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Abstract

Despite its slow convergence, the use of the Bernstein polynomial approxima-

tion is becoming more frequent in Statistics, especially for density estimation

of compactly supported probability distributions. This is due to its numerous

attractive properties, from both an approximation (uniform shape-preserving

approximation, etc.) and a statistical (bona fide estimation, low boundary

bias, etc.) point of view. An original method for estimating distribution

functions and densities with Bernstein polynomials is proposed, which takes

advantage of results about the eigenstructure of the Bernstein operator to re-

fine a convergence acceleration method. Furthermore, an original adaptative

method for choosing the degree of the polynomial is worked out. The method

is successfully applied to two data-sets which are important benchmarks in

the field of Density Estimation.
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1. Introduction

Although S. Bernstein simultaneously introduced both the polynomials

and the operator that bear his name in his famous constructive proof of the

Stone-Weierstrass theorem (Bernstein , 1912), both of these objects naturally

split up with time. While there is a large interest in the Bernstein opera-

tor in the literature on Approximation Theory, (see for instance Cooper and

Waldron (2000); Sevy (1993, 1995); Sahai (2004)), researchers from other

disciplines essentially focus on Bernstein polynomials. For instance, the at-

tractive properties of this approximation prompted statisticians to apply it to

Density Estimation (Vitale , 1975; Babu et al. , 2002; Bouezmarni and Rolin

, 2007; Leblanc , 2010, 2012a,b), Regression (A. Marco and J.J. Martinez ,

2010; Curtis and Ghosh , 2011; Wang and Ghosh , 2012) or Bayesian Infer-

ence (Petrone , 1999). However, most of these authors paid little attention

to the Bernstein operator itself.

Nevertheless, an operator is attached to a pair of vector spaces, and not

to particular bases of these spaces. We highlight in Section 3 that Bernstein

polynomials consist in a natural output basis for the eponym operator, while

the natural input basis is a Lagrange polynomial basis (see also Cooper and

Waldron (2000), Section 5). In addition, we must take into account the pair

of bases associated with the eigendecompositon of the Bernstein operator,

given by Cooper and Waldron (2000). Bearing in mind a generalization of

the Sevy convergence acceleration method (Sevy , 1993, 1995), we further

investigate in Section 3 the matrix representation of powers of the Bernstein

operator with respect to these bases. This enables us to define first, in
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Section 4, fractional Bernstein operators and second, in Section 5, fractional

Sevy approximation sequences. This constitutes the basis for refining results

obtained by Manté (2012), where both the distribution function and the

density approximation were obtained using Sevy’s iteration scheme.

Now, roughly speaking, density estimation or approximation by Bernstein

polynomials (Babu et al. , 2002; Bouezmarni and Rolin , 2007; Leblanc , 2010,

2012a,b; Manté , 2012) consists in fitting a Bernstein polynomial of some

order m on a distribution function, and in differentiating it. More precisely,

these authors estimate the distribution function (d.f.) F associated with

a random variable X from m values of the empirical distribution function

(e.d.f.) FN obtained from a N-sample of X :

F̃N,m(x) :=
m∑
k=0

FN(
k

m
)wm,k(x) ,

where wn,j(x) :=
(
n
j

)
xj (1− x)n−j. The choice of an optimal number of bins

m∗ is always a critical step. In the density estimation setting, most authors

recommend either choosing m∗ = ν(N), where N is the sample size and

ν is some function stemming from asymptotic results (Babu et al. , 2002;

Leblanc , 2010, 2012a), or else obtaining m∗ from cross-validation methods

(Bouezmarni and Rolin , 2007; Leblanc , 2010).

In Section 6 we propose another method, starting with the Babu et al.

(2002) upper value m0 := N/ ln (N). It consists in selecting m∗ ≤ m0 in

order that the same optimal m∗ should be obtained with a high probability

from different N-samples (stability), and that the “coarsened” distribution

functions associated with these m∗ bins should be close to the classical em-

pirical distribution function FN (fidelity). The method is tested on real data
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in Section 7.

2. Notation

We will work in the Banach space C [0, 1] of continuous functions on

[0, 1], equipped with the Chebyshev norm ∥f∥ := max
x∈[0,1]

|f (x)|. Pn denotes

the subspace of C [0, 1] consisting of polynomials of degree k ≤ n, and Pn

denotes the complement of P1 in Pn i.e. the vector space of polynomials of

degree 1 < k ≤ n.

Consider an operator U : C [0, 1] → C [0, 1]; for n ≥ 2 (fixed), its re-

striction to Pn (i.e. the operator U |Pn : Pn → C[0, 1] such that ∀ f ∈

Pn, U |Pn (f) = U (f)) will be denoted
◦
U , and its restriction to Pn will be

denoted U . For the sake of simplicity, the restrictions of the identity operator

to these subspaces will be denoted 1, instead of
◦
1 or 1.

In the finite dimensional setting, we will use the matrix p-norm (or ℓp-

norm) ∥U∥p := sup
v ̸=0

∥U(v)∥p
∥v∥p

where ∥v∥p is the usual vector ℓp-norm. Notice

that ∥U∥1 and ∥U∥∞ are the greatest sum of the absolute values of the

matrix elements along columns and rows, respectively, while ∥U∥2 is the

spectral norm (Farouki , 1991). In this setting, Mat (U ;Ln,Wn) will denote

the matrix representation of the operator U with respect to the bases Ln and

Wn.

Finally, the expression Y
L
= X denotes that both of the random variables

X and Y obey the same probability law. The integer value of some real

number x will be denoted ⌊x⌋.
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3. Expression of powers of the Bernstein operator into different

bases

The Bernstein operator Bn : C [0, 1] → C [0, 1] is defined (Cooper and

Waldron , 2000; Manté , 2012; Sevy , 1995) by:

Bn [f ] (x) :=
n∑

j=0

wn,j(x)f(
j

n
),

with wn,j(x) :=
(
n
j

)
xj (1− x)n−j. Of course, its image R (Bn) is included in

Pn. In this section, we will focus on the matrix representation of powers of

Bn with respect to three bases of Pn: Lagrange and Bernstein bases, and

the eigenfunctions of Bn.

3.1. Expression of powers of Bn relative to Lagrange and Bernstein bases

First, let us consider the Lagrange interpolation operator Ln : C [0, 1] →

C [0, 1], defined by

Ln [f ] (x) :=
n∑

j=0

ℓn,j (x) f(
j

n
),

where ℓn,j (x) :=
n∏

k=0
k ̸=j

nx− k

j − k
is the jth Lagrange polynomial in the equally

spaced case. Clearly, R (Ln) = Pn and, since Ln is idempotent and the

Lebesgue constant ∥Ln∥ = max
∥f∦=0

∥Ln[f ]∥
∥f∥ ∼ 2n

e n log(n)
(see Mills and Smith

(1992)) is bounded for any finite n, Ln is the projection onto Pn. Con-

sequently, any f ∈ C [0, 1] is the direct sum of two components: Ln [f ] and

the “ Lagrange residual” (f − Ln [f ]).
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Lemma 1. ∀k ≥ 1, Bk
n =

◦
Bk

n ◦ Ln, where
◦
Bk

n :=

(
◦
Bn

)k

denotes the power

of order k of the restricted operator.

Proof. Because Ln is interpolatory, we can write:

Bn : C [0, 1]
Ln−→ Pn

◦
Bn−→ Pn.

In other words, Bn =
◦
Bn ◦ Ln; furthermore, since Ln is the projection onto

Pn, ∀k ≥ 1, Ln ◦
◦
Bk

n =
◦
Bk

n

Consider now a polynomial P ∈ Pn; we have on the one hand Ln [P ] (x) =
n∑

j=0

ℓn,j (x)P (
j

n
) and on the other hand

◦
Bn [P ] (x) =

n∑
j=0

wn,j(x)P (
j

n
) . Thus,

with respect to the bases Ln := {ℓn,j (x) , 0 ≤ j ≤ n} andWn := {wn,j (x) , 0 ≤ j ≤ n}

the matrix of
◦
Bn is the identity matrix: Mat

(
◦
Bn;Ln,Wn

)
= In. Let us

denote LW[n] the transformation matrix associated with the bases Ln and

Wn , whose jth column consists in the coordinates of wn,j in the basis Ln.

Lemma 2. The matrix of
◦
Bk

n with respect to the bases Ln andWn isMat

( ◦
Bk

n;Ln,Wn

)
=

LW k−1
[n] .

Proof. One can easily verify that LW[n] i,j = wn,j

(
i
n

)
; consequently,Mat

(
◦
Bn;Wn,Wn

)
=

LW[n]. Thus, the iterated operator of order k can be represented by the di-

agram:

Bk
n : C [0, 1]

Ln−→ (Pn, Ln)
In−→ (Pn,Wn)

LWk−1
[n]−→ (Pn,Wn)

and Mat

( ◦
Bk

n;Ln,Wn

)
= LW k−1

[n]
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3.2. Expression of powers of Bn relative to the eigenfunctions of Bn

At present, the focus is on the eigenstructure of Bn, which was completely

elucidated by Cooper and Waldron (2000). They demonstrated the following

theorem.

Theorem 1. The Bernstein operator can be represented in the diagonal form

Bn [f ] =
n∑

j=0

λ
[n]
j π

[n]
j µ

[n]
j (f) , (1)

where f ∈ C [0, 1], λ
[n]
j and π

[n]
j are the eigenvalues and eigenfunctions of Bn,

and µ
[n]
j are the dual functionals to π

[n]
j .

The eigenvalues are given by λ
[n]
j = n!

(n−j)! nj , while π
[n]
j is a polynomial of

degree j , which can be calculated with a recurrence formula given in Cooper

and Waldron (2000). As for the µ
[n]
j , they constitute a basis for the dual

space P∗
n ( C [0, 1]∗, such that

⟨
µ
[n]
j , π

[n]
k

⟩
= δj,k ∀j, k.

Corollary 1. Using the classical notation u ⊗ v∗ (w) := u ⟨v∗, w⟩ (Bowen

and Wang , 1976), we can rewrite Eq. (1) in an alternative form:

Bn [f ] =
n∑

j=0

λ
[n]
j π

[n]
j ⊗ π

∗[n]
j (Ln [f ]) . (2)

Proof: see the appendix.

Thus, Bn and
◦
Bn have exactly the same eigenstructure. Denoting Λ[n]

the diagonal matrix associated with the λ
[n]
j , we can now write the diagram:

Bk
n : C [0, 1]

Ln−→ (Pn, Ln)
LΠ[n]−→

(
Pn,Π[n]

) Λk
[n]−→
(
Pn,Π[n]

) ΠW[n]−→ (Pn,Wn) (3)

where LΠ[n] and ΠW[n] are the transformation matrices associated with these

bases.
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4. Fractional Bernstein operators

We propose in this section, for any integer K ≥ 2, a definition of the Kth

“root” of the operator Gn := (1−Bn), denoted G
1/K
n ; this will enable us to

generalize iterated boolean sums of operators studied by Sevy (1993).

For a fixed continuous function f , consider the decomposition: (1−Bn) [f ] =

(f − Ln [f ]) + (Ln [f ]−Bn [f ]). While it is straightforward to write that

(Ln [f ]−Bn [f ]) =

(
1−

◦
Bn

)
[Ln [f ]], we do not have much information

about the residual f − Ln [f ]. In fact, the only thing that can be said is

that ∥f − Ln [f ]∥ ≤ (1 + ∥Ln∥) ∥f∥ ∼ 2n

e n log(n)
∥f∥ (Laurent , 1972; Mills

and Smith , 1992). This does not matter here, because the objective is to

compute expressions like
(
1− (1−Bn)

I
)
[f ] (see Section 5), and we have

the following result (see appendix for proof).

Lemma 3. For any integer I,
(
1− (1−Bn)

I
)
=

(
1−

(
1−

◦
Bn

)I
)

◦ Ln.

Consequently, we can proceed as if f ∈ R (Ln), and we do not need to

worry about the Lagrange residual. Now, thanks to Eq. (2), we have:

◦
Gn ◦ Ln [f ] :=

(
1−

◦
Bn

)
[Ln [f ]] =

n∑
j=0

(
1− λ

[n]
j

)
π
[n]
j ⊗ π

∗[n]
j (Ln [f ]) .

Thus,
◦
Gn can be considered as a symmetrical bilinear application, and its

matrix relative to some basis E[n] ofPn isMat

(
◦
Gn;E[n], E[n]

)
= Q[n] Γ[n]Q

t
[n],

where Q[n] is orthogonal and Γ[n] is the diagonal matrix associated with the

vector (0, 0, 1/n, (3n− 2) /n2, · · · , 1− n!/nn).

Consider now the restriction Bn of
◦
Bn to Pn. Since Bn reproduces only

the linear polynomials (even quadratic polynomials are not reproduced by Bn
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- see Walz (2000)), the operator Gn := 1−Bn is injective. All its eigenvalues

are positive, and the maximal one is 1− n!
nn < 1−

√
2πn exp

(
−n+ 1

12n
− 1

360n3

)
(see Impens (2003)).

Since the maximum eigenvalue of Bn is 1 − 1
n
, it is possible to define a

new operator Gn
(α)

from the classical results below (valid in a much larger

setting than ours).

Proposition 1. (Kato (1995), Ch. 9&10)

(1) Let T be an operator of finite trace (trace class) in a separable Hilbert

space H, such that its spectral radius is smaller than 1. Then we may define

the operator

log (1 + T ) :=
∞∑
k=1

(−1)k−1 T
k

k
,

which also belongs to the trace class.

(2) Let T be a bounded operator defined on a Banach space. Consider the

Taylor series:
∞∑
k=0

(−1)k ukT k

k!
.

It is absolutely convergent for any complex number u, and defines an operator

denoted exp (−uT ).

Using the first part of the Proposition above, we can first define the

operator log
(
Gn

)
and afterwards, thanks to the second part, we can define

for any α > 0 the operator we need:

Definition 1.

Gn
(α)

:= exp
(
α log

(
Gn

))
. (4)
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The matrix representation of this new operator is simple; it is given in

the following result (see the appendix for a proof).

Proposition 2. Suppose E[n] is some basis of Pn. Then,Mat
(
Gn

(α)
;E[n], E[n]

)
=

Q[n] Γ[n]
(α)

Q[n]
t
, where Γ[n]

(α)
is the diagonal matrix associated with the vec-

tor
((

1
n

)α
,
(
3n−2
n2

)α
, · · · ,

(
1− n!

nn

)α)
and Q[n] is orthogonal.

5. Interpolating Sevy sequences

In order to accelerate the convergence of Bernstein approximations, Sevy

(1993, 1995) proposed to replace Bn by the iterated operator

II
n :=

(
1− (1−Bn)

I
)
. (5)

This method was re-discovered by Sahai (2004), who noticed that one can

write C0[0, 1] ∋ F = Bn[F ]+E, where E ∈ C0[0, 1] is an unknown “ Bernstein

residual” which can be approximated by Bn[E]. Then, Bn[F ] + Bn[E] =(
1− (1−Bn)

2) [F ] is a better approximation of F than Bn[F ], and so on...

Sevy proved the following result :

Theorem 2. (Sevy (1995), see also Cooper and Waldron (2000)) For some

fixed n ≥ 1 and any function F defined on [0,1],

∥∥II
n[F ]− Ln [F ]

∥∥ −→ 0
I→∞

. (6)

Thus, Sevy sequences build a bridge between Bernstein approximation

(which has nice shape-preserving properties, but converges slowly) and La-

grange interpolation, which is notoriously a bad approximate, especially in

the case of equispaced knots (de Boor (1978, Ch. 2); see also Laurent (1972,
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Ch. 5)). Both of these polynomials can have bad properties: the first one

can be suspected of excessive smoothness (especially when the sample size

is small or moderate), while the second one is generally ”bumpy”. Search-

ing for a trade-off, Cooper and Waldron (2000) proposed to run across the

whole segment t Bn[F ] + (1− t)Ln [F ] , 0 ≤ t ≤ 1. We will follow a different

line, specific to density approximation, to work out another trade-off between

both types of approximations.

Proposition 3. Let P ∈ Pn = P1⊕Pn, and consider the associated decom-

position: P = P1 + P̄ . We have:

∀ k ≥ 1, Ik
n (P ) = P1 + Ik

n

(
P̄
)
.

Proof: see the appendix.

Because of Lemma 3 and the proposition above, ∀ f ∈ C [0, 1] , Ik
n (f) =

L1 [f ] + Ik
n (Ln [f ]− L1 [f ]), with L1 [f ] (x) = x f (1) + (1− x) f (0) ∀ x ∈

[0, 1]. Consequently, it is quite natural to propose the following definition of

fractional sequences.

Definition 2. Let K ≥ 2 be an integer, and f ∈ C [0, 1]. The K-fractional

Sevy approximation sequence of f is defined by:

Ij
n;K [f ] := L1 [f ] +

(
1−Gn

(j/K)
)
(Ln [f ]− L1 [f ]) , j ≥ 1.

This sequence interpolates Sevy’s one, since Ij K
n;K [f ] = Ij

n (f).

Proposition 4. The matrix of the restricted fractional operator is: Mat

(
◦
I
j

n;K ;Ln,Wn

)
=

ΠW[n] ◦Λ(j/K)
[n] ◦LΠ[n], where Λ

(j/K)
[n] is the diagonal matrix associated with the

vector
(
1, 1, 1−

(
1
n

)(j/K)
, 1−

(
3n−2
n2

)(j/K)
, · · · , 1−

(
1− n!

nn

)(j/K)
)
.
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Proof. Using the blocks structure associated with the decomposition Pn =

P1 ⊕ Pn, we can see that Mat

(
◦
I
j

n;K ; Π[n],Π[n]

)
= Λ

(j/K)
[n] . Thus, the frac-

tional operator can be represented by a diagram similar to (3):

Ij
n;K : C [0, 1]

Ln−→ (Pn, Ln)
LΠ[n]−→

(
Pn,Π[n]

) Λ
(j/K)
[n]−→

(
Pn,Π[n]

) ΠW[n]−→ (Pn,Wn)

5.1. Numerical difficulties

Because of Lemmas 2 and 3, computing a classical Sevy sequence amounts

to computing powers of the transformation matrix LW[n]. SinceMat

(
◦
Bn;Wn,Wn

)
=

LW[n] , the condition number of this matrix in the ℓ2-norm is (Farouki , 1991):
∥LW[n]∥2∥∥∥LW−1

[n]

∥∥∥
2

=
λ
[n]
0

λ
[n]
n

= nn

n!
≈ en√

2πn
(Cooper and Waldron , 2000; Impens , 2003).

Thus, LW[n] is ill-conditioned in the ℓ2-norm sense, and one must expect to

encounter numerical problems when n is big enough. The situation is more

complicated in the case of fractional sequences, since Proposition 4 shows

that the matrix of the restricted operator depends on both of the transfor-

mation matrices LΠ[n] and ΠW[n]. To our knowledge, the transformations

between Lagrange polynomials, Bernstein polynomials, and the Bernstein

operator eigenfunctions system have not been studied yet. However, it is well-

known that the transformations between power and Bernstein bases (Farouki

, 1991, 2012) or between Hermite and Bernstein bases (Hermann , 1996) are

ill-conditioned.

The idea here is merely to control numerical errors in the computation of

Ij
n;K [f ]. First, notice that Mat

(
◦
Bn;Ln,Wn

)
= ΠW[n] ◦ Λ[n] ◦ LΠ[n]; thus,

sinceMat

(
◦
Bn;Ln,Wn

)
= In, the matrix norms

∥∥ΠW[n] ◦ Λ[n] ◦ LΠ[n] − In
∥∥
1

12
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and
∥∥ΠW[n] ◦ Λ[n] ◦ LΠ[n] − In

∥∥
∞ are convenient indicators of loss of numer-

ical accuracy due to the ill-conditioning of the transformation matrices. In

Figure 1, we plotted the logarithm of the second indicator for n ranging

from 1 to 35 (a similar graph has been obtained for the first indicator). The

reader can see that indeed the dimension of Pn should not exceed n = 21.

Furthermore, we must add to this difficulty the computational cost of the

eigenfunctions which becomes prohibitive for n ≥ 22. To sum up, for practi-

cal reasons, it seems necessary to restrict ourselves to polynomials of degree

lower than 21.

6. Application of fractional sequences to distribution function and

density estimation

Suppose F is a differentiable d.f. associated with a random variable X

supported by [0, 1] and that SN := {X1, · · ·XN} is a N -sample of X, giving

rise to the e.d.f. FN(x). After Vitale (1975), who considered Bernstein den-

sity estimators for the first time, Babu et al. (2002) proposed an estimator

13



F̃N,m of F , consisting in smoothing the random step function FN :

F̃N,m(x) :=
m∑
k=0

FN(
k

m
)wm,k(x) = Bm[FN ]. (7)

It is noteworthy that this estimator also smoothes another step function

FN,m obtained by sub-sampling FN , whose jump set is:

{
(0, 0) ,

(
1

m
,
1

N

N∑
i=1

I

(
Xi <

1

m

))
, · · · ,

(
k

m
,
1

N

N∑
i=1

I

(
Xi <

k

m

))
, · · · , (1, 1)

}
.

(8)

In fact the expression “Bm[FN ]” is slightly improper (FN is not continu-

ous) and should be replaced by “Bm[φN ]”, where φN should be some continu-

ous function (piecewise linear, spline, etc.) interpolating the jump set (8), or

should be obtained from a well-suited histogram (see for instance Birgé and

Rozenholc (2002); Davies et al. (2009); Lugosi and Nobel (1996), and also

Sections 6.1 & 6.2) by numerical integration. For the sake of simplicity, we

will drop this refinement of no practical importance, except in the following

proposition.

Proposition 5. If F is a continuous d.f., the Bernstein operator is a con-

traction. More precisely,

∥Bm [F ]∥ ≤
(
1− 1

2m−1

)
∥F∥ .

Consequently, if φN is a continuous estimate of F derived from FN and such

that φN(0) = 0 and φN(1) = 1, we can write:

∥Bm [φN − F ]∥ ≤
(
1− 1

2m−1

)
∥φN − F∥ .

14



Proof: see the appendix.

As a corollary, Bm[FN ] inherits all the good asymptotic properties of

the e.d.f. in the Chebyshev norm (i.e. in the Kolmogorov-Smirnov metric)

(Servien , 2009; Leblanc , 2009; Babu et al. , 2002) because for large enough

samples, FN can always be closely approached by continuous functions.

Now, what about
∥∥II

m;K [FN ]− F
∥∥? The situation is much more intricate

than in the classical Bernstein operator case, since II
m;K is not a positive

operator. Let us denote ∆N := FN − F , and consider the sampled val-

ues δm;N :=
{
∆N(0), ∆N

(
1
m

)
· · · ,∆N

(
m−1
m

)
, ∆N (1)

}
. We will also denote

H[m;K] (δm;N) as the coordinates of I1
m;K [∆N ] in the equispaced Lagrange

basis.

Proposition 6. We can write:

∥∥II
m;K [FN ]− F

∥∥ ≤
∥∥HI

[m;K]

∥∥
∞ ∥δm;N∥∞ ∥Lm∥+

∥∥II
m;K [F ]− F

∥∥ .
In addition:

lim
I→∞

∥∥II
m;K [F ]− F

∥∥ ≤ (1 + ∥Lm∥) inf
P∈Pn

∥P − F∥ ,

where ∥Lm∥ ≈ 2m

em log(m)
denotes the Lebesgue constant (Mills and Smith ,

1992).

Proof: see the appendix.

Remark 1. To compute HI
[m;K] (except if I = K), we need to compute

LΠ−1
[m] (see the proof of Proposition 6). Since LΠ[m] is ill-conditioned (like

any change of polynomial basis),
∥∥∥HI

[m;K]

∥∥∥
∞

increases with m, just like ∥Lm∥,

while ∥δm;N∥∞ clearly depends on the structure of F , and can be optimized
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(see Sections 6.1 & 6.2). On the other hand, a small value of m controls

the possibly explosive behaviour of the undesirable (and essentially unknown)

term
∥∥II

m;K [F ]− F
∥∥ when I is big. Thus, Proposition 6 shows that the choice

of (m, I) must result from a delicate tuning of these parameters.

The choice of the number of bins m < N in formula 7 was previously

discussed in Babu et al. (2002); Leblanc (2010, 2012a). Babu et al.

(2002) proved the almost sure convergence of (7) when F is continuous, and

gave conditions under which its rate of stochastic convergence can be deter-

mined, as well as the rate of convergence of the associated density estimator

f̃N,m(x) :=
d
dx
F̃N,m(x) when F is differentiable with derivative f := dF

dx
. More

precisely, they proved that f̃N,m almost surely converges towards f , under

the condition m = o (N/ ln (N)). Furthermore, they inferred from simula-

tions that the upper value m = N/ ln (N) is indeed acceptable. But notice

that N ≥ 100 ⇒ m > 21. Thus, the numerical issues brought up is Section

5.1 will arise even with moderate sample size. Consequently, it is necessary

to determine a number of bins m ≤ 21 such that the associated partition of

[0, 1] is well-suited for F .

A similar problem was tackled by Manté (2012) but, instead of an e.d.f.,

the data consisted of a discretized distribution function {F (xj) , 0 ≤ j ≤ N}

sampled on an imposed mesh 0 < x0 ≤ x1 < . . . , < xN−1 ≤ xN < 1. The

method proposed by Manté (2012) consisted firstly in determining a sub-

mesh of size n ≤ N well-suited for Bernstein approximation and, secondly, in

optimizing the number of iterations in formula 5, under the constraint that

the associated density approximation f̂n
(I∗)

is bona fide according to Gajek

(1986), i.e. belongs to both the closed convex cone of positive functions F+
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and the closed convex set F1 of functions integrating to one. A number

of discretized distribution functions (e.g. grain size curves) were processed

in that way (Manté , 2012; Manté and Stora , 2012). Sometimes we found

I∗ = 1; in such cases, the usual approximation cannot be improved by using

Sevy’s iteration scheme, because f̂n
(2)

/∈ F+ ∩ F1, while f̂n
(1)

∈ F+ ∩ F1.

But we can indeed get finer trajectories by slowing down Sevy’s acceleration

method! We just have to supersede integers by rational numbers in formula

(5), that is to say to use a K-fractional sequence (see Definition 2), whose

resolution increases with K. This will be done in the next section.

But for the moment, the objective is to determine what number of bins is

best-suited for a given data set. Since the upper valuem = N/ ln (N) is often

too big to use in practice, we propose to lower it according to the structure

of FN(x). Since 1/m can be considered as a kind of bandwidth (Leblanc

, 2010), lowering m could cause oversmoothing, but one can expect that

fractional iterations will offset this phenomenon. So, let us start with m0 :=

N/ ln (N), and consider the sequence of uniform meshes {Um : 1 ≤ m ≤ m0}

such that Um :=
{

i
m
, 0 ≤ i ≤ m

}
. We propose here a method to select

m∗ ≤ min [m0, 21] such that Um∗ is well-suited for FN . By “well-suited”,

we mean that the same m∗ should be obtained with a high probability from

different samples of size N of X (stability), and that the step functions FN,m∗

and FN should be close to each other (fidelity).

6.1. A stability/fidelity test

We first propose a criterion based on half-sampling (Stephens , 1978)

and on a classical two-sample test. Suppose N = 2M (if N is odd, get rid

of an observation). From SN , we randomly draw (without replacement) a
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sample of size M of X, the learning sample SL
M , and obtain the test sample

ST
M := SN ⊖ SL

M . The subsamples SL
M and ST

M are independent, and the

associated e.d.f.s will be denoted FL
M(x) and F T

M(x).

Even if the hypothesis (H0) := FL = F T is actually true, due to sam-

pling fluctuations (or to a descendant of Maxwell’s demon), the e.d.f. of the

subsamples SL
M and ST

M can be quite different, especially in the case of small

samples. For instance, consider a N -sample of the uniform distribution: the

probability of drawing a learning M -sample of numbers lower than 0.5 and

a test M -sample of numbers greater than 0.5 is not null (with M = 5, it

is 0.0625 and with M = 10, it is about 0.0020). This indeed depends upon

the power of the test, and Stephens (1978) observed that the power of the

half-sample goodness-of-fit test is uneven.

Consequently, we suggest to discard ill-suited subsamples such that the

Kolmogorov-Smirnov random distanceDKS

(
FL
M , F

T
M

)
:= sup

x∈[0,1]

∣∣FL
M(x)− F T

M(x)
∣∣

is excessive: in such a case, finding from the learning sample a mesh well-

suited for the test sample is hopeless! Consider two samples of same size

M of the same distribution, and the distribution-free statistics DKS (F
1, F 2)

associated with the Kolmogorov-Smirnov homogeneity test. Gnedenko and

Korolyuk (1951) obtained the exact distribution of this statistics; this prob-

ability measure DM is defined by:

P (DM ≥ x) = 1 when x ≤ 1/M , P (DM ≥ x) = 0 when x ≥ 1 and

P (DM ≥ x) = 1−
⌊1/x⌋∑

i=−⌊1/x⌋

(−1)i

 2M

M − i ⌊Mx⌋


 2M

M

 ,
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when x ∈]1/M, 1[ (see Der Megreditchian (1986) or Gnedenko and Korolyuk

(1951)). In our case, because (H0) is true, we can write: DKS

(
FL
M , F

T
M

) L
=

DM .

Suppose now we randomly draw a pair of subsamples SL
M and ST

M from

the data, and let d := DKS

(
FL
M , F

T
M

)
be the computed distance between

the associated e.d.f.s. If the p-value P (DM ≥ d) is big enough (≥ 0.95,

say) the pair (L, T ) is “good” since (H0) may be accepted with little risk.

In this case we will use SL
M to build a sequence

{
FL
M,m : 1 ≤ m ≤ m0

}
of

“coarsened” e.d.f.s, each FL
M,m being described by its jump set given by (8).

If this isn’t the case (i.e. if the pair (L, T ) is “bad”), we draw another pair

of subsamples, until (H0) is acceptable.

Suppose now that (H0) is accepted. It is noteworthy that the mth coars-

ening process introduced above actually consists in replacing each XL
i ∈

[ k
m
, k+1

m
[ by the value k

m
. In other words, this is a nonlinear transformation

Cm : [0, 1] → Um such that x ∈ [ k
m
, k+1

m
[⇒ Cm(x) = k

m
. Consequently, we

consider that the e.d.f. FL
M,m has been obtained from a sample of size M of the

induced probability distribution, Cm
∗X. Thus, computing DKS

(
FL
M,m, F

L
M

)
should enable us to decide whether or not the hypothesis (Hm) : Cm

∗X
L
= X

is acceptable, i.e. whether or not the coarsening significantly alters the data.

But, since both these e.d.f.s are based on the same learning sample, testing

this hypothesis from DKS

(
FL
M,m, F

L
M

)
is impossible. On the other hand, us-

ing DKS

(
FL
M,m, F

T
M

)
is straightforward, since SL

M and ST
M are independent:

to accept or reject (Hm), we just have to test whether or not the computed

distance DKS

(
FL
M,m, F

T
M

)
is an unlikely observation of DM .

We could compute all the distances
{
DKS

(
FL
M,m, F

T
M

)
, 1 ≤ m ≤ m0

}
from
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some good pair (L, T ) and scan the corresponding list of p-values; accept-

able values of m will be those for which the p-value is big enough (≥ 0.90,

say). But since such random lists are highly fluctuating, it seems preferable

to perform a reasonable number (e.g. 50) of good trials (such that (H0)

is acceptable), and to summarize the obtained 50 lists of p-values by the

associated m0 box-plots (see the upper panel of Figures 2 & 5).

The reader can see in the upper panel of Figure 2, for instance, that p-

values corresponding to m < 7 are very small. Consequently, such a coarsen-

ing would deeply alter the histogram structure. On the contrary, for m > 15

most p-values are greater than 0.5 and we can conclude that such a coarsening

is quite acceptable.

6.2. A complementary fidelity criterion

We just proposed a method for obtaining a list of acceptable numbers of

bins in histograms, but there are generally several candidates. To select one of

them, we proceed with the complete sample SN . This time, we compute the

list of Hausdorff distances {dH (FN,m, FN) , 1 ≤ m ≤ m0}, which quantify the

similarity of successive coarsened distributions with the complete e.d.f. (see

the lower panel of Figures 2 & 5). Notice that these coarsened distributions

are tightly associated with the classical estimator (Vitale , 1975; Babu et

al. , 2002; Bouezmarni and Rolin , 2007; Leblanc , 2010, 2012a,b) through

Eq. (7).

Remark 2. The choice of the Hausdorff distance is supported by the works of

Beer (1982) and Cuevas and Fraiman (1998) : dH is a metric in the space of

Upper Semi Continuous (USC) functions, and any d.f. is USC. Furthermore,
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if the theoretical d.f. F is continuous, the propositions ∥FK − F∥ −→ 0
K→∞

and

dH (FK , F ) −→ 0
K→∞

are equivalent (Beer , 1982).

To sum up, we will select m∗ ≤ 21 such that both (Hm∗) is acceptable

and dH (FN,m∗ , FN) is visually small (see the lower panels of Figures 2 & 5).

7. Numerical illustrations

The method is tested hereunder on two data sets which can be found in

the classical book of Silverman (1986).

7.1. The suicide Data

This data set is a classical benchmark in Density Estimation (Leblanc ,

2010, 2012a; Silverman , 1986; Eilers and Marx , 1996), which consists of the

duration (in days) of psychiatric treatment for 86 patients used in a study of

suicide risks. These durations range between 1 and 737; consequently they

must be rescaled to the unit interval with a transformation ψa,b(x) :=
x−a
b−a

.

Following Leblanc (2010, 2012a), we chose a = 0 and b = 800.

Notice that the integer closest to 86/ ln (86) ism0 = 19, which was also the

data-driven optimal choice found by Leblanc (2012a). Plots of the criteria

proposed in the previous section are shown in Figure 2. On the upper panel

are displayed the box-plots obtained with 50 good trials. The reader can

see that there is generally not a very significant difference between FL
43,m

and F T
43 for m > 7. Nevertheless, the lower panel of this figure shows that

dH (F43,m, F43) is only small for m ≥ 13, and that m = 17 gives an excellent

approximation. In the end we chose m∗ = 18, because all of the p-values

corresponding to
{
DKS

(
FLi
43,18, F

Ti
43

)
: 1 ≤ i ≤ 50

}
were greater than 0.45,
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Figure 2:
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while 25% of the p-values corresponding to
{
DKS

(
FLi
43,17, F

Ti
43

)
: 1 ≤ i ≤ 50

}
were lower than 0.80. The reader can see that this is also a satisfactory value

from the fidelity point of view (lower panel of Figure 2).

Next, putting together the methodology of Manté (2012) and Definition

2, we first fix K, which determines the resolution of the discrete trajectory:{
Pm∗−1 ∋ f̂m∗

(K+j)
:=

dIK+j
m∗;K [FN,m∗ ](x)

dx
, 0 ≤ j

}

associated with the Kth “root” of the restricted operator Gm∗
(1/K)

. This

trajectory consists in a sequence of polynomials, computed through Proposi-

tion 4. Remember that ∀ (m,K) , IK
m;K [f ] = I1

m (f) = Bm [f ]. Consequently,
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such a trajectory which starts in F+ ∩F1 (f̂m
(K)

=
dF̃N,m(x)

dx
= f̃N,m(x) is al-

ways bona fide) and progressively get out of this closed convex set (in general,
dI∞m;K [FN,m∗ ](x)

dx
=

dLm[FN,m∗ ](x)
dx

/∈ F+ ∩ F1). Thus, once m∗ has been deter-

mined, it is quite natural to search for the first I∗ > K such that f̂m∗
(I∗)

belongs to F+ ∩ F1 while f̂m∗
(I∗+1)

doesn’t. For that purpose, we proposed

(Manté , 2012) to control the graph of f̂m∗
(i)

through two “stresses” : the

positivity stress

π(i) :=

1∫
0

(∣∣∣∣f̂m∗
(i)
∣∣∣∣− f̂m∗

(i)
)
(x)dx, (9)

and the unit total mass stress

ν(i) :=

1∫
0

(
f̂m∗

(i)
+

∣∣∣∣f̂m∗
(i)
∣∣∣∣) (x)dx− 2. (10)

The approximation f̂m∗
(i)

is bona fide if and only if both of these stresses are

null.

Remark 3. As in (Manté , 2012), all of the computations are made in the

Bernstein basis.

We fixed K = 10, and plotted stresses (9) and (10) in Figure 3, together

with the Kolmogorov distance (in percents)

K.D.(i) := 100 sup
x∈[0,1]

∣∣∣∣∣∣
x∫

0

f̂m∗
(K+i)

(t)dt− FN(x)

∣∣∣∣∣∣ .
Since in our case

∫ 1

0

∣∣∣∣f̂m∗
(K+i)

∣∣∣∣ (x)dx ≈ 1, the curves π and ν are indeed very

similar to each other. One can see that for this data set, f̂m∗
(K+i)

� 0, except
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Figure 3:
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for i = 0. The best fit is attained at the 7th iteration, corresponding to the

fractional power r∗ = 10+7
10

= 1.7. Notice that the values of the stresses

(around 0.0004) are very small; thus, the estimated density is practically

bona fide. The obtained estimates are finally displayed in Figure 4. On the

upper panel of the figure, we plotted :

1. the e.d.f. and its Gnedenko confidence bands with coverage probability

0.95 (red) and 0.999 (green)

2. the Bernstein estimators : Bm0 [FN,m0 ] of Babu et al. (2002) (of degree

19) and Bm∗ [FN,m∗ ] (of degree 18); the reader can see that they are

very close to each other

3. the proposed estimator, IK+I∗

m∗;K [FN,m∗ ], which is also a polynomial of

degree 18.

On the lower panel, we plotted the three corresponding density estimators.

Please note that the exponential aspect of these three densities have been

highlighted in previous studies (Eilers and Marx , 1996; Leblanc , 2010,

2012a). Nevertheless, kernel (Silverman , 1986) or spline estimators (Eilers

and Marx (1996), p. 99) behaved differently from ours near zero. Such differ-
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Figure 4:
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ences likely come from the fact that, contrary to most other methods, Bern-

stein estimators are well-behaved near boundaries (Bouezmarni and Rolin ,

2007; Leblanc , 2012b).

7.2. The Old faithful data

This data set consists of 107 eruption lengths of the Old Faithful geyser,

situated in the Yellowstone National Park. These lengths range between 1.67

and 4.93 minutes. Thus, we embedded these data in the interval [1.5, 5] and

rescaled them to the unit interval (following Leblanc (2010)). In this case,

m0 = 23 although Figure 5 shows that choosing m∗ = 18 is quite reasonable:
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Figure 5:
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from the stability point of view (see the upper panel) greater values are

not better, except of course for the choice m∗ = 23 which is too big. In

addition, choosing m∗ = 18 satisfies the fidelity criterion (see the lower panel

of Figure 5).

With K = 10 we found I∗ = 9, and obtained the d.f. and density

estimations plotted in Figure 6. Notice that in this case, the Babu et al.

(2002) density estimator of degree 22 is close to the derivative of Bm∗ [FN,m∗ ]

(of degree 18) while our estimate is rather different: it is similar to estimates

obtained by various authors with kernel (Silverman (1986) p.17, S.T. Chiu

(1991) p. 1897 and Sain and Scott (1996)) or spline estimators (Eilers and
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Marx (1996), pp. 99 and 118). The Bernstein estimator of Leblanc (2010)

was more “bumpy”, probably because it belonged to P65, while ours lies in

P18. Nevertheless it is worthwhile to take the comparison of these results a

bit further.

Following the pioneering work of Vitale (1975), Leblanc (2010) proved

that f̃N,m(x) :=
d
dx
F̃N,m(x) is biased, and proposed instead the biased-corrected

estimator 2 f̃N,m(x) − f̃N,m/2(x). He was inspired by a paper by Politis

and Romano (1995) which was dedicated to spectral density estimation.

Roughly speaking, the method of Politis & Romano consisted in reduc-

ing the bias of the Bartlett spectral estimator f̂ (ω) by computing instead

2 f̂ (ω)− f̄ (ω), where f̄ (ω) was an over-smoothed Bartlett spectral estima-

tor. Now, in the setting of density estimation and with the notations of

Leblanc (2010), if m has been well-chosen, f̃N,m is a pertinent estimator

while f̃N,m/2 is necessarily an oversmoothed estimator. Consider now our

estimate f̂m∗
(2)

=
dI2

m∗ [FN,m∗ ](x)

dx
, and notice that (see formula 5):

I2
m∗ [FN,m∗ ] =

(
1− (1−Bm∗)2

)
[FN,m∗ ] =

(
2Bm∗ −B2

m∗

)
[FN,m∗ ].

It is well-known (Cooper and Waldron , 2000) that, because of the eigen-

values of Bn, iterated operators Bk
n act as filters, such that lim

k→∞
Bk

n [f ] =

L1 [f ]. Thus, f̂m∗
(2)

has the same structure as the biased-corrected estimator

of Leblanc (2010), except that the over-smoothed component B2
m∗ [FN,m∗ ] is

built differently. This might explain why for a lot of data sets studied the

optimal fractional iteration number r∗ := K+I∗

K
was close to 2.
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Figure 6:
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8. Discussion

In this paper we propose an original method for estimating distribution

functions and densities with Bernstein polynomials. On the one hand, we

take advantage of results about the eigenstructure of the Bernstein operator

to improve Sevy’s convergence acceleration method. On the other hand, we

work out an original adaptative method for choosing the number of bins m

of a regular histogram. As Birgé and Rozenholc (2002) noticed: this is an

old and still open problem. In the setting of Bernstein estimation of

distribution functions and densities, Babu et al. (2002) proposed the upper

value m0 := N/ ln (N) as an ”acceptable” solution to this problem, even if

one should theoretically choose m = o (N/ ln (N)). In theory, the number

of bins should not be the same for fitting both the d.f. and the density.

Leblanc (2010, 2012a) proved that (asymptotically) m∗ = O
(
N2/5

)
when

one focusses on density estimation, and m∗ = O
(
N2/3

)
when one focusses

on d.f. estimation. As for Babu et al. (2002), they recommended choosing

m∗ = o
(

N
log(N)

)
in the former case andm∗ = O

((
N

log(N)

)2)
in the latter one.

Thus the density estimator should be built from a smoother d.f. estimator

than the optimal d.f. estimator itself. A similar result was proved by Hjort

and Walker (2001) regarding kernel density estimation. This is probably due

to the fact that, roughly speaking, the differentiation operator is a high-pass

filter whose action must generally be balanced by smoothing.

Our two-step method takes both functions into account: m∗ ≤ m0 - well-

suited for density estimation (Babu et al. , 2002) is first tuned according

to the structure of the e.d.f., and then r∗ is tuned according to the density

which should be bona fide. These steps cannot be interchanged because m∗
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determines the best subspace while r∗ corresponds to the optimal number

of iterations of an operator acting inside this subspace. Thus, simultaneous

bivariate optimization is unnatural.

It is noteworthy thatm0 was independently proposed by Birgé and Rozen-

holc (2002) as an upper number of classes in the setting of automatic

histograms construction. Unfortunately, m0 is generally too big for us

(numerical issues), but we stress that big values of m are indeed linked

to the sluggish convergence of Bernstein approximations. For instance, the

Voronovsky theorem (Davis , 1963) proves that the rate of uniform conver-

gence of the Bernstein approximation of a twice differentiable function is

O (1/m), while the rate of convergence of the best polynomial approxima-

tion is much better: it is ε (m) ln (m) /m2, with lim
m→∞

ε (m) = 0 (Laurent

(1972), p. 303). In the special case of distribution functions, we proved

(Manté , 2012) that one can expect only O (1/
√
m) as a rate of convergence

of the Bernstein approximation. However, it is possible to compensate for

this drawback thanks to the acceleration of convergence method used here:

similar estimates can be obtained either with a small number of iterations

in a large space of polynomials or else with a large number of iterations in a

smaller space (compare Figures 6 & 7; see also Remark 1 ).

Contrary to the method of Babu et al. (2002), the method of Birgé and

Rozenholc (2002) gives an optimal valuemBR which is generally too small for

our purpose. For instance, in the case of the suicide data, it gives the single

optimum mBR = 6 ≪ m0 = 19. In the case of the geyser data, one should

choose mBR = 9 ≪ m0 = 23 (this is the greater optimum of this criterion).

Thus, the associated density estimators are of very low degree (respectively
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Figure 7:
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5 and 8). This can be offset by using a large iteration number: indeed, in

the first case we could find a good approximation with r∗ = 5 while in the

second case r∗ = 18 would be correct (see Figure 7). On the contrary, the

classical Bernstein estimators, of the same degree, (gray curves on Figure 7)

are extremely oversmoothed. This is displayed in more detail on Figure 8,

where we plotted the difference between the raw e.d.f. F107 and its Bernstein

estimate B9 [F107,9], superimposed with F107 − I20
9;1[F107,9], also of degree 9.

Thus, using K-fractional Sevy approximation sequence, it is possible to obtain

satisfactory estimators, even with low-degree polynomials, when the density

is smooth enough! Clearly, in the case of the Old Faithful data, degree 9

is not enough for regions of strong curvature (both the extremities of the

curves), but it is enough for weakly curved regions (see Figure 8) when the

number of iterations is sufficient.

The main issue is indeed the condition that m ≤ 21, which stems from

the numerical problems raised in Section 5.1. These difficulties are due to the

ill-conditioning of matrices involved in the expression: Mat

(
◦
Bn;Ln,Wn

)
=
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ΠW[n]◦Λ[n]◦LΠ[n]. At first sight, one cannot do anything against the curse of

ill-conditioning... Nevertheless, we stressed in Section 5.1 the excessive com-

putational cost of the polynomials calculated from the complicated recurrence

formula of Cooper and Waldron (2000). The observed loss of accuracy is

probably due to the complexity of these calculations.

Please note that on the one hand Mat

(
◦
Bn;Wn,Wn

)
= LW[n] and

Mat

(
◦
Bn;Ln, Ln

)
= LW[n] (see Lemma 2) while on the other hand, Bn [f ] =

n∑
j=0

λ
[n]
j π

[n]
j ⊗π

∗[n]
j (Ln [f ]) . As a consequence, Π[n] can be calculated by poly-

nomial interpolation of the eigenvectors of LW[n]. This is quicker and much

more numerically stable, and makes it possible to go beyond the limitm = 21

(for further details, see (Manté , 2014)).

In spite of this exciting perspective, one should be warned that, no matter

what, m is necessarily bounded by max [m0, M ] (where M is to be deter-

mined) because

• for large values of this upper value, the method proposed in Section 6.1

for determining m∗ would be excessively computationally expensive

• m∗ itself must be bounded, because of the ill-conditioning problems,

and more generally because ”it is impractical to employ polynomials

with degrees running to hundreds or thousands in “real-world” prob-

lems” (Farouki , 2012).

Indeed, the proposed method is heuristic, constructive, and well-suited for

moderate sample sizes in its current state.
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9. Figures captions

Figure 1: plot of the logarithm of the norms
{∥∥ΠW[n] ◦ Λ[n] ◦ LΠ[n] − In

∥∥
∞ , 1 ≤ n ≤ 35

}
,

as an indicator of loss of numerical accuracy in the computation ofMat

(
◦
Bn;Ln,Wn

)
,

due to transformation matrices.

Figure 2: (suicide data). Upper panel: box-plots of the p-values of

{
DKS

(
FLi
43,m, F

Ti
43

)
, 1 ≤ i ≤ 50; 1 ≤ m ≤ m0 = 19

}
,

assuming that each DKS

(
FL
43,m, F

T
43

)
obeys D43. Lower panel: plot of the

Hausdorff distances {dH (F86,m, F86) , 1 ≤ m ≤ 19}.

Figure 3: (suicide data) Plot, with the step 1/10, of the stresses ν(i)

and π(i) characterizing f̂18
(i)
, against the Kolmogorov distance (in percents)

K.D.(i).

Figure 4: (suicide data). Upper panel: plot of both the Bernstein es-

timators B19 [F86,19] of Babu et al. (2002) (dashed gray) and B18 [F86,18]

(gray) superimposed to the proposed one, I17
19;10[F86,19] (black), and to F86

(dots) and the associated Gnedenko confidence bands with coverage proba-

bility 0.95 (red) and 0.999 (green). Lower panel: the density estimates, with

the same graphic directives as in the upper panel.

Figure 5: (geyser data). Upper panel: box-plots of the p-values of

{
DKS

(
FLi
53,m, F

Ti
53

)
, 1 ≤ i ≤ 50; 1 ≤ m ≤ m0 = 23

}
,

assuming that each DKS

(
FL
53,m, F

T
53

)
obeys D53. Lower panel: plot of the

Hausdorff distances {dH (F107,m, F107) , 1 ≤ m ≤ 23}.
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Figure 6: (geyser data). Upper panel: plot of both the Bernstein esti-

mators B23 [F107,23] of Babu et al. (2002) (dashed gray) and B18 [F107,18]

(gray) superimposed to the proposed one, I19
18;10[F107,18] (black), and to F107

(dots) and the associated Gnedenko confidence bands with coverage proba-

bility 0.95 (red) and 0.999 (green). Lower panel: the density estimates, with

the same graphic directives as in the upper panel.

Figure 7: (geyser data). Upper panel: plot of both the Bernstein es-

timators B23 [F107,23] of Babu et al. (2002) (dashed gray) and B9 [F107,9]

(gray) superimposed to the proposed one, I17
9;1[F107,9] (black), and to F107

(dots) and the associated Gnedenko confidence bands with coverage proba-

bility 0.95 (red) and 0.999 (green). Lower panel: the density estimates, with

the same graphic directives as in the upper panel.

Figure 8: (geyser data). Plot of the differences F107 − B9 [F107,9] (gray)

and F107 − I20
9;1[F107,9] (black) between the raw d.f. and iterated Bernstein

estimates.

Acknowledgements

The author is very grateful to the referees for their numerous and helpful

comments and suggestions, and to Starrlight Augustine for greatly improving

the English text.

35



Appendix: proofs of intermediate results

Proof of Corollary 1

Since Bn [(f − Ln [f ])] = 0, we can restrict ourselves to the case where

f ∈ Pn = R (Bn). Since
{
π
[n]
0 , · · · , π[n]

n

}
is a basis of this space, and{

µ
[n]
0 , · · · , µ

[n]
n

}
is a basis of P∗

n we can write, using the standard notation

u⊗ v∗ (w) := u ⟨v∗, w⟩ (Bowen and Wang , 1976):

Bn [f ] =
◦
Bn ◦ Ln [f ] =

n∑
j=0

λ
[n]
j π

[n]
j

⟨
µ
[n]
j ,Ln [f ]

⟩
=

n∑
j=0

λ
[n]
j π

[n]
j ⊗ π

∗[n]
j (Ln [f ])

�

Proof of Lemma 3

Notice first that:

(
1− (1−Bn)

I
)
=

I∑
k=1

(−1)k−1

 I

k

 Bk
n.

Then, thanks to Lemma 1, we can write:

I∑
k=1

(−1)k−1

 I

k

Bk
n =

 I∑
k=1

(−1)k−1

 I

k

 ◦
Bk

n

◦Ln =

(
1−

(
1−

◦
Bn

)I
)
◦Ln

�

Proof of Proposition 2

Remember that
◦
Gn can be considered as a symmetrical bilinear appli-

cation, whose matrix can be written Mat

(
◦
Gn;E[n], E[n]

)
= Q[n] Γ[n]Q

t
[n],

where Q[n] is orthogonal and Γ[n] is the diagonal matrix associated with

the vector (0, 0, 1/n, (3n− 2)/n2, · · · , 1− n!/nn). Eliminating its two first
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eigenfunction (basis of Ker(
◦
Gn)) amounts to restrict this operator to Pn.

As a consequence, we may write Mat
(
Gn;E[n], E[n]

)
= Q[n] Γ[n] Q[n]

t
,

where Q[n] is orthogonal, and Γ[n] is the diagonal matrix associated with the

vector (1/n, (3n− 2)/n2, · · · , 1− n!/nn). Then, we have first: log
(
Gn

)
=∑∞

k=1
Bn

k

k
and, because Mat

(
Bn

k
;E[n], E[n]

)
= Q[n] Λ[n]

k
Q[n]

t
,

Mat
(
log
(
Gn

)
;E[n], E[n]

)
= Q[n]

∑
k≥1

Λ[n]
k

k
Q[n]

t
= Q[n] ∆[n] Q[n]

t
,

where ∆[n] is the diagonal matrix associated with the vector

(∑
k≥1

(1−1/n)k

k
,
∑

k≥1

(1−(3n−2)/n2)
k

k
, · · · ,

∑
k≥1

(n!/nn)k

k

)
=(

log
(
1
n

)
, log

(
(3n−2)

n2

)
, · · · , log

(
1− n!

nn

))
.

Proceeding the same way with the exponential operator, we find:

Mat
(
exp

(
α log

(
Gn

))
;E[n], E[n]

)
= Q[n] Γ[n]

(α)
Q[n]

t

�

Proof of Proposition 3

We demonstrate this proposition by induction. Firstly, note that I1
n (P ) =

Bn (P ) = P1+Bn

(
P̄
)
= P1+I1

n

(
P̄
)
; let us now suppose that for some k > 1,

Ik
n (P ) = P1 + Ik

n

(
P̄
)
. Then:

Ik+1
n (P ) = P − (1−Bn)

k+1 (P ) ,

= P1 + P̄ − (1−Bn)
k ((1−Bn) (P )) ,

= P1 + P̄ − (1−Bn)
k ((1−Bn)

(
P̄
))
,

= P1 + Ik+1
n

(
P̄
)

�
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Proof of Proposition 5

Let us first define the closed subset Ca,b := {f ∈ C [0, 1] | f(0) = a, f(1) = b}.

If F is a d.f. supported by the unit interval, F ∈ C0,1 while, if FN a e.d.f.

associated with a N -sample, (FN − F ) ∈ C0,0.

Both the inequalities claimed result from the fact that the restriction

Bm |Ca,b
: Ca,b → Ca,b is a contraction. More precisely, Rus (2004) proved

that for all f, g ∈ Ca,b, ∥Bm [f − g]∥ ≤
(
1− 1

2m−1

)
∥f − g∥ �

Proof of Proposition 6

Notice first that:

∥∥II
m;K [FN ]− F

∥∥ ≤
∥∥II

m;K [∆N ]
∥∥+ ∥∥II

m;K [F ]− F
∥∥ ,

and, because of Theorem 2, we have the asymptotical relation (Laurent ,

1972, p. 303):

lim
I→∞

∥∥II
m;K [F ]− F

∥∥ ≤ (1 + ∥Lm∥) inf
P∈Pn

∥P − F∥ .

From another side, consider the vector:

δm;N :=

{
∆N(0), ∆N

(
1

m

)
· · · ,∆N

(
m− 1

m

)
, ∆N (1)

}
.

The coordinates of II
m;K [∆N ] in the Lagrange basis are given by

HI
[m;K] (δm;N) := LΠ−1

[m] ◦ Λ
(I/K)
[m] ◦ LΠ[m] ◦ δm;N (see Diagram (3)). In

particular:

HK
[m;K] (δm;N) = LΠ−1

[m] ◦ Λ
(1)
[m] ◦ LΠ[m] ◦ δm;N =WL[m] ◦ δm;N = Bm [∆N ] ,
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and of course:

lim
I→∞

II
m;K [∆N ] = LΠ−1

[m] ◦ Λ
(∞)
[m] ◦ LΠ[m] ◦ δm;N = δm;N = Lm (∆N) .

Thus, for each I ≥ K + 1,
∥∥II

m;K [∆N ]
∥∥ depends on the matrix

HI
[m;K] : δm;N 7→ δIm;N , such that HI

[m;K] (δm;N) =
n∑

j=0

(
δIm;N

)
j
ℓm,j (x),

and we have:

∥∥II
m;K [∆N ]

∥∥ ≤
∥∥HI

[m;K]

∥∥
∞ ∥δm;N∥∞ ∥Lm∥

�
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