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Physical mesomechanical criteria of plastic deformation and fracture
S. Yoshida*, R.L. Rourks, T. Mita' and K. Ichinose'
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! Tokyo Denki University, Tokyo, 101-8457, Japan

A method is proposed to identify the near crack-tip region in a deforming object as the plastic zone and to diagnose its status as to
whether or not the crack is about to open. The in-plane displacement field is visualized as a two-dimensional, full-field optical interfero-
metric fringe pattern, and the diagnosis is made based on the plastic deformation and critical fracture criteria derived from a recent theory
of deformation and fracture called physical mesomechanics. The proposed method is demonstrated for tensile experiments conducted for

tin and steel specimens.
Keywords:

1. Introduction

The transition from plastic deformation to fracture in
solid-state materials is a complicated process, and its phy-
sics has not been fully understood. Current theory based on
conventional fracture mechanics [1] is in most part pheno-
menological, relying on the elastic theory to formulate the
highly inelastic fracturing process. The boundary of the near
crack-tip plastic zone is estimated from a mathematically
modeled stress distribution, and a yield stress obtained in a
separate experiment. The condition of unstable crack propa-
gation is evaluated from the energy balance between the
elastic energy stored in the material and the energy release
associated with the generation of free surfaces. It is not ne-
cessarily connected with an equation of motion that de-
scribes the dynamics of the fracturing zone. This situation
imposes limitations on accurate prediction of fracture in
various engineering applications. More physically solid, uni-
versal approach is desirable.

In this work, we present a universal approach to ana-
lyze the deformation field of ductile materials in the pre-
fracture stage. Using tensile experiments conducted for tin
and steel specimens as an example, we demonstrate that it
is possible to identify the near crack-tip region as the plas-
tic zone and to diagnose its status as to whether or not the
crack is about to open. The displacement field of the speci-
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men is visualized as a full-filed image with the use of an
optical interferometric technique known as the electric
speckle-pattern interferometry [2], and the plastic zone is
identified from the interferometric fringe pattern. The diag-
nosis is based on the plastic deformation and critical frac-
ture criteria derived from physical mesomechanics [3], a
recent universal theory of deformation and fracture. The
universality of physical mesomechanics results from the fact
that it is founded on the gauge invariance, one of the most
fundamental principles in physics. Because of this universa-
lity, physical mesomechanics is capable of describing all
the stages of deformation comprehensively. The plastic de-
formation and critical fracture criteria are based on this foun-
dation.

2. Physical mesomechanics and field equation

The gauge theoretical formalism of physical mesome-
chanics can be conveniently understood as an extension of
the global symmetry in elasticity to local symmetry in plasti-
city [4]. In the theory of elasticity [5], the distortion tensor
components, known as the normal strain, shear strain and
rotation, are constants. The fact that the rotation tensor com-
ponent is constant indicates that the material rotates as a
rigid body. In physical mesomechanics, the plasticity is cha-
racterized as the situation where the distortion tensor compo-
nents are coordinate dependent [4, 6]. Intuitively, this can
be understood as follows. Imagine that a defect is gene-
rated inside a deforming material. Naturally, the blocks



around the defect will have the freedom of rotating different-
ly; the rotation becomes coordinate dependent, not rigid-
body rotation. Since the distortion tensor components con-
tain spatial derivatives, this requires the replacement of the
usual derivatives with covariant derivatives, or the introduc-
tion of a gauge term. With the application of the Lagrangian
formalism to the gauge field, this leads to the following
Maxwell type field equations [6]. The general solution to
this field equation is a decaying transverse wave [7] of the
translational and rotational displacement:

V.v=j,, (1)
ov
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where v and o are the rate of the translational displace-
ment and the rotational displacement (angle from the rota-
tional equilibrium), respectively, € is the density of the ma-
terial, and 1/ is the shear modulus [8], j, and j are the
currents of symmetry (the time and space components, re-
spectively) [6]. Putting j, = p/e in Eq. (1) and taking diver-
gence of Eq. (2), we can derive the equation of continuity
in the following form:

op 1o .
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Here, p =€V -v can be interpreted as the divergence of
momentum density associated with strain concentration
V -v. Equation (3) allows us to put the current j in the
form of the product of the charge density p and its drift
velocity W, as

VXo=-eu

ﬁ =pW, = (eV - V)W, (4)

Recent analysis [8] reveals that the above field equa-
tion reduces to the following equation of motion that de-
scribes the dynamics of an infinitesimal volume in a plasti-
cally deforming object:

8ﬁ=—l(me)—lj. (5)
a u u

The left-hand side of Eq. (5) is the change in momentum of
the unit volume. The right-hand side represents the exter-
nal forces acting on the unit volume where the first term
represents the recovery force in the plastic regime, and the
second term represents the longitudinal force [8]. In the
elastic regime the longitudinal force is proportional to the
displacement, and hence is a recovery force. In the plastic
regime it is proportional to the velocity, and hence is an
energy dissipative force. Equation (3) can be interpreted as
that the change in the strain concentration is caused only by
the differential longitudinal force.

3. Mesomechanical criteria of deformational stages

The above definition of plasticity based on the local
symmetry leads to the criteria that deformation is (a) elas-
tic if the first order spatial derivatives of displacement are

coordinate independent, and (b) plastic if they are coordi-
nate dependent. Further analysis leads to a criterion that
describes that the material is about to fracture [6, 9]. This
criterion, called the critical fracture criterion, is given as
below:

Vxo=0, (6)

j#0. (7)
With the help of Eq. (5), Eq. (6) can be understood as the
situation where the material loses its capability of exerting
the plastic recovery force, while the field energy is dissi-
pated via the longitudinal plastic force as represented by
Eq. (7) [8]. In this situation, as the deformation progresses
under the influence of tensile loading, for instance, the
material keeps stretching until it fractures.

4. Experimental arrangement

Detailed description of the electronic speckle-pattern
interferometry can be found elsewhere [2]. In short, a typi-
cal electronic speckle-pattern interferometry setup consists
of two laser beams reflected on an object surface and re-
combined on the image plane of an electronic imaging de-
vice such as a charge-coupled device. On the image plane,
the speckle field associated with the first optical interfero-
metric path is superposed with the speckle field associated
with the second interferometric path. Consequently, at each
point on the image plane, the total intensity contains the
relative phase of the speckles associated with the two paths:

I=A7 + 45 +24,4,co8(6, —6,), (8)
where 4, 4, and 0, 6, represent the amplitude and phase
of the speckles corresponding to the two paths. The image
frame represented by Eq. (8) is called the specklegram. If
the object surface displaces causing a relative phase changes
from 6, =0, to 6, =6, + ¢, the total intensity becomes

I'= A} + A7 + 24,4, cos(0, -0, + 0). 9)
Figure 1 illustrates the experimental arrangement used
in this study. Two in-plane sensitive electronic speckle-pat-

tern interferometry setups are arranged on the front and rear
sides of the specimen attached to a tensile machine. The

FM ﬁ Load
Horizontally sensitive ESPI

FM
Vertically sensitive ESPI

Fig. 1. Experimental setup: ESPI — electric speckle-pattern interfero-
metry, FM — folding mirror, BS — beam splitter, BE — beam expander,
IM — imaging mirror. Multiple imaging mirrors were used to make the
object distances for the front and rear surfaces of the specimen the same,
but only one is shown in this figure to avoid complexity
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Fig. 2. Horizontally (top row) and vertically (bottom row) sensitive fringes
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electronic speckle-pattern interferometry on the front side
is sensitive to horizontal displacement of the specimen and
the one on the rear side is sensitive to vertical displace-
ment. Mirrors are arranged to image both sides of the speci-
men on the same charge-coupled device camera so that the
specklegrams associated with the horizontal displacement
and vertical displacement can be captured simultaneously.
The specimen is a tin plate of 20 mm wide, 100 mm long,
and 0.4 mm thick. One side of the specimen is curved so
that the width of the vertical center is narrowest (15 mm)
and thereby fracture is always initiated on this side at the
vertical center (Fig. 2). The specklegrams are taken at
30 frames/s as the tensile machine applies the load at a con-
stant pulling rate of 4 um/s.

By subtracting the specklegram taken at a certain time
step from the specklegram taken at another time step, a dif-
ferential specklegram, called the interferogram, can be ob-
tained. Each interferogram has an intensity profile corre-
sponding to the difference of Egs. (8) and (9). Figure 2, as
an example, shows interferograms obtained at several time
steps in the same tensile experiment. As these images indi-
cate, each interferogram shows a number of dark fringes.
Each dark fringe represents the contour of displacement
whose phase change (¢ in Eq. (9)) is an even integer mul-
tiple of 7.

5. Interpretation of fringe patterns

By approximating the dark fringes observed in Fig. 2
with second order polynomials, we can express the corre-
sponding displacement as follows:

u(x, y) = a,x* +ayx + byy? +b,y = mu,

(10)
(11)

where u and v denote the horizontal and vertical displace-
ment, respectively, m and n are integers, and u, and v,
represent the unit displacement corresponding to the phase
change of ¢ = 2m. It is reasonable to eliminate the term
proportional to xy because the curved fringes are symmet-

v(x, y) =czx2 +clx+d2y2 +d,y =nv,,

ric about the x or y axis (Fig. 2). With these polynomial
approximations, different stages of deformation can be ex-
pressed as follows.

5.1. Elastic condition

The elasticity is characterized as coordinate indepen-
dent distortion tensor components, i.e., the first order de-
rivatives of displacement (du/dx, du/dy, etc.) are constant.
In Egs. (10) and (11), this means that the coefficients for
the second order terms are all zero, or the dark fringes are
equally-spaced straight lines. If this condition is true, the
deformation is elastic.

5.2. Plastic condition

If the above condition of elasticity is not true, the defor-
mation is plastic. It follows that if the dark fringes are curved
or not equally spaced, the deformation is plastic.

5.3. Critical fracture condition

In the xy plane, the critical fracture criterion (6) and (7)
can be expressed as follows:

2 2
(Vxo), = Jo, =a_v_a_u=
dy  oxdy oy’

=-2b,y=0, ie, b, =0, (12)

2 2

(Vxo) __Ow. __[97v_9d%u |_
7 ox ox>  Oxdy

=-2¢,x=0, ie., ¢, =0, (13)
Table 1

Possible combinations of coefficient of u(x, y) to satisfy condition (12)

Case 1 2 3 4 5 6 7 8
a, =0 0 | 20 20 | =0 | = = =0
a #0 #0 | = = £0 | = £0 =0
by #0 = #0 = =0 #0 #0 =0




Table 2

Equation and shape of horizontally sensitive fringes u(x, )
under critical fracture condition

Case Equation and shape of fringes

1 a2x2 +a;x+ by =mug, vertical parabolas

a2x2 +a;x =mu,, compressed, vertical straight lines

ayx? +byy = mug, vertical parabolas

ayx? = muy, compressed, vertical straight lines

ajx = mug, equally-spaced, vertical straight lines

by =muy, equally-spaced, horizontal straight lines

ajx + by = mug, equally-spaced, slant straight lines

(N[ |wv | W]

trivial

Table 3

Equation and shape of vertically sensitive fringes v(x, )
under critical fracture condition

Case Equation and shape of fringes
¢ d, yi+ dyy +c1x = nv, horizontal parabolas
2 d, y2 +d,y =nv,, compressed, horizontal straight lines
3 d, 2+ ¢1x = nv, horizontal parabolas
4 d, ¥y = nvg, compressed, horizontal straight lines
5 dyy = nv,, equally-spaced, horizontal straight lines
6 c1x = nvg, equally-spaced, vertical straight lines
7 dy +cix =nv,, equally-spaced, slant straight lines
8’ trivial
e[ 2,20 )y,
ox dy
=€eayx+a; +2d,y +d, )Wy #0, (14)

where Eq. (4) is used in Eq. (14). Equation (12) indicates
that under the critical fracture condition the horizontally
sensitive fringes u(x, y) does not have the second order de-
pendence on y while it can have the second order depen-
dence on x. Similarly, Eq. (13) indicates that the vertically
sensitive fringes v(x, y) does not have the second order de-
pendence on x but can have the second order dependence
on y. Table 1 lists all the possible combinations for the co-
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Fig. 3. Loading characteristics of specimen shown in Fig. 2

efficients of the horizontally sensitive fringes to satisfy con-
dition Eq. (12), and Table 2 shows the shape and expres-
sion of the dark fringes for each combination. Table 3 shows
the corresponding cases for the vertically sensitive fringes.

The fringe shapes observed in Tables 2 and 3 can be
conveniently summarized as follows. If horizontally/verti-
cally sensitive fringes lose their horizontal/vertical curva-
ture, it means that the critical fracture condition is satisfied.
Equivalently, if horizontally/vertically sensitive fringes show
a horizontal/vertical curvature, the material is in the plastic
regime but does not meet the critical fracture condition.

With these in mind, we now analyze the fringe patterns
seen in Fig. 2. The images in the upper and lower rows are,
respectively, the horizontally and vertically sensitive fringes.
The pair of the images in the same column are the fringes
formed from the specklegrams taken at the same time steps.
Figure 3 is the loading characteristics of the specimen shown
in Fig. 2. The labels a—e in Fig. 3 indicate the points on the
loading curve when the fringe patterns a—e in Fig. 2 are
formed. The following observations support the above ar-
gument regarding the relationships between the fringe sha-
pes and the stage of deformation.

Fringes in Fig. 2(a) represent elastic deformation.
Fringes are all straight lines and equally spaced. Figure 3
supports this observation indicating that the stress-strain
relationship is in the linear range when these fringes are
formed.

Fringes in Fig. 2(b) correspond to the point where the
linear stress-strain relationship is about to finish (Fig. 3).

Fig. 4. Fringe pattern moving with a crack tip



Fig. 5. Vertically sensitive fringes observed in a thicker steel specimen (a), the specimen deforms plastically in the entire view (b), the near crack-tip
region is divided into elastic and plastic zones, as indicated in (c¢). The time elapsed from a reference time is 3.8 (@), 10.2 s (b and ¢)

Note that near the vertical center of the images, the hori-
zontally/vertically sensitive fringes show horizontal/verti-
cal parabolic shapes. In accordance with the above argu-
ment, this indicates that the material deforms plastically but
has not reached the critical fracturing stage. The same ten-
dency (the horizontally/vertically sensitive fringes show
horizontal/vertical parabolas) continues till point ¢ in Fig. 3.
Atpointd in Fig. 3, the horizontally/vertically sensitive
fringes lose the horizontal/vertical curvatures, becoming
straight lines. These satisfy the critical fracture conditions
7 and 7’. Indeed, short after this point, the loading curve
begins to decrease supporting this observation. It is interest-
ing to note that the critical fracture condition is satisfied in the
horizontally and vertically sensitive fringes at the same time.
Fringes in Fig. 2(e) are typically observed in the last
stage of deformation where the load decreases monotoni-
cally. Normally, the horizontally and vertically sensitive
fringes show similar slant straight lines that move with the
crack tip until the specimen completely fractures. Figure 4
shows an example of such a pattern observed in horizon-
tally sensitive fringes obtained in a different experiment.
The fringe pattern can be classified as case 7 of Table 2.
Apparently, du/dx # 0, and condition (14) is satisfied.
Figure 5 shows vertically sensitive fringes observed in
a similar tensile experiment in which a carbon steel (S50C)
specimen thicker (62 mm wide, 70 mm long, and 13 mm
thick) than the tin specimen is used at a higher pulling rate
(100 um/s). At ¢t = 3.8 s, two vertically parabolic fringes
(highlighted by the arrows) are observed. However, at ¢ =
=10.2 s, the fringes are horizontally parabolic (inside the
circle) or straight. In Fig. 5(c), the fringe patternat7=10.2 s
is divided into four zones based on the shapes of the fringes.
In zones I and 111, the fringes are equally-spaced, vertical
and straight; in zone II, the fringes are equally-spaced, hori-
zontal and straight, and in zone IV the fringes are horizon-
tally parabolic. According to the criteria shown in Table 3,
these observations can be explained as follows. As of 3.8 s,
the specimen deforms plastically in the entire view of the
fringe pattern. At a certain point of time within the next
6.4 s, the near crack-tip region is divided into elastic zones
(zones I-11T) and the plastic zone (zone IV). Judging from
the orientations of the straight fringes, it is likely that in

zones I and III the specimen is experiencing counterclock-
wise and clockwise rotations, respectively, and in zone 11 it
is experiencing compression due to the two opposite rota-
tions. Moreover, as of 10.2 s, the fringes in the plastic zone
satisfy the critical fracture criterion. Indeed, the specimen
fractured at 10.3 s.

In summary, a method to visualize the plastic zone in
the near crack-tip displacement field has been proposed and
demonstrated. Using the plastic and critical fracture crite-
ria derived from physical mesomechanics, this method is
capable of diagnosing the visualized deformation as to
whether the crack is about to open. Considering that these
criteria are based on a fundamental physical principle, this
method is expected to be applicable to materials showing
ductile fracture in general.
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