eventually dominates the other.
Noiray et al. (2011) have proved that the 2pth Fourier coefficient of the heat release,
temperature or even acoustic losses azimuthal distribution (where p is the order of the
azimuthal mode considered) strongly impacts the frequency as well as the mode nature
on an annular rig. Dawson et al. (Worth & Dawson 2013b,a) have also shown that the
modes nature can result from the interaction with the mean flow by breaking symmetry
thanks to clockwise/anti-clockwise swirlers: they observed a strong correlation between
the bulk swirl direction and the direction of spin.
Noiray et al. (2011) used an analytical formulation to study the effect of asymmetry

on a annular rig with a circumferential distribution of heat release, temperature and
acoustic losses. However for the sake of simplicity, this annular rig was simplified and
contained no burner at all: no study was conducted on annular chambers connected to
burners, a configuration which is more realistic of real gas turbines but more difficult to
formulate analytically.
The present paper describes an analytical approach to investigate the effects of sym-

metry breaking on azimuthal modes in an annular chamber fed by N identical or non-
identical burners. This configuration called BC (Burner+Chamber, figure 3) allows the
investigation of asymmetry’s effect on eigenfrequencies and nature of circumferential
modes. The model is based on a network description (figure 2) of the combustion cham-
ber where only plane acoustic waves travel and interact with flames (Parmentier et al.
2012). It allows to take into account the effects of burners and of complex flame models
while providing a solution which remains almost fully analytical. This analytical formula-
tion reveals which parameters control the growth and the nature of the modes, something
which would be impossible with a numerical approach.
This paper is organized as follows: Section 2 briefly describes the principle of the

acoustic network model called ATACAMAC (”Analytical Tool to Analyze and Control
Azimuthal Modes in Annular Combustors”) and how an analytical dispersion relation
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Figure 3. BC configuration to study unstable modes in annular chambers

can be obtained in such a configuration (Parmentier et al. 2012). In Section 3, analytical
calculations of eigenfrequencies are presented for both an ”unperturbed” case (an annular
cavity without flames) and for a general non-symmetric BC configuration (figure 3).
Section 4 describes the test cases as well as the 3D Helmholtz solver used to validate the
ATACAMAC results. Two application cases are presented : an academic chamber with
N = 3 burners and a real configuration with N = 24 burners (figure 2). In Section 5,
ATACAMAC is applied to a BC configuration with N = 3 identical burners (Section 5.1)
and then N = 3 different burners (Section 5.2), highlighting the effect of circumferential
patterns on eigenfrequencies and modes nature. ATACAMAC results are systematically
compared to those provided by a 3D acoustic code solving the complete acoustic equations
in three dimensions in the low Mach number case (Nicoud et al. 2007; Silva et al. 2013;
Selle et al. 2006; Sensiau et al. 2009). Finally, Section 6 presents the effects of asymmetry
on instabilities in a N = 24 burners configuration typical of real engines. Results are
compared to observations made in real gas turbine engines (Berenbrink & Hoffmann
2001; Krueger et al. 2000).

2. A network model for a BC (Burner+Chamber) non-symmetric
configuration

2.1. Model description

This study focuses on a BC (Burners+Chamber) configuration where an annular chamber
is fed by N burners (figure 3). An impedance Z is imposed at the upstream end of each
burner. Mean density and sound speed are noted ρ0 and c0 in the annular chamber
and ρ0u and c0u for the unburnt mixture in the N burners. The perimeter and the cross
sectional area (perpendicular to the azimuthal direction) of the annular chamber
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Figure 4. 3D view of a BC configuration with N = 4 burners (left), zoom on the ith sector
(top right) and model of the whole BC configuration (bottom right) where Γi represents the
burner/chamber interaction (Parmentier et al. 2012)

are noted 2Lc = 2πRc and Sc respectively. The length and section of the ith burner are
Li and Si. The position along the annular cavity is given by the angle θ defining an
abscissa xc = Rcθ. The location of the flames is similar in all burners and is given by the
normalized abscissa α = zf,i/Li (figure 3).
This model corresponds to situations where pressure fluctuations in the combustion

chamber depend on the angle θ (or the azimuthal position x) but not on the axial direction
z in the chamber (they depend on the coordinate z only in the burners). This case can be
observed in combustors terminated by choked nozzles which acoustically behave almost
like a rigid wall (i.e. u′ = 0 under the low upstream Mach number assumption (Marble
& Candel 1977)). Since the chamber inlet is also close to a velocity node, modes which
have no variation along z can develop in the chamber, as shown by recent LES in real
engines (Wolf et al. 2009).
The model provides the analytical expression of eigenfrequencies for a general asym-

metric case for any mode order p and any number of burners N as well as general
rules on stability for annular combustors. Results on structure and nature of azimuthal
modes (spinning, standing or mixed) will be derived using this analytical study to show
how asymmetry can promote specific modes and control instabilities (Worth & Dawson
2013b,a; Moeck et al. 2010; Gelbert et al. 2012; Noiray et al. 2011).

2.2. Annular Network Reduction (ANR)

Network models which account for one annular cavity connected to N burners usually
require a large number of unknown variables (acoustic pressure and velocity in each net-
work tube) and a large matrix describing the system (typically a 2N -by-2N matrix). To
reduce the size of the system (i.e. a matrix of size 2-by-2, independent of the number N
of burners), the ANR (Annular Network Reduction) methodology proposed in (Bauer-
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Figure 5. ANR methodology: each sector is decomposed into a free propagation of azimuthal
waves (characteristic length 2Lc/N) and a compact burner/chamber interaction (characteristic
length a ≪ λ) modeled by the coupling parameter Γi

heim et al. 2014b) is applied: the full annular combustor is split into N sectors which
differ only via the burner/chamber junction (figures 4 and 5). Between each sector, the
propagation of azimuthal waves (along θ or x) can be modeled by a transfer matrix Ri

as proposed by Parmentier et al. (2012) (figure 5, propagation):
[

q+

q−

]

i+ 1
2

=
[
Ri

]
[

q+

q−

]

i

where
[
Ri

]
=

[
W 0
0 1

W

]

(2.1)

where q± = p′ ± ρ0c0u′, W = e2jkLc/N and the wavenumber k = ω/c0.
The area where the ith burner is connected to the annular chamber ( in figure 4,

top right) was investigated by O’Connor et al. (O’Connor & T.Lieuwen 2012; J.O’Connor
& T.Lieuwen 2012b,a) and can be assumed to be compact: a ≪ λ, where a = 2

√

Si/π
is the burner diameter and λ = 2Lc/p is the acoustic wavelength leading to the
compactness criterion p ≪ Lc

√

π/Sc ≃ 116. As shown in figure 6, using the equations
of acoustic propagation in the cold (0 < z < αLi) and hot (αLi < z < Li) parts of the
burner as well as the jump conditions through the ith flame (z = αLi), the effect of the
whole ith burner on the annular chamber can be obtained by a translated impedance
from z = 0 (impedance Z) to the burner/chamber junction at z = Li (impedance Ztr =

p′
b,i(z=Li)

ρ0c0w′
b,i

(z=Li)
) (Bauerheim et al. 2014b; Blimbaum et al. 2012):

Ztr =
FSk

1−α[jC
ku
α − Sku

α Z] + Ck
1−α[C

ku
α Z + jSku

α ]

FCk
1−α[jS

ku
α Z + Cku

α ] + Sk
1−α[jC

ku
α Z − Sku

α ]
(2.2)

where F = ρ0c0

ρ0
uc

0
u
(1 + nie

jωτi) and notations for sine and cosine functions are Cku
α =

cos(αkuLi), S
ku
α = sin(αkuLi), C

k
1−α = cos((1 − α)kLi), S

k
1−α = sin((1 − α)kLi) and

wavenumbers are k = ω/c0 and ku = ω/c0u. Note that the n − τ model can be re-
placed by more complex flame descriptions such as Flame Describing Func-
tions (Noiray et al. 2008) or transfer matrices (Polifke et al. 2001).

The jump conditions at the burner/chamber junction at null Mach number read (Dowl-
ing 1995; Davies 1988; Poinsot & Veynante 2011):

p′i+ 1
2

= p′i+1 = p′b,i(z = Li) (2.3)
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Figure 6. Equivalent impedance of the whole ith burner (which includes the ith active flame)
near the burner/chamber interaction zone (figure 5). The translated impedance Ztr at z = Li

takes into account the upstream impedance Z at z = 0, the propagation in the cold (0 < z < αLi)
and hot (αLi < z < Li) parts of the burner as well as the active flame effect via the Flame
Transfer Function (ni, τi)

u′

i+ 1
2

Sc + w′

b,i(z = Li)
︸ ︷︷ ︸

=

p′

i+1
2

ρ0c0Ztr

Si = u′

i+1Sc (2.4)

Consequently, a transfer matrix T ∗
i for the interaction part of figure 5 can be deduced:

[
p′

ρ0c0u′

]

i+1

=
[
T ∗
i

]
[

p′

ρ0c0u′

]

i+ 1
2

=

[
1 0

2jΓi 1

] [
p′

ρ0c0u′

]

i+ 1
2

(2.5)

where the coupling parameter Γi (Parmentier et al. 2012; Bauerheim et al. 2014b; Palies
2010; Schuller et al. 2012) (figure 5, burner/chamber interaction) is directly linked to the
equivalent admittance 1/Ztr of the whole ith burner:

Γi = − j

2

Si

ScZtr
(2.6)

When a velocity node (Z = ∞) or a pressure node (Z = 0) is imposed at the upstream
end of each burner and flames are located at the burner/chamber junction (α = 1), the
coupling parameters Γi reduce to (using (2.2) and (2.6)):

Γi =
1

2

Siρ
0c0

Scρ0uc
0
u

tan(kuLi)
(
1 + nie

jωτi
)
when Z = ∞ (2.7)

or Γi = −1

2

Siρ
0c0

Scρ0uc
0
u

cotan(kuLi)
(
1 + nie

jωτi
)
when Z = 0 (2.8)

where ku = ω
cu

and (ni, τi) are the interaction index and the time-delay of the FTF

for the ith flame (Crocco 1951). Note that the coupling term in equation (2.5) is
2jΓip

′

i+ 1
2

thus burners and flames located at a pressure node have no effect



Symmetry breaking of azimuthal thermo-acoustic modes 11

on the acoustic mode, except in specific situations where Γi take infinite
values. For instance, Γi → ∞ in equation (2.8) when the burner length Li goes
to zero. It corresponds to the Blimbaum’s exception case (Blimbaum et al.

2012) where the burner impedance attempts to force a pressure node at
the burner/chamber junction. These specific situations require 3D acoustic
considerations and are out of reach of this study: since Γi → ∞, the low
coupling factor assumption ‖Γi‖ ≪ 1 (further described in equation (3.3)) is
not satisfied meaning that no analytical solution can be provided.
Finally, equation (2.5) can be recast to relate characteristic waves q± = p′ ± ρ0c0u′

instead of primitive variables p′ and u′ leading to the scattering matrix Ti:
[

q+

q−

]

i+1

=
[
Ti

]
[

q+

q−

]

i+ 1
2

where
[
Ti

]
=

[
1 + jΓi jΓi

−jΓi 1− jΓi

]

(2.9)

The waves at both ends of the ith sector are connected by the Mi = TiRi scattering
matrix using (2.1) and (2.9) (figure 5):

[
q+

q−

]

i+1

=
[
Ti

]
[

q+

q−

]

i+ 1
2

=
[
Ti

] [
Ri

]

︸ ︷︷ ︸

Mi

[
q+

q−

]

i

(2.10)

Using the periodicity condition

[
q+

q−

]

N+1

=

[
q+

q−

]

1

and equation (2.10) leads to:

(
1∏

i=N

Mi

)[
q+

q−

]

1

=

[
q+

q−

]

1

(2.11)

The system defined by equation (2.11) has non-trivial solutions only if its determi-
nant is null. Therefore, the ANR methodology provides an implicit analytical dispersion
relation for the pulsation ω for a general non-symmetric BC configuration:

det

(
1∏

i=N

Mi − Id

)

= 0 (2.12)

where Id is the 2-by-2 identity matrix.

3. Analytical calculation of eigenfrequencies and mode structures

The analytical dispersion relation (equation 2.12) provides the frequencies and the
structure of the modes of the annular chamber. It allows to study symmetry breaking
by investigating the effects of the N burners responses (modelled by the N parameters
Γi, i ∈ [1, N ] defined by equation (2.6)) on the growth rate and the nature of azimuthal
modes. Several configurations are considered here (figure 7) to understand the effect of
symmetry breaking on combustion instabilities.

3.1. Unperturbed annular cavity (without burners and flames)

First, an annular chamber with no burner (i.e. Γi = 0, for all i ∈ [1, N ]) is studied as a
reference case (figure 7, top left). The sound speed field corresponds to a reactive case:
c = c0 in the annular chamber. The transfer matrix of each sector (equation (2.10))
reduces to Mi = Ri since Ti = Id: only azimuthal propagation occurs. Consequently
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Figure 7. Typical configurations: Unperturbed (top left), symmetric with identical burners (top
right), pseudo-symmetric configuration (bottom left) and the general non-symmetric configura-
tion (bottom right)

equation (2.11) reduces to:
[

WN 0
0 1

WN

] [
q+

q−

]

1

=

[
q+

q−

]

1

(3.1)

The dispersion relation is therefore WN = 1 where W = e2jkLc/N . The N solutions of
equation (3.1) are W0 = e2jpπ/N and correspond to real eigenfrequencies of the unper-
turbed problem:

kLc = pπ so that f =
pc0

2Lc
, for all p ∈ N (3.2)

As expected, equation (3.2) corresponds to a family of azimuthal modes where the first
one (p = 1) is the first azimuthal mode at frequency c0/2Lc which is the mode observed
in many practical cases. Equation (3.1) also provides the eigenvectors V associated to
the eigenfrequencies f given by equation (3.2). In this situation, the generated eigenspace
{V } is two-dimensional: all azimuthal modes are degenerate and can be either standing,
spinning or mixed. All modes are neutral since no acoustic dissipation is included (zero
growth rate: Im(f) = 0).

3.2. Non-symmetric BC configuration with active flames in the low-coupling limit

Using a combustor with non-identical burners is a promising approach for controlling
azimuthal modes (figure 7, bottom right). An asymptotic expansion of the dispersion
relation (equation (2.12)) can be used to study this case. Since all burners can be different,
all coupling parameters Γi (equation (2.6)) can be different. A fully analytical solution
can be formulated when the solution is ”close” to the unperturbed annular cavity case
of Section 3.1. This is obtained by assuming small coupling parameters Γi:

Γi ≪ 1, for all i ∈ [1, N ] (3.3)
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Under this assumption, a Taylor expansion of the transfer matrix of the whole system
(M =

∏1
i=N TiRi) at second order gives†:

M =

[

WN [1 + jΣ−Q(1)] +Q(W ) + o(Γ2
i ) j

∑N
i=1 Γi

(
1
W

)N−2i+2
+ o(Γi)

−j
∑N

i=1 ΓiW
N−2i+2 + o(Γi)

1
WN [1− jΣ−Q(1)] +Q( 1

W ) + o(Γ2
i )

]

(3.4)
where

{

Σ =
∑N

i=1 Γi

Q(x) =
∑N−1

i=1

∑N
j=i+1 ΓiΓjx

N−2(j−i)
(3.5)

and the Landau notation o(x) called ”little-o” is used to designate any quantity negligible
compared to x.
From equation (3.4), the dispersion relation at second order is:

det (M − Id) ≈ −W 2N − 2WN + 1

WN
− jΣ(W 2N − 1)

WN

+
N−1∑

i=1

N∑

j=i+1

ΓiΓj [W
2N −WN−2(j−i) −W 2(j−i) + 1] = 0 (3.6)

Equation (3.6) is a dispersion relation which involves terms (W = e2jkLc/N and
Γi(k)) depending on the wave number k = ω/c0. Under the low coupling assumption
(equation (3.3)), the wavenumber k is close to the wavenumber of the unperturbed
problem k0 = pπ/Lc (Section 3.1): k ≈ k0 + ǫ/Lc. A proper asymptotic expansion

of W± = e2jkLc/N = e2j(pπ+ǫ±)/N ≈ e2jpπ(1 + 2jǫ±/N) in terms of the wavenumber
perturbations ǫ+ and ǫ− gives:‡

W± = (1 + E±)W0 + o(E±) i.e. kLc = pπ + ǫ± or f± =
pc0

2Lc
+

c0

2πLc
ǫ± (3.7)

where W0 = e2jpπ/N is the solution of the unperturbed problem and corresponds to

kLc = pπ (i.e. f = pc0

2Lc
) where p is the mode order, E± = 2j ǫ±

N and j2 = −1.

The coupling parameters Γi also depend on the frequency and therefore on W± (or
ǫ±) and can be approximated by:

Γi(W ) ≈ Γi(W = W0)
︸ ︷︷ ︸

Γ0
i

+E±W0

(
∂Γi

∂W

)

W=W0
︸ ︷︷ ︸

Γ1
i

≈ Γ0
i +

2jǫ±W0

N
Γ1
i (3.8)

Using (3.7) and (3.8), a Taylor expansion of the terms W (ǫ±) and Γi(ǫ
±) in the dis-

persion relation (3.6) at second order (o(ǫ2) knowing that Γ0
i is of order of ǫ±)¶ gives:

A− 4Bǫ± + 4Cǫ±
2
= 0 (3.9)

† A first-order Taylor expansion of extra-diagonal terms which have no zero order term is
sufficient to compute a second-order dispersion relation of det(M − Id).

‡ The two components V + and V − of the azimuthal mode do not necessarily have the same
wavenumber perturbation ǫ±. Therefore the notation W± is used since the azimuthal propaga-
tion of waves W depends on the wavenumber perturbation ǫ±.

¶ The analytical resolution of the dispersion relation will lead to the solution ǫ± ∝ Γ0
i which

proves that Γ0
i is a first order term and Γ0

iΓ
0
j or Γ0

i ǫ
± are second order terms.
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where






A = −
[
W 2N

0 − 2WN
0 + 1

]
− jΣ0

[
W 2N

0 − 1
]

+
∑N−1

i=1

∑N
j=i+1 Γ

0
iΓ

0
j

[

W 2N
0 −W

N−2(j−i)
0 −W

2(j−i)
0 + 1

]

B = j
2 [W

2N
0 − 1]

[
1 + Σ1

N

]
− Σ0

2 [W 2N
0 + 1]

C = 1
N2

[(
N

N−2

)
W 2N

0 +
(
N+1
N−1

)]

(3.10)

where Σ0 =
∑N

i=1 Γ
0
i and Σ1 =

∑N
i=1 Γ

1
i , knowing that Γ±

i (ω) ≃ Γ0
i + 2jǫ±

N W0Γ
1
i (see

equation (3.8)).
From Section 3.1, WN

0 = 1 which leads to simplifications of coefficients A, B and C:






A = 4
N−1∑

i=1

N∑

j=i+1

Γ0
iΓ

0
j

[

sin

(
2pπ

N
(j − i)

)]2

B = −Σ0

C = 1

(3.11)

Eigenfrequencies are deduced from the quadratic equation equation (3.9):

ǫ± =
B ±

√
B2 −AC

2C
(3.12)

which leads to a simple expression for the wavenumber perturbations in the case of a
general non-symmetric BC configuration:

ǫ± = −1

2

(

Σ0 ±
√

Σ2
0 −A

)

(3.13)

where Σ0 =
∑N

i=1 Γ
0
i will be called the ”coupling strength” while A is the non-symmetric

part defined in equation (3.11) depending on the number of burners N and the mode
order p.
The term S0 =

√

Σ2
0 −A in equation (3.13) is called the ”splitting strength” because

it separates the two eigenvalues ǫ+ and ǫ−. It can be recast for simplification (see Ap-
pendix A) and highlights the key role of the 2pth complex Fourier coefficients γ(±2p) of
the azimuthal coupling factor distribution Γ0 = [Γ0

1, ...,Γ
0
N ]:

S2
0 = Σ2

0 −A =

N∑

i,j=1

Γ0
iΓ

0
jcos

(
4pπ

N
(j − i)

)

= γ(2p)× γ(−2p) (3.14)

where γ(k) =
∑N

i=1 Γ
0
i e

−j2kπi/N is the kth Fourier coefficient of the coupling factor
azimuthal distribution Γ0.

Equation (3.13) is a generalization of Parmentier et al. (2012) and Noiray et al. (2011)
results to an annular chamber connected by N burners with active flames. It shows that:
1) Stability of the N burners combustor is controlled to first order by the imaginary

part of the coupling strength Σ0 =
∑N

i=1 Γ
0
i . This coupling strength depends only on the

sum of the individual coupling parameters Γi, not on the pattern used to distribute these
burners when they differ.
2) The splitting strength S0 defined by equation (3.14) controls the nature of the

modes: if S0 = 0 modes are degenerate (i.e. ǫ+ = ǫ−) and if S0 6= 0, they are not.
Noiray et al. (2011) obtained a similar result where the mode was controlled by

γHR(2p), the 2pth Fourier coefficient of the heat-release distribution. Equation (3.14)
is a generalization of such a result: the present network model developed in this paper
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Figure 8. Toy-models to validate the ATACAMAC methodology. (a) Perfect annular chamber
with N = 3, (b) N = 24 cylindrical burners, (c) burner/chamber configuration

shows that the mode is controlled by the azimuthal distribution of the coupling parameter
Γ0
i which includes the active flame (n−τ model) but also by the geometry characteristics,

the upstream impedance Z of the burners as well as the density and temperature differ-
ences between cold and burnt gases. All these features can affect the asymmetry of the
system and therefore the stability: they cannot be neglected when studying combustion
instabilities in annular chambers.
A summary of this analytical method providing the frequencies and the stability map

of the pth azimuthal mode in a chamber with N burners is given in Appendix B.

4. Application to a simplified multi-burner annular chamber

Analytical expressions of eigenfrequencies (equation (3.13)) of azimuthal modes are
compared to results obtained with AVSP (Nicoud et al. 2007), a full 3D Helmholtz solver
for two cases:
• A simplified academic configuration with N = 3 burners (Section 5).
• A realistic case with N = 24 burners (Section 6).

4.1. Description of the configurations

The 3D geometries correspond to a BC setup with N = 3 or N = 24 burners (figure 8)
similar to figure 3 (physical and geometrical parameters are defined in table 1). The
burner/chamber interfaces are placed at z = 0 and the flames are on the burner side.
The flame width is equal to 2 mm which guarantees its compacity with respect to the
acoustic wave length. Boundary conditions correspond to impermeable walls everywhere
except at the upstream end of burners where an impedance Z = 0 (i.e. p′ = 0) is imposed
to mimic a connection to a large plenum. For the N = 3 burners configuration, two cases
are investigated (table 2): first with identical burners and then with two types of burners
with different time-delays τ1 and τ2. The interaction index of flames is set to the same
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CHAMBER

Half perimeter Lc 6.59 m
Section Sc 0.6 m2

BURNER

Number N 3 or 24 −
Length L0

i 0.6 m
Section Si 0.01 m2

FRESH GASES

Mean temperature T 0
u 700 K

Mean density ρ0u 9.79 kg/m3

Mean sound speed c0u 743 m/s

BURNT GASES

Mean temperature T 0 1800 K
Mean density ρ0 3.81 kg/m3

Mean sound speed c0 1191 m/s

FLAME PARAMETERS

Interaction index ni 1.0 −
Time-delay τi variable s

Table 1. Parameters used for numerical applications. They correspond to a typical large scale
industrial gas turbine.

NAME N CBO ASYMMETRY PATTERN

B3 C0 3 0 ◦ ◦ ◦
B3 C1 3 1 ◦ • ◦
B24 C0 24 0 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

B24 C20 P1 24 20 • • • • • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • •
B24 C20 P2 24 20 • • • • • ◦ • • • • ◦ • • • • • • ◦ • • • • • ◦
B24 C20 P3 24 20 • • • • • • • • ◦ ◦ • • • • ◦ ◦ • • • • • • • •
B24 C20 P4 24 20 • • • • • ◦ • • • • • ◦ • • • • • ◦ • • • • • ◦
B24 C24 24 24 • • • • • • • • • • • • • • • • • • • • • • • •

Table 2. BC configurations investigated with both the 3D Helmholtz solver AVSP and the
analytical approach ATACAMAC. ◦: Burner without CBO •: Burner with CBO

value n = 1.0 (knowing that typical low-frequency values for n are around T 0

T 0
u
− 1 ≃ 1.57

here (Poinsot & Veynante 2011)) in each burner.

For the N = 24 configuration (figure 8), two types of burners with different time-delays
are mixed to mimic the combustion chamber where burners can be equipped (or not)
with CBO’s (Cylindrical Burner Outlet) to modify their flame response (Berenbrink &
Hoffmann 2001; Krueger et al. 2000). Table 2 displays the circumferential patterns (• for
CBO buners and ◦ for burners without CBO) which are considered.
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4.2. Description of the 3D acoustic code

Assumptions and results of ATACAMAC can be validated using a full 3D acoustic solver
called AVSP (Nicoud et al. 2007; Silva et al. 2013; Selle et al. 2006; Sensiau et al. 2009)
which solves the Helmholtz equation in a reactive flow without the assumptions used in
ATACAMAC (Nicoud et al. 2007) but of course at a higher cost. AVSP takes into account
the interaction between combustion and acoustics. It solves the eigenvalue problem issued
from the discretization on unstructured meshes of the Helmholtz equation at zero Mach
number. Meshes contain approximately 2 millions cells (corresponding to the ratio of the
wavelength to the longest cell length λ/∆hmax ≃ 250) which is sufficient considering the
simplicity of the geometry and the wavelength of the first azimuthal modee. Source terms
due to flames are modeled using Flame Transfer Functions (FTF) (Crocco 1951). The
local heat release fluctuations are expressed in the burner i as:

q′i = nu,i e
jωτi ~u′(xref,i) · ~nref,i. (4.1)

where xref,i is a reference point upstream of the flame in burner i.
The local interaction index nu,i describes the local flame-acoustic interactions. The

values of nu,i are assumed to be constant in the flame zone i (figure 8) and are chosen to
recover the global value of the interaction index ni corresponding to the infinitely thin
flame when integrated over the flame zone i (Nicoud et al. 2007). For the sake of simplicity,
they are also assumed to be independent of frequency. These assumptions allow to use
AVSP to check the precision of the analytical techniques developed in ATACAMAC.
In annular configurations with multiple burners, the heat release fluctu-

ations in burner i are assumed to be driven by velocity fluctuations at the
reference point xref ,i. This assumption, called ISAAC (Independence Sector Assumption
in Annular Combustor) in (Sensiau et al. 2009) was validated by an LES of a full annular
combustor (Staffelbach et al. 2009) and is used in the present study. In the infinitely thin
flame model used in ATACAMAC the reference points are chosen at the flame locations
zf,i. The normalized abscissa of the flame is set to α ≃ 0.91 (Bauerheim et al. 2014b).
3D effects near the burner/chamber junctions can be accounted for (Pierce 1981) using
a standard length correction in the low-frequency range for a flanged tube (Silva et al.
2009) which is applied at the downstream burner’s end (∆Li = 0.4

√

4Si/π). In AVSP,
the reference points are placed a few millimeters upstream of the flames (figure 8) for
numerical accuracy issues (Silva et al. 2013).

5. Symmetry breaking with N = 3 burners

Analytical expressions of frequency of azimuthal modes (equation (3.13)) can be ob-
tained for a generic annular BC configuration with N burners. First, the symmetric case
(figure 9, left) with N = 3 identical burners is studied (Section 5.1). Then, the effect
of circumferential variations on combustion instabilities is investigated (Section 5.2) and
validated on an asymmetric BC configuration where one type 1 burner is replaced by a
type 2 (figure 9, right).

5.1. Symmetric case with N = 3 identical burners

In an axisymmetric configuration where burners are the same for all sectors (i.e. Γi = Γ,
for all i ∈ [1, 3]), only two different mode types exist. Indeed, the splitting strength S0

in equation (3.14) simplifies depending on the mode order p and the number of burners
N (Appendix A):

{
If p = 3m, for m ∈ N then S0 = 3Γ0

For any other mode of order p : S0 = 0
(5.1)
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Figure 9. Schematic view of the BC configuration with N = 3 burners for the validation of
numerical and analytical resolutions of equation (2.12). Left: symmetric case (all interactions
terms Γi (equation (2.6)) are equal) ; Right: asymmetric case (two identical burners with the
same Γ1 and one burner with Γ2)

Figure 10. Pressure structure of the two components of the azimuthal mode in a N = 3 burners
configuration: a standing mode imposing a pressure node at every burner locations ( , f−)
and a standing mode imposing a pressure anti-node at every burner locations ( , f+).

Consequently, only two different classes of modes can develop in annular BC configu-
rations with N = 3 identical burners:

• Non-degenerate singlets: If p = 3m, m ∈ N the splitting strength is not null
(S0 = Σ0 = 3Γ0, equation (3.14)) and the azimuthal mode is split into two compo-
nents V − and V + with different wavenumber perturbations (ǫ±) and frequencies (f±)
(equation (3.7)):

{
ǫ− = 0
ǫ+ = −3Γ0 corresponding to

{

f− = pc0

2Lc

f+ = pc0

2Lc
− 3

2
c0Γ0

πLc

(5.2)

Figure 10 displays the mode structure associated to f+ and f−: due to symmetry con-
siderations, these modes (e.g. p=3) can lock on burners (N = 3) (see Bauerheim et al.
(2014a) for an analytical proof). Their wavelength corresponds to the chamber perimeter
(or its half in a case of a configuration with an even number of burners). The first mode
V − with frequency f− is standing and imposes a pressure node at every burner: therefore
it is unperturbed by them (ǫ− = 0); the mode is neutral. The second mode V + at the
frequency f+ is also standing but imposing an azimuthal velocity node (i.e. a pressure
anti-node) at every burner (ǫ+ = −3Γ0).
• Degenerate doublets: All other azimuthal modes (p 6= 3m, m ∈ N) are composed

of two eigenmodes V ± which have the same frequencies (degenerate modes) because the
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splitting strength S0 = 0:
{

ǫ− = − 3
2Γ

0

ǫ+ = − 3
2Γ

0 corresponding to

{

f− = pc0

2Lc
− 3

4
c0Γ0

πLc

f+ = pc0

2Lc
− 3

4
c0Γ0

πLc

(5.3)

In this configuration, the transfer matrix of the whole system (M defined in equa-
tion (3.4)) is equivalent to the null matrix. The mode nature is undetermined as pointed
out by Noiray et al. (2011): a standing, spinning or mixed mode can develop. Noiray et al.
(2011) have shown that non-linearities on the FTF can however promote one of these
natures, a phenomenon which cannot be described by ATACAMAC since it is based on
linear FTFs.
Figures 11 and 12 provide two validation points (marked by •) of ATACAMAC for

symmetric configurations using the full 3D acoustic solver AVSP: modes denoted A±

when τ1/τ
0
c = τ2/τ

0
c = 0.23 and E± when τ1/τ

0
c = τ2/τ

0
c = 0.68. A good agreement is

obtained between the acoustic code (AVSP) and ATACAMAC.

5.2. Symmetry breaking with N = 3 different burners

This section discusses the behavior of azimuthal modes when one of the three burners has
a different FTF corresponding to a different value of Γ0

i (see figure 9, right). Especially,
the observation in (Perrin & Charnley 1973; Sensiau et al. 2009) will be investigated:
circumferential variations with specific patterns obtained by distributing different burner
types along the azimuthal direction could split nominally degenerate doublets into non-
degenerate singlets, as observed by Sensiau et al. (2009). If two burners have a coupling
factor Γ0

1 and the third one Γ0
2, equation (3.13) can be solved with N = 3 and gives the

following solution:
• Non-degenerate singlets: Azimuthal modes with p = 3m, m ∈ N are non-

degenerate singlets characterized by S0 = Σ0 = 2Γ0
1+Γ0

2 (equation (3.14)) with wavenum-
ber perturbations:

{
ǫ− = 0
ǫ+ = −Σ0 = −2Γ0

1 − Γ0
2

corresponding to

{

f− = pc0

2Lc

f+ = pc0

2Lc
− c0(2Γ0

1+Γ0
2)

2πLc

(5.4)

where Σ0 =
∑N

i=1 Γ
0
i . These modes, as in the symmetric cases, impose a pressure node

or pressure anti-node at each burner location leading to two modes with different fre-
quencies: f+ 6= f−.
• Nearly degenerate singlets: For other azimuthal modes (p 6= 3m, m ∈ N), equa-

tion (3.13) leads to nearly degenerate singlets (Perrin & Charnley 1973): the degenerate
doublet encountered in symmetric configurations (denoted DD with ǫDD = − 1

2Σ0 =
−Γ0

1 − 1
2Γ

0
2, equation (5.3)) is split depending on the splitting strength S0 = Γ0

1 − Γ0
2

(equation (3.14) for the N = 3 case with the pattern 121 (◦ • ◦, table 2)):

ǫ± = −1

2
Σ0

︸ ︷︷ ︸
ǫDD

± 1

2
S0

︸︷︷︸

Splitting

(5.5)

so that ǫ− = −1

2

(
Γ0
1 + 2Γ0

2

)
and ǫ+ = −3

2
Γ0
1 (5.6)

These results were validated in figures 11 and 12 for the first azimuthal mode (p = 1) of
the configuration B3 C1 with the pattern 121 (◦ • ◦, table 2) where coupling parameters
are defined by equation (2.8).
When S0 6= 0, the nominally doublet is split into two dissimilar azimuthal modes (e.g.

modes denoted B+ and B− in figure 11 corresponding to τ1/τ
0
c = 0.55 and τ2/τ

0
c = 0.23)
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Figure 11. Real and imaginary part of the frequency f+ and f− of the two components of
the first mode (p = 1) in the B3 C1 configuration with the pattern 121 (◦ • ◦) and a fixed
τ2/τ

0
c = 0.23. : Atacamac (numerical resolution of equation (2.12)), �: Atacamac (ana-

lytical formula equation (5.6)), ×: AVSP, : Trajectory of the modes average (f+ + f−)/2,
•: Symmetric case where τ1/τ

0
c = τ2/τ

0
c = 0.23, τ0

c corresponds to 1

f0
≃ 11 ms.

Figure 12. Real and imaginary part of the frequency f+ and f− of the two components of the
first mode (p = 1) in the B3 C1 configuration with the pattern 121 (◦•◦) and a fixed τ2/τ

0
c = 68.

: Atacamac (numerical resolution of equation (2.12)), �: Atacamac (analytical formula
equation (5.6)), ×: AVSP, : Trajectory of the modes average (f+ + f−)/2, •: Symmetric
case where τ1/τ

0
c = τ2/τ

0
c = 0.68, τ0

c corresponds to 1

f0
≃ 11 ms.

with close frequencies and different growth rates as mentioned in (Perrin & Charnley
1973; Sensiau et al. 2009). The term S0 = Γ0

1 − Γ0
2 for the pattern 121 (◦ • ◦) measures

the differences in flame response between the two burner types and controls the degree
of degeneracy of the azimuthal mode†.
Figure 13 displays the associated mode structure of the symmetric (mode A) and

asymmetric (mode B) cases. For symmetric configurations, the mode structure is unde-
termined so that both spinning or standing modes can occur (figure 13, top). However,

† Note that some asymmetry could still give degenerate doublets (i.e. S0 = 0): for instance,
the first order mode (p = 1) of a N = 6 burners BC configuration with the pattern (• ◦ • ◦ •◦)
or (• • • ◦ ◦◦) is a doublet with ǫ = − 3

2
(Γ0

1 + Γ0
2).
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Figure 13. 3D and isolines of pressure modulus (left) and modulus and phase of acoustic
pressure (right) of the first azimuthal modes (p = 1) of the asymmetric case B3 C1 with the
pattern 121 (◦ • ◦, table 2) in two situations: mode A (τ1/τ

0
c = τ2/τ

0
c = 0.23) and mode B

(τ1/τ
0
c = 0.55 and τ2/τ

0
c = 0.23). ◦: A± (spinning), •: A± (standing), : B± (standing)

breaking the symmetry using two different burner types (e.g. mode B with τ1/τ
0
c = 0.55

and τ2/τ
0
c = 0.23) leads to standing modes only (figure 13, bottom).

5.3. Conclusion on symmetry breaking in the N = 3 case

Sections 5.1 and 5.2 show that the splitting strength S0 defined by equation (3.14) controls
both the stability and the mode structure of an annular chamber (N = 3) where two
types of burners are installed. Nevertheless, a ”necessary condition” for stability can be
derived independently of the splitting strength value. Indeed, the imaginary part of the
modes average 1

2Im(ǫ+ + ǫ−) does not depend on the splitting strength S0 but only on

the total coupling strength Σ0 =
∑N

i=1 Γ
0
i yielding a necessary condition for stability:

1

2
Im(ǫ+ + ǫ−) = −1

2
Im (Σ0) < 0 (5.7)

If this condition is not fulfilled (figure 14, left), there is no hope of stabilizing the mode
since at least one of the two components of the azimuthal mode (V + or V −) will remain
unstable (e.g. A± and B+ in figure 11).

For a symmetric case where the splitting strength S0 is zero, equation (5.7) is a neces-
sary and sufficient condition to have a stable mode. However, when symmetry is broken,
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Figure 14. Mode stability for an annular chamber with N burners depending on the con-
dition (5.7) and the splitting strength 1

2
Im (S0). ×: ǫ− and �: ǫ+. The splitting strength is

S2
0 =

∑N

i,j=1
Γ0
iΓ

0
jcos

(

4pπ

N
(j − i)

)

(equation (3.14)) and measures the difference between the

two burner types 1 and 2. Shaded areas correspond to unstable zones. a) All modes are unsta-
ble, b) all modes are stable and c) symmetry breaking makes one mode unstable: the splitting
strength S0 must be reduced to stabilize both modes as in the situation b).

satisfying condition (5.7) cannot guarantee stability (figure 14, middle and right). In this
case, the necessary and sufficient condition becomes†:

max(Im(ǫ+), Im(ǫ−)) < 0 (5.8)

because the splitting introduced by symmetry breaking (measured by the splitting strength
S0) has to be taken into account. For weak splitting (figure 14, middle) the two modes
V + and V − remain stable (e.g. eigenmodes D± in figure 12) but for higher splitting
(figure 14, right) one mode can become unstable (e.g. mode C+ in figure 12).

6. Symmetry breaking in a N = 24 burners BC configuration

Conclusions of Section 5.3 obtained with N = 3 burners suggest a strategy to stabilize
the pth mode of a generalN burners configuration as described in figure 15. Axisymmetric
configurations (left part of figure 15) only have one degree of freedom to stabilize the

† Note that max(Im(ǫ+), Im(ǫ−)) > 1

2
Im(ǫ+ + ǫ−) and for a symmetric configuration

ǫ+ = ǫ−.
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Figure 15. Strategy to stabilize an annular combustor.

pth mode which is the time-delay τ1: if τ1 is such that condition (5.7) is met, then the
configuration is stable.
For non-symmetric configurations (right part of figure 15), however, satisfying equa-

tion (5.7) does not guarantee the stabilization of the configuration. In this case, the
asymmetry pattern is an additional degree of freedom and two options are available to
ensure the stability of the pth azimuthal mode:
• Symmetrize the configuration (Option 1): if condition (5.7) is satisfied, at

least one kind of injector satisfies −Im(Γ0
i ) < 0: this kind of burner can be used for all

sectors which leads to the mode’s stabilization. This option is the most efficient method
to stabilize an azimuthal mode since no splitting occurs.
• Reduce the asymmetry effect (Option 2): Another solution is to keep the same

kind of burners (Γ0
1, ...,Γ

0
N ) but rearrange them to reduce the splitting of the azimuthal

mode and stabilize it. Optimization can be performed to find the best pattern which
leads to the smallest value of the splitting strength S0.
As an example, symmetry breaking is studied here for a N = 24 burners configuration

(Berenbrink & Hoffmann 2001; Krueger et al. 2000) representative of real industrial
gas turbines. First, the stability of the first azimuthal mode (p = 1) of the symmetric
configuration is studied as a function of the time-delay τ (which is the same for all
burners), with the interaction index n = 1.0. Results (figure 16) show a very good
agreement between the numerical and analytical solutions given by the 3D Helmholtz
solver AVSP and ATACAMAC.
To break symmetry two different burners are then mixed, characterized by different
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Figure 16. Stability map depending on τ of the first azimuthal mode (p = 1) of the
symmetric BC configuration with 24 burners. τ0

c is the period of the first azimuthal mode
τ0
c = 1/f0 = 2Lc

pc0
≃ 11ms

time-delays, τ1 and τ2 (figure 16). A time delay τ1 = 3.25 ms corresponds approximately
to the most unstable burner (Im(fAV SP ) = 2.98 s−1, in figure 16 right), which is assim-
ilated here to the baseline case, a burner without CBO (◦ in table 2). CBOs (Cylindrical
Burner Outlet) device can be mounted on some of the burners (Berenbrink & Hoffmann
2001; Krueger et al. 2000) to modify the flame time-delay and to stabilize the chamber.
The length of the cylinder is such that the time lag τ2 from the injection port to the flame
front is increased by approximately a quarter of an acoustic period: τ2 = τ1+

1
4f0 ≃ 6ms

(since the first azimuthal mode has a frequency f0 ≃ 90Hz): it corresponds to a stable
burner where Im(fAV SP ) = −1.01 s−1 in figure 16 (• in table 2). Note that using 20
burners with τ2 = 6 ms and 4 burners with τ1 = 3.25 ms respects the necessary stability
condition given by equation (5.7) ( for the configuration C20 in figure 17). The sta-
bility of the four patterns proposed in table 2 is studied using ATACAMAC and AVSP.
Results are plotted in figure 17 (growth rates).
• B24 C0: This configuration corresponds to the unstable baseline case: the necessary

condition (equation (5.7)) is not satisfied. Some burners have to be changed in order to
get a stable combustor.
• B24 C20 P1: 20 CBOs devices have been mounted to try to stabilize the mode.

The necessary condition (equation (5.7)) is satisfied. However this pattern has a large
splitting strength S0. Consequently it splits azimuthal modes into two singlets with dif-
ferent growth rates making the first azimuthal mode unstable. This case is an excellent
example of how, for asymmetric circumferential patterns, one can use stable burners that
match the condition − 1

2Im (Σ0) < 0 and yet, due to the asymmetry term S0, have an
unstable mode as shown in figure 14 (right).
• B24 C20 P2: As suggested by figure 15, a solution to stabilize the mode is to find

asymmetry patterns like B24 C20 P2 with a lower splitting strength S0 for which both
singlets remain stable as mentioned in figure 14 (middle image).
• B24 C20 P3 and B24 C20 P4: The pattern B24 C20 P2 induces a low split-
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Figure 17. Growth rate of the first azimuthal mode (p = 1) for various asymmetry combination
of burners with and without CBO: B24 C0 (24 noCBO burner), B24 C24 (24 CBO burners) and
the four patterns B24 C20 (see table 2). : Imaginary part of the modes average − 1

2
Im (Σ0)

depending on the configuration (C0, C20 and C24)

ting strength and stabilizes the mode. However, optimal asymmetry patterns can be
found which lead to no or very low splitting and therefore ensure the mode stabilization.
Patterns B24 C20 P3 and B24 C20 P4 give stable degenerate doublets. In these cases,
S0 = 0 and therefore equation (5.7) becomes a necessary and sufficient condition for
stability. The mode is stable: Im(f±) ≃ −0.25 s−1

• B24 C24: As explained in figure 15, the most efficient option to stabilize a mode
is to symmetrize the annular combustor with burners which all satisfy the necessary con-
dition (equation (5.7)), i.e. 24 burners with a CBO. The mode is very stable: Im(f±) ≃
−1.0 s−1 (figure 17).
Considering the average imaginary part of the modes − 1

2Im(Σ0) ( in figure 17),
it is interesting to notice that, independently of the asymmetry patterns, combining 20
CBOs and 4 noCBOs burners give potentially less stable modes than using 24 CBOs:
breaking symmetry has a limited interest here compared to adding CBOs on all burners.
Nevertheless, if for any reason (ignition, pollution, construction, etc.) one must keep
the two types of burner, the present analytical model offers an easy way to optimize
the circumferential distribution of the burners by minimizing the imaginary part of the
splitting strength Im(S0). To illustrate this idea, figure 18 displays the effect of several
asymmetry patterns on the splitting strength (S0) using a configuration with 20 CB0
- 4 noCBO burners. Appendix A shows that using two kinds of burners (with coupling
parameters Γ0

1 and Γ0
2 respectively) yields a splitting strength of the form:

S0 =

Imposed by the pattern
︷︸︸︷

2K
(
Γ0
1 − Γ0

2

)

︸ ︷︷ ︸

Imposed by the difference between burner types 1 and 2

(6.1)

where the reduced splitting strength K depends only on the asymmetry pattern (see
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NAME ASYMMETRY PATTERN K
P1 • • • • • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • • 1

2

√

3
√
3 + 6 ≃ 1.67

P2 • • • • • ◦ • • • • ◦ • • • • • • ◦ • • • • • ◦ 1

2

√

2−
√
3 ≃ 0.26

P3 • • • • • • • • ◦ ◦ • • • • ◦ ◦ • • • • • • • • 0
P4 • • • • • ◦ • • • • • ◦ • • • • • ◦ • • • • • ◦ 0

Table 3. Analytical expressions of the reduced splitting strength K for the four patterns
described in Tab. 2

Figure 18. The reduced splitting strength (K) for several patterns where three noCBO burners
are kept together at the same place and the last noCBO burner’s place is changed azimuthally.
The splitting is then moderatly affected by the asymmetry pattern.

table 3 for the analytical expression of K for the four patterns studied). In equation (6.1),
Γ0
1 and Γ0

2 are fixed by the burner characteristics so that minimizing S0 to increase
stability is equivalent to minimizing K.

Consequently, an optimization process appears as a promising approach to find pat-
terns with the minimal value of the reduced splitting strength K. This also highlights the
potential of low-order models to perform optimization processes of large problems (here
about 1,800 patterns are possible†) at very-low cost.

Finally, enumeration and distributions of reduced splitting strengths K (obtained nu-
merically using (3.14) and (6.1) for the first azimuthal mode p = 1) are displayed in
figure 19 depending on NnoCBO, the number of noCBO burner types (NnoCBO = 2, 4
and 6): all possible asymmetry patterns are computed where NnoCBO burners are cho-
sen as burners without CBO while the N − NnoCBO other ones correspond to burners
with a CBO. The first burner of the pattern is always without CBO to avoid circular
similarities. Figure 19 shows that more numerous and higher reduced splitting strength
values are obtained when the number of noCBO burners (NnoCBO) is increased: these

† The problem addressed here corresponds to 4 no-CBO burners mixed with 20 CBO
burners. When the first burner is fixed as a no-CBO type, the number of patterns is:
(

23

3

)

= 23!

20!×3!
= 1, 771.
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Figure 19. Distribution of the reduced splitting strength K vs. NnoCBO, the number of burn-
ers without CBO. All possible asymmetry patterns are used to compute each distribution: 23
patterns for NnoCBO = 2; 2275 for NnoCBO = 4 and 77804 for NnoCBO = 6).

situations are more complex to analyze and optimize. Moreover, only a few patterns lead
to a small splitting strength.
Symmetry breaking can also modify the dynamic nature of the acoustic modes. The

modulus and phase of acoustic pressure of the first azimuthal mode (p = 1) † are plotted
in figure 20 for the four studied patterns (table 2), showing two distinct behaviors.

• Patterns P1 and P2: Patterns P1 and P2 give non-degenerate doublets: the two
components V + and V − of the azimuthal mode are standing (• in figure 20) and oscillate
in opposite phase with different (yet very close) frequencies (e.g. 90.3 Hz and 91.3 Hz for
the pattern P1). Figure 17 shows that for pattern P1, one mode is amplified whereas the
other one is damped, resulting in an unstable standing mode.
• Patterns P3 and P4: On the other hand, asymmetry patterns leading to degener-

ate doublets have an undetermined mode structure: the two components V + and V − of
the azimuthal modes have the same frequencies so that they can be combined to obtain
either a spinning ( in figure 20), a standing (• in figure 20) or a mixed mode.

7. Conclusion

The present work describes a fully analytical approach, completed by a 3D numer-
ical validation, to study the stability of azimuthal thermoacoustic modes in annular
chambers. The analytical model is based on a quasi-one-dimensional zero-Mach number
natural formulation where N burners are connected to a downstream annular chamber.
Flames are supposed to be compact and are modeled using a Flame Transfer Function,
characterized by a coupling factor and a phase shift. Manipulation of the corresponding
acoustic equations yields a simple dispersion relation which can be solved analytically
in specific situations where coupling factors are small (weak coupling). This analytical
approach allows to predict the stability of azimuthal modes in symmetric cases where all
burners are identical but also to study cases where different burner types are mixed in a
chamber, using a predefinite pattern. The analytical method highlights the importance
of two parameters:
• A ”coupling strength” Σ0 which is the sum of the individual coupling factors Γ0

i of
each burner and controls the stability at first order.
• A ”splitting strength” S0 defined in equation(3.14) which affects the stability and

† Only one of the two components of a given azimuthal mode is shown in figure 20.



28 M. Bauerheim, P. Salas, F. Nicoud and T. Poinsot

Figure 20. Effect of the asymmetry pattern on the azimuthal mode nature. 3D and isolines of
the pressure modulus (left) and modulus and phase of the acoustic pressure over the circumfer-
ence (right). P1 or P3: necessarily standing (•) ; P3 or P4: any combination of standing (•) or
spinning( ).

the mode structure and depends on a combination of the coupling parameters of each
burner.
First, a symmetric configuration with N identical burners with null inlet impedances

(i.e. p′ = 0) is studied. Only two mode behaviors are observed: degenerate doublets
and non-degenerate singlets, the latter being capable of generating warbles (low fre-
quency oscillations due to a non-degenerate mode (Perrin & Charnley 1973)). Then, a
non-symmetric case where two different types of burners are distributed in the chamber
is studied: symmetry breaking is proved to modify the azimuthal modes behavior in a
simple case with only three burners in an annular chamber. The staging patterns can
split nominally degenerate azimuthal modes (doublets) into non-degenerate pairs (sin-
glets), a situation already mentioned in the literature and observed in recent Helmholtz
simulations (Sensiau et al. 2009).
Finally, the effect of the asymmetry pattern is investigated in a N = 24 burners case

representative of industrial gas turbines. A very good agreement is found for all cases
between analytical and numerical results, obtained with a 3D Helmholtz solver. Results
are compared to experimental observations where CBOs (Cylindrical Burner Outlet) are
added to certain burners to control combustion instabilities. A simple criterion is derived
to provide a necessary condition to stabilize an annular combustor. Since the asymmetry
pattern does not appear in this criterion and the splitting strength is the only control
parameter, this shows that symmetry breaking can modify the mode nature but has
no real impact on mitigating combustion instabilities in annular chambers. The best
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method to control a chamber with N = 24 sectors is to use 24 identical burners with
FTF leading to stable azimuthal modes. However if keeping only one type of burner is not
possible, a strategy to stabilize the mode is proposed: find an optimal pattern which leads
to a low splitting of the corresponding azimuthal mode. The general character of this
conclusion (a summary of this method is provided in Appendix B: this summary allows
the computation of the ”coupling strength”, the ”splitting strength”, the frequency and
the growth rate of all modes as soon as the FTF of each burner is known) is limited
by the low coupling assumption which implies no interaction between burners. Strongly
coupled situations where burners interfere (Bauerheim et al. 2014b; Worth & Dawson
2013b) may lead to an effect of the asymmetry pattern on the overall stabilization of the
annular engines.
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Appendix A. Analytical expression of the splitting strength

The general analytical expression of the splitting strength S0 is:

S2
0 =

N∑

i,k=1

Γ0
iΓ

0
k cos

(
4pπ

N
[k − i]

)

(A 1)

Using cos(a − b) = cos(a) cos(b) + sin(a) sin(b) one may recast the splitting strength
as:

S2
0 =

[
N∑

i=1

Γ0
i cos(4pπi/N)

]2

+

[
N∑

i=1

Γ0
i sin(4pπi/N)

]2

The above equation can be recast using the identity a2 + b2 = (a+ jb)(a− jb) where
j2 = −1:

S2
0 =

[
N∑

i=1

Γ0
i e

j4pπi/N

]

×
[

N∑

i=1

Γ0
i e

−j4pπi/N

]

= γ(−2p)× γ(2p) (A 2)

where γ(k) is the kth Fourier coefficient of the asymmetry pattern Γ0 defined as γ(k) =
∑N

i=1 Γ
0
i e

−j2πki/N .
Finally, the splitting strength is:

S0 =
√

γ(2p)× γ(−2p) (A 3)

The splitting strength obtained in the previous equation (A 3) gives some useful results:
• 1) Noiray et al. (2011) obtained a similar result where the splitting strength is

controlled only by γHR(2p), the 2pth Fourier coefficient of the heat-release distribution.
Equation (A 3) is a generalization of such a result: the network model developed in this
paper retains more geometry and flow features than the simple annular rig considered
in (Noiray et al. 2011). In particular, it is shown here that the mode is controlled by
the azimuthal distribution of the coupling parameter (which includes the active flame
(n − τ model) but also the geometry characteristics, the upstream impedance Z of the
burners as well as the difference between cold and burnt gases). It appears that all these
features can effect the whole asymmetry of the system and therefore the stability and,
consequently, cannot be neglected when studying combustion instabilities.

• 2) If all coupling factors are the same (symmetric configuration), then the spectrum

γ(k) is null everywhere except for k = 0 or k = N (where γ(0) = γ(N) = Σ0 =
∑N

i=1 Γ
0
i

is the total coupling of the system) which leads to two types of azimuthal modes:
a) If p is not N/2, N , 3N/2 etc. then γ(±2p) = 0 and the splitting strength is null:

S0 = 0 (A4)

These modes are characterized by no splitting: the two components of the azimuthal
mode have the same frequencies and growth rates. They are called ”degenerate
doublets”.
b) However, if p = N/2, N , 3N/2 etc. then γ(±2p) =

∑N
i=1 Γ

0
i = NΓ0 which gives:

S0 = NΓ0 (A 5)

These modes are characterized by a strong splitting: the two components of the
azimuthal mode have different frequencies and growth rates. They are called ”non-
degenerate singlets”.
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• 3) If only two types of burner are introduced in the combustion chamber (i.e. cou-
pling factors can only take the value Γ0

1 or Γ0
2 for i ∈ [1, N ]), then for mode satisfying

p 6= N/2, N, ... the splitting strength S0 can be decomposed as:

S0 =

Imposed by the pattern
︷︸︸︷

2K
(
Γ0
1 − Γ0

2

)

︸ ︷︷ ︸

Imposed by the difference between burner types 1 and 2

(A 6)

where the reduced splitting strength K depends only on the asymmetry pattern and
(Γ0

1 − Γ0
2) is fixed by the burner characteristics.

Proof 1. The Fourier coefficient γ(k) can be viewed as a polynomial of degree one with
N indeterminates (or variables) Γ0

i and coefficients depending on the asymmetry pattern.
When considering only two burner types (corresponding to coupling factors Γ0

1 and Γ0
2),

γ(k) reduces to a polynomial of only two variables. The previous point (2) proves that for
modes satisfying p 6= N/2, N, ... the splitting strength and therefore γ(±2p) are null when
Γ0
1 = Γ0

2. As Γ
0
1−Γ0

2 is a common root of γ(±2p) which are one-degree polynomials, they
can be recast as:

γ(2p) = α2p(Γ
0
1 − Γ0

2) and γ(−2p) = α−2p(Γ
0
1 − Γ0

2) (A 7)

where α2p and α−2p depend only on the asymmetry pattern. Consequently, using equa-
tion (A 3), the splitting strength reads:

S0 =
√

α2p(Γ0
1 − Γ0

2)× αN−2p(Γ0
1 − Γ0

2) =
√
α2pαN−2p

︸ ︷︷ ︸

2K

(Γ0
1 − Γ0

2) (A 8)

Appendix B. Summary of the analytical method providing the
stability map of the pth azimuthal mode

This Section summarizes the analytical method to provide the stability map of the pth

azimuthal mode of a chamber with N burners.

• 1) Compute the coupling factors of each burner:

Γ0
i = − j

2

Si

Sc

F
0Ck0

1−α[jS
k0
u

α Z + C
k0
u

α ] + Sk0

1−α[jC
k0
u

α Z − S
k0
u

α ]

F0Sk0

1−α[jC
k0
u

α − S
k0
u

α Z] + Ck0

1−α[C
k0
u

α Z + jS
k0
u

α ]
(B 1)

where F0 = c0ρ0

c0uρ
0
u
(1+nie

jω0τi), Cy
x = cos(xyLi), S

y
x = sin(xyLi), k

0 = ω0/c0, k0u = ω0/c0u,

Z is the upstream impedance and ω0 = pπc0

Lc
.

• 2) Compute the total ”coupling strength” Σ0 =
∑N

i=1 Γ
0
i .

• 3) Compute the ”splitting strength” S0:

S0 =

√
√
√
√

N∑

i,j=1

Γ0
iΓ

0
jcos

(
4pπ

N
(j − i)

)

=
√

γ(−2p)γ(2p) (B 2)

where γ(k) is the kth Fourier coefficient of the asymmetry pattern.
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• 4) The pth azimuthal mode is composed of two modes V + and V − with the same
order p but different wavenumber perturbations ǫ± given by:

ǫ+ = −1

2
(Σ0 + S0) and ǫ− = −1

2
(Σ0 − S0) (B 3)

• 5) Then compute the complex frequency of the system from the definition of the

wavenumber perturbation (k±Lc =
2πf±

c0 Lc = pπ + ǫ±) and equation (B 3):

f± =
pc0

2Lc
− c0 (Σ0 ± S0)

4πLc
(B 4)

• 6) Finally, the two components of the pth azimuthal mode can have different frequen-
cies (f+ 6= f−, non-degenerate singlets) if S0 6= 0 or the same frequencies (f+ = f−,
degenerate doublets) if S0 = 0. The growth rate of each mode is obtained from the
imaginary part of the complex frequency obtained in equation (B 4):

Growth rate± = Im(f±) = − c0

4πLc
Im (Σ0 ± S0) (B 5)
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