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Introduction

Although S. Bernstein simultaneously introduced both the polynomials and the operator that bear his name in his famous constructive proof of the Stone-Weierstrass theorem [START_REF] Bernstein | Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités[END_REF], both of these objects naturally split up with time. While there is a large interest in the Bernstein operator in the literature on Approximation Theory, (see for instance [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF]; [START_REF] Sevy | Convergence of iterated boolean sums of simultaneous approximants[END_REF][START_REF] Sevy | Lagrange and least-squares polynomials as limits of linear combinations of iterates of Bernstein and Durrmeyer polynomials[END_REF]; [START_REF] Sahai | An iterative algorithm for improved approximation by Bernstein's operator using statistical perspective[END_REF]), researchers from other disciplines essentially focus on Bernstein polynomials. For instance, the attractive properties of this approximation prompted statisticians to apply it to Density Estimation [START_REF] Vitale | A Bernstein Polynomial Approach to Density Function Estimation[END_REF][START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF][START_REF] Bouezmarni | Bernstein estimator for unbounded density function[END_REF][START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF]Leblanc , , 2012a,b),b), Regression (A. Marco and J.J. Martinez , 2010;[START_REF] Curtis | A variable selection approach to monotonic regression with Bernstein polynomials[END_REF][START_REF] Wang | Shape restricted nonparametric regression with Bernstein polynomials[END_REF] or Bayesian Inference [START_REF] Petrone | Random Bernstein Polynomials[END_REF]. However, most of these authors paid little attention to the Bernstein operator itself.

Nevertheless, an operator is attached to a pair of vector spaces, and not to particular bases of these spaces. We highlight in Section 3 that Bernstein polynomials consist in a natural output basis for the eponym operator, while the natural input basis is a Lagrange polynomial basis (see also [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF], Section 5). In addition, we must take into account the pair of bases associated with the eigendecompositon of the Bernstein operator, given by [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF]. Bearing in mind a generalization of the Sevy convergence acceleration method [START_REF] Sevy | Convergence of iterated boolean sums of simultaneous approximants[END_REF][START_REF] Sevy | Lagrange and least-squares polynomials as limits of linear combinations of iterates of Bernstein and Durrmeyer polynomials[END_REF], we further investigate in Section 3 the matrix representation of powers of the Bernstein operator with respect to these bases. This enables us to define first, in Section 4, fractional Bernstein operators and second, in Section 5, fractional Sevy approximation sequences. This constitutes the basis for refining results obtained by [START_REF] Manté | Application of iterated Bernstein operators to distribution function and density approximation[END_REF], where both the distribution function and the density approximation were obtained using Sevy's iteration scheme. Now, roughly speaking, density estimation or approximation by Bernstein polynomials [START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF][START_REF] Bouezmarni | Bernstein estimator for unbounded density function[END_REF][START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF]Leblanc , , 2012a,b;,b;[START_REF] Manté | Application of iterated Bernstein operators to distribution function and density approximation[END_REF] consists in fitting a Bernstein polynomial of some order m on a distribution function, and in differentiating it. More precisely, these authors estimate the distribution function (d.f.) F associated with a random variable X from m values of the empirical distribution function (e.d.f.) F N obtained from a N-sample of X :

F N,m (x) := m ∑ k=0 F N ( k m ) w m,k (x) ,
where w n,j (x) := ( n j )

x j (1 -x) n-j . The choice of an optimal number of bins m * is always a critical step. In the density estimation setting, most authors recommend either choosing m * = ν(N ), where N is the sample size and ν is some function stemming from asymptotic results [START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF][START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF]Leblanc , , 2012a)), or else obtaining m * from cross-validation methods [START_REF] Bouezmarni | Bernstein estimator for unbounded density function[END_REF][START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF].

In Section 6 we propose another method, starting with the [START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF] upper value m 0 := N/ ln (N ). It consists in selecting m * ≤ m 0 in order that the same optimal m * should be obtained with a high probability from different N-samples (stability), and that the "coarsened" distribution functions associated with these m * bins should be close to the classical empirical distribution function F N (fidelity). The method is tested on real data in Section 7.

Notation

We will work in the Banach space C [0, 1] of continuous functions on [0, 1], equipped with the Chebyshev norm ∥f ∥ := max x∈ [0,1] |f (x)|. P n denotes the subspace of C [0, 1] consisting of polynomials of degree k ≤ n, and P n denotes the complement of P 1 in P n i.e. the vector space of polynomials of degree 1 < k ≤ n.

Consider an operator U : C [0, 1] → C [0, 1]; for n ≥ 2 (fixed), its restriction to P n (i.e. the operator U | Pn :

P n → C[0, 1] such that ∀ f ∈ P n , U | Pn (f ) = U (f )
) will be denoted

• U , and its restriction to P n will be denoted U . For the sake of simplicity, the restrictions of the identity operator to these subspaces will be denoted 1, instead of • 1 or 1.

In the finite dimensional setting, we will use the matrix p-norm (or

ℓ p - norm) ∥U ∥ p := sup v̸ =0 ∥U (v)∥ p ∥v∥ p
where ∥v∥ p is the usual vector ℓ p -norm. Notice that ∥U ∥ 1 and ∥U ∥ ∞ are the greatest sum of the absolute values of the matrix elements along columns and rows, respectively, while ∥U ∥ 2 is the spectral norm [START_REF] Farouki | On the stability of transformations between power and Bernstein polynomials forms[END_REF]. In this setting, M at (U ; L n , W n ) will denote the matrix representation of the operator U with respect to the bases L n and

W n .
Finally, the expression Y L = X denotes that both of the random variables X and Y obey the same probability law. The integer value of some real number x will be denoted ⌊x⌋.

Expression of powers of the Bernstein operator into different bases

The Bernstein operator [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF][START_REF] Manté | Application of iterated Bernstein operators to distribution function and density approximation[END_REF][START_REF] Sevy | Lagrange and least-squares polynomials as limits of linear combinations of iterates of Bernstein and Durrmeyer polynomials[END_REF] by:

B n : C [0, 1] → C [0, 1] is defined
B n [f ] (x) := n ∑ j=0 w n,j (x)f ( j n ), with w n,j (x) := ( n j ) x j (1 -x) n-j . Of course, its image R (B n ) is included in P n .
In this section, we will focus on the matrix representation of powers of B n with respect to three bases of P n : Lagrange and Bernstein bases, and the eigenfunctions of B n .

Expression of powers of B n relative to Lagrange and Bernstein bases

First, let us consider the Lagrange interpolation operator

L n : C [0, 1] → C [0, 1], defined by L n [f ] (x) := n ∑ j=0 ℓ n,j (x) f ( j n ),
where ℓ n,j (x) :

= n ∏ k=0 k̸ =j n x -k j -k
is the j th Lagrange polynomial in the equally spaced case. Clearly, R (L n ) = P n and, since L n is idempotent and the Lebesgue constant

∥L n ∥ = max ∥f ∦ =0 ∥Ln[f ]∥ ∥f ∥ ∼ 2 n
e n log(n) (see [START_REF] Mills | The Lebesgue constant for Lagrange interpolation on equidistant nodes[END_REF]) is bounded for any finite n, L n is the projection onto P n . Con-

sequently, any f ∈ C [0, 1] is the direct sum of two components: L n [f ] and the " Lagrange residual" (f -L n [f ]). Lemma 1. ∀k ≥ 1, B k n = • B k n • L n , where • B k n := ( • B n
) k denotes the power of order k of the restricted operator.

Proof. Because L n is interpolatory, we can write:

B n : C [0, 1] Ln -→ P n • Bn -→ P n .
In other words,

B n = • B n • L n ; furthermore, since L n is the projection onto P n , ∀k ≥ 1, L n • • B k n = • B k n
Consider now a polynomial P ∈ P n ; we have on the one hand

L n [P ] (x) = n ∑ j=0 ℓ n,j (x) P ( j n
) and on the other hand

• B n [P ] (x) = n ∑ j=0 w n,j (x)P ( j n
) . Thus, with respect to the bases

L n := {ℓ n,j (x) , 0 ≤ j ≤ n} and W n := {w n,j (x) , 0 ≤ j ≤ n} the matrix of • B n is the identity matrix: M at ( • B n ; L n , W n ) = I n . Let us
denote LW [n] the transformation matrix associated with the bases L n and W n , whose j th column consists in the coordinates of w n,j in the basis L n .

Lemma 2. The matrix of 

( • B k n ; L n , W n ) = LW k-1 [n] .
Proof. One can easily verify that LW

[n] i,j = w n,j ( i n ) ; consequently, M at ( • B n ; W n , W n ) = LW [n]
. Thus, the iterated operator of order k can be represented by the diagram:

B k n : C [0, 1] Ln -→ (P n , L n ) In -→ (P n , W n ) LW k-1 [n] -→ (P n , W n )
and M at

( • B k n ; L n , W n ) = LW k-1 [n]

Expression of powers of B n relative to the eigenfunctions of B n

At present, the focus is on the eigenstructure of B n , which was completely elucidated by [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF]. They demonstrated the following theorem.

Theorem 1. The Bernstein operator can be represented in the diagonal form

B n [f ] = n ∑ j=0 λ [n] j π [n] j µ [n] j (f ) , ( 1 
)
where f ∈ C [0, 1], λ [n]
j and π

[n] j are the eigenvalues and eigenfunctions of B n , and µ

[n] j are the dual functionals to π

[n] j .

The eigenvalues are given by λ

[n] j = n! (n-j)! n j , while π [n]
j is a polynomial of degree j , which can be calculated with a recurrence formula given in [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF]. As for the µ

[n] j , they constitute a basis for the dual space

P * n C [0, 1] * , such that ⟨ µ [n] j , π [n] k ⟩ = δ j,k ∀j, k.
Corollary 1. Using the classical notation u ⊗ v * (w) := u ⟨v * , w⟩ [START_REF] Bowen | Introduction to Vectors and Tensors Volume 1: Linear and Multilinear Algebra[END_REF], we can rewrite Eq. ( 1) in an alternative form:

B n [f ] = n ∑ j=0 λ [n] j π [n] j ⊗ π * [n] j (L n [f ]) . ( 2 
)
Proof: see the appendix.

Thus, B n and the diagonal matrix associated with the λ

[n] j , we can now write the diagram:

B k n : C [0, 1] Ln -→ (P n , L n ) LΠ [n] -→ ( P n , Π [n] ) Λ k [n] -→ ( P n , Π [n] ) ΠW [n] -→ (P n , W n ) (3)
where LΠ [n] and ΠW [n] are the transformation matrices associated with these bases.

Fractional Bernstein operators

We propose in this section, for any integer K ≥ 2, a definition of the K th "root" of the operator

G n := (1 -B n ), denoted G 1/K
n ; this will enable us to generalize iterated boolean sums of operators studied by [START_REF] Sevy | Convergence of iterated boolean sums of simultaneous approximants[END_REF].

For a fixed continuous function f , consider the decomposition:

(1 -B n ) [f ] = (f -L n [f ]) + (L n [f ] -B n [f ]). While it is straightforward to write that (L n [f ] -B n [f ]) = ( 1 - • B n ) [L n [f ]],
we do not have much information

about the residual f -L n [f ].
In fact, the only thing that can be said is

that ∥f -L n [f ]∥ ≤ (1 + ∥L n ∥) ∥f ∥ ∼ 2 n
e n log(n) ∥f ∥ [START_REF] Laurent | Approximation et optimisation[END_REF][START_REF] Mills | The Lebesgue constant for Lagrange interpolation on equidistant nodes[END_REF]. This does not matter here, because the objective is to compute expressions like

( 1 -(1 -B n ) I
)

[f ] (see Section 5), and we have the following result (see appendix for proof).

Lemma 3. For any integer I,

( 1 -(1 -B n ) I ) = ( 1 - ( 1 - • B n ) I ) • L n .
Consequently, we can proceed as if f ∈ R (L n ), and we do not need to worry about the Lagrange residual. Now, thanks to Eq. (2), we have:

• G n • L n [f ] := ( 1 - • B n ) [L n [f ]] = n ∑ j=0 ( 1 -λ [n] j ) π [n] j ⊗ π * [n] j (L n [f ]) .
Thus,

• G n can be considered as a symmetrical bilinear application, and its matrix relative to some basis

E [n] of P n is M at ( • G n ; E [n] , E [n] ) = Q [n] Γ [n] Q t [n] , where Q [n] is orthogonal and Γ [n] is the diagonal matrix associated with the vector (0, 0, 1/n, (3n -2) /n 2 , • • • , 1 -n!/n n ).
Consider now the restriction B n of • B n to P n . Since B n reproduces only the linear polynomials (even quadratic polynomials are not reproduced by B n -see [START_REF] Walz | Asymptotic expansions for multivariate polynomial approximation[END_REF]), the operator G n := 1 -B n is injective. All its eigenvalues are positive, and the maximal one is 1 [START_REF] Impens | Stirling's series made easy[END_REF]).

-n! n n < 1- √ 2πn exp ( -n + 1 12n -1 360n 3 ) (see
Since the maximum eigenvalue of B n is 1 -1 n , it is possible to define a new operator G n (α) from the classical results below (valid in a much larger setting than ours).

Proposition 1. [START_REF] Kato | Perturbation theory for linear operators[END_REF], Ch. 9&10)

(1) Let T be an operator of finite trace (trace class) in a separable Hilbert space H, such that its spectral radius is smaller than 1. Then we may define the operator

log (1 + T ) := ∞ ∑ k=1 (-1) k-1 T k k ,
which also belongs to the trace class.

(2) Let T be a bounded operator defined on a Banach space. Consider the Taylor series:

∞ ∑ k=0 (-1) k u k T k k! .
It is absolutely convergent for any complex number u, and defines an operator denoted exp (-u T ).

Using the first part of the Proposition above, we can first define the operator log ( G n ) and afterwards, thanks to the second part, we can define for any α > 0 the operator we need:

Definition 1. G n (α) := exp ( α log ( G n )) . ( 4 
)
The matrix representation of this new operator is simple; it is given in the following result (see the appendix for a proof).

Proposition 2. Suppose E [n] is some basis of P n . Then, M at α) is the diagonal matrix associated with the vector

( G n (α) ; E [n] , E [n] ) = Q [n] Γ [n] (α) Q [n] t , where Γ [n] ( 
(( 1 n ) α , ( 3n-2 n 2 ) α , • • • , ( 1 -n! n n ) α ) and Q [n] is orthogonal.

Interpolating Sevy sequences

In order to accelerate the convergence of Bernstein approximations, Sevy (1993, 1995) proposed to replace B n by the iterated operator

I I n := ( 1 -(1 -B n ) I ) . ( 5 
)
This method was re-discovered by [START_REF] Sahai | An iterative algorithm for improved approximation by Bernstein's operator using statistical perspective[END_REF], who noticed that one can

write C 0 [0, 1] ∋ F = B n [F ]+E, where E ∈ C 0 [0, 1] is an unknown " Bernstein
residual" which can be approximated by

B n [E]. Then, B n [F ] + B n [E] = ( 1 -(1 -B n ) 2 ) [F ] is a better approximation of F than B n [F ]
, and so on...

Sevy proved the following result :

Theorem 2. [START_REF] Sevy | Lagrange and least-squares polynomials as limits of linear combinations of iterates of Bernstein and Durrmeyer polynomials[END_REF], see also [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF]) For some fixed n ≥ 1 and any function F defined on [0,1],

I I n [F ] -L n [F ] -→ 0 I→∞ . ( 6 
)
Thus, Sevy sequences build a bridge between Bernstein approximation (which has nice shape-preserving properties, but converges slowly) and Lagrange interpolation, which is notoriously a bad approximate, especially in the case of equispaced knots (de Boor (1978, Ch. 2); see also Laurent (1972, Ch. 5)). Both of these polynomials can have bad properties: the first one can be suspected of excessive smoothness (especially when the sample size is small or moderate), while the second one is generally "bumpy". Searching for a trade-off, [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF] proposed to run across the

whole segment t B n [F ] + (1 -t) L n [F ] , 0 ≤ t ≤ 1.
We will follow a different line, specific to density approximation, to work out another trade-off between both types of approximations.

Proposition 3. Let P ∈ P n = P 1 ⊕ P n , and consider the associated decomposition: P = P 1 + P . We have:

∀ k ≥ 1, I k n (P ) = P 1 + I k n ( P ) .
Proof: see the appendix.

Because of Lemma 3 and the proposition above, 

∀ f ∈ C [0, 1] , I k n (f ) = L 1 [f ] + I k n (L n [f ] -L 1 [f ]), with L 1 [f ] (x) = x f (1) + (1 -x) f (0) ∀ x ∈ [0, 1]. Consequently
I j n;K [f ] := L 1 [f ] + ( 1 -G n (j/K) ) (L n [f ] -L 1 [f ]) , j ≥ 1.
This sequence interpolates Sevy's one, since

I j K n;K [f ] = I j n (f ).
Proposition 4. The matrix of the restricted fractional operator is: M at

( • I j n;K ; L n , W n ) = ΠW [n] • Λ (j/K) [n]
• LΠ [n] , where Λ

(j/K) [n]
is the diagonal matrix associated with the vector

( 1, 1, 1 - ( 1 n ) (j/K) , 1 - ( 3n-2 n 2 ) (j/K) , • • • , 1 - ( 1 -n! n n ) (j/K) ) .
Proof. Using the blocks structure associated with the decomposition P n = P 1 ⊕ P n , we can see that M at

( • I j n;K ; Π [n] , Π [n] ) = Λ (j/K) [n]
. Thus, the fractional operator can be represented by a diagram similar to (3):

I j n;K : C [0, 1] Ln -→ (P n , L n ) LΠ [n] -→ ( P n , Π [n] ) Λ (j/K) [n] -→ ( P n , Π [n] ) ΠW [n] -→ (P n , W n )

Numerical difficulties

Because of Lemmas 2 and 3, computing a classical Sevy sequence amounts to computing powers of the transformation matrix LW [n] . Since M at

( • B n ; W n , W n ) = LW [n]
, the condition number of this matrix in the ℓ 2 -norm is [START_REF] Farouki | On the stability of transformations between power and Bernstein polynomials forms[END_REF]: [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF][START_REF] Impens | Stirling's series made easy[END_REF]. Thus, LW [n] is ill-conditioned in the ℓ 2 -norm sense, and one must expect to encounter numerical problems when n is big enough. The situation is more complicated in the case of fractional sequences, since Proposition 4 shows that the matrix of the restricted operator depends on both of the transformation matrices LΠ [n] and ΠW [n] . To our knowledge, the transformations between Lagrange polynomials, Bernstein polynomials, and the Bernstein operator eigenfunctions system have not been studied yet. However, it is wellknown that the transformations between power and Bernstein bases [START_REF] Farouki | On the stability of transformations between power and Bernstein polynomials forms[END_REF][START_REF] Farouki | The Bernstein polynomial basis: a centennial retrospective[END_REF] or between Hermite and Bernstein bases [START_REF] Hermann | On the stability of polynomial transformations between Taylor, Bernstein and Hermite forms[END_REF] are ill-conditioned.

∥LW[n]∥ 2 LW -1 [n] 2 = λ [n] 0 λ [n] n = n n n! ≈ e n √ 2πn
The idea here is merely to control numerical errors in the computation of Furthermore, we must add to this difficulty the computational cost of the eigenfunctions which becomes prohibitive for n ≥ 22. To sum up, for practical reasons, it seems necessary to restrict ourselves to polynomials of degree lower than 21.

I j n;K [f ]. First, notice that M at ( • B n ; L n , W n ) = ΠW [n] • Λ [n] • LΠ [n] ; thus, since M at ( • B n ; L n , W n ) = I n , the matrix norms ΠW [n] • Λ [n] • LΠ [n] -I n 1

Application of fractional sequences to distribution function and density estimation

Suppose F is a differentiable d.f. associated with a random variable X supported by [0, 1] and that

S N := {X 1 , • • • X N } is a N -sample of X, giving
rise to the e.d.f. F N (x). After [START_REF] Vitale | A Bernstein Polynomial Approach to Density Function Estimation[END_REF], who considered Bernstein density estimators for the first time, [START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF] proposed an estimator F N,m of F , consisting in smoothing the random step function F N :

F N,m (x) := m ∑ k=0 F N ( k m ) w m,k (x) = B m [F N ]. (7) 
It is noteworthy that this estimator also smoothes another step function F N,m obtained by sub-sampling F N , whose jump set is:

{ (0, 0) , ( 1 m , 1 N N ∑ i=1 I ( X i < 1 m ) ) , • • • , ( k m , 1 N N ∑ i=1 I ( X i < k m ) ) , • • • , (1, 1) } . ( 8 
)
In fact the expression "B m [F N ]" is slightly improper (F N is not continuous) and should be replaced by "B m [φ N ]", where φ N should be some continuous function (piecewise linear, spline, etc.) interpolating the jump set (8), or should be obtained from a well-suited histogram (see for instance [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF]; [START_REF] Davies | A comparison of automatic histogram constructions[END_REF]; [START_REF] Lugosi | Consistency of data-driven histogram methods for density estimation and classification[END_REF], and also Sections 6.1 & 6.2) by numerical integration. For the sake of simplicity, we will drop this refinement of no practical importance, except in the following proposition.

Proposition 5. If F is a continuous d.f., the Bernstein operator is a contraction. More precisely,

∥B m [F ]∥ ≤ ( 1 - 1 2 m-1 ) ∥F ∥ .
Consequently, if φ N is a continuous estimate of F derived from F N and such that φ N (0) = 0 and φ N (1) = 1, we can write:

∥B m [φ N -F ]∥ ≤ ( 1 - 1 2 m-1 ) ∥φ N -F ∥ .
Proof: see the appendix.

As a corollary, B m [F N ] inherits all the good asymptotic properties of the e.d.f. in the Chebyshev norm (i.e. in the Kolmogorov-Smirnov metric) [START_REF] Servien | Estimation de la fonction de répartition: revue bibliographique[END_REF][START_REF] Leblanc | Chung-Smirnov property for Bernstein estimators of distribution functions[END_REF][START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF] because for large enough samples, F N can always be closely approached by continuous functions.

Now, what about

I I m;K [F N ] -F ?
The situation is much more intricate than in the classical Bernstein operator case, since I I m;K is not a positive operator. Let us denote ∆ N := F N -F , and consider the sampled val-

ues δ m;N := { ∆ N (0), ∆ N ( 1 m ) • • • , ∆ N ( m-1 m ) , ∆ N (1)
} . We will also denote

H [m;K] (δ m;N ) as the coordinates of I 1 m;K [∆ N ] in the equispaced Lagrange basis.
Proposition 6. We can write:

I I m;K [F N ] -F ≤ H I [m;K] ∞ ∥δ m;N ∥ ∞ ∥L m ∥ + I I m;K [F ] -F .
In addition:

lim I→∞ I I m;K [F ] -F ≤ (1 + ∥L m ∥) inf P ∈Pn ∥P -F ∥ ,
where

∥L m ∥ ≈ 2 m
e m log(m) denotes the Lebesgue constant [START_REF] Mills | The Lebesgue constant for Lagrange interpolation on equidistant nodes[END_REF].

Proof: see the appendix. Remark 1. To compute H I [m;K] (except if I = K), we need to compute LΠ -1 [m] (see the proof of Proposition 6). Since LΠ [m] is ill-conditioned (like any change of polynomial basis), H I [m;K] ∞ increases with m, just like ∥L m ∥,
while ∥δ m;N ∥ ∞ clearly depends on the structure of F , and can be optimized (see Sections 6.1 & 6.2). On the other hand, a small value of m controls the possibly explosive behaviour of the undesirable (and essentially unknown) term I I m;K [F ] -F when I is big. Thus, Proposition 6 shows that the choice of (m, I) must result from a delicate tuning of these parameters.

The choice of the number of bins m < N in formula 7 was previously discussed in [START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF]; [START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF]Leblanc ( , 2012a)). [START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF] proved the almost sure convergence of (7) when F is continuous, and gave conditions under which its rate of stochastic convergence can be determined, as well as the rate of convergence of the associated density estimator

f N,m (x) := d dx F N,m (x)
when F is differentiable with derivative f := dF dx . More precisely, they proved that f N,m almost surely converges towards f , under the condition m = o (N/ ln (N )). Furthermore, they inferred from simulations that the upper value m = N/ ln (N ) is indeed acceptable. But notice that N ≥ 100 ⇒ m > 21. Thus, the numerical issues brought up is Section 5.1 will arise even with moderate sample size. Consequently, it is necessary to determine a number of bins m ≤ 21 such that the associated partition of [0, 1] is well-suited for F .

A similar problem was tackled by [START_REF] Manté | Application of iterated Bernstein operators to distribution function and density approximation[END_REF] but, instead of an e.d.f., the data consisted of a discretized distribution function {F (x j ) , 0 ≤ j ≤ N } sampled on an imposed mesh 0 < x 0 ≤ x 1 < . . . , < x N -1 ≤ x N < 1. The method proposed by [START_REF] Manté | Application of iterated Bernstein operators to distribution function and density approximation[END_REF] consisted firstly in determining a submesh of size n ≤ N well-suited for Bernstein approximation and, secondly, in optimizing the number of iterations in formula 5, under the constraint that the associated density approximation f n

(I * )
is bona fide according to [START_REF] Gajek | On improving density estimators which are not bona fide functions[END_REF], i.e. belongs to both the closed convex cone of positive functions F + and the closed convex set F 1 of functions integrating to one. A number of discretized distribution functions (e.g. grain size curves) were processed in that way [START_REF] Manté | Application of iterated Bernstein operators to distribution function and density approximation[END_REF]Manté and Stora , 2012). Sometimes we found I * = 1; in such cases, the usual approximation cannot be improved by using Sevy's iteration scheme, because f n

(2) / ∈ F + ∩ F 1 , while f n (1) ∈ F + ∩ F 1 .
But we can indeed get finer trajectories by slowing down Sevy's acceleration method! We just have to supersede integers by rational numbers in formula (5), that is to say to use a K-fractional sequence (see Definition 2), whose resolution increases with K. This will be done in the next section.

But for the moment, the objective is to determine what number of bins is best-suited for a given data set. Since the upper value m = N/ ln (N ) is often too big to use in practice, we propose to lower it according to the structure of F N (x). Since 1/m can be considered as a kind of bandwidth [START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF], lowering m could cause oversmoothing, but one can expect that fractional iterations will offset this phenomenon. So, let us start with m 0 := N/ ln (N ), and consider the sequence of uniform meshes

{U m : 1 ≤ m ≤ m 0 } such that U m := { i m , 0 ≤ i ≤ m } .
We propose here a method to select m * ≤ min [m 0 , 21] such that U m * is well-suited for F N . By "well-suited", we mean that the same m * should be obtained with a high probability from different samples of size N of X (stability), and that the step functions F N,m * and F N should be close to each other (fidelity).

A stability/fidelity test

We first propose a criterion based on half-sampling [START_REF] Stephens | On the half-sample method for goodness-of-fit[END_REF] and on a classical two-sample test. Suppose N = 2M (if N is odd, get rid of an observation). From S N , we randomly draw (without replacement) a sample of size M of X, the learning sample S L M , and obtain the test sample S T M := S N ⊖ S L M . The subsamples S L M and S T M are independent, and the associated e.d.f.s will be denoted F L M (x) and F T M (x). Even if the hypothesis (H 0 ) := F L = F T is actually true, due to sampling fluctuations (or to a descendant of Maxwell's demon), the e.d.f. of the subsamples S L M and S T M can be quite different, especially in the case of small samples. For instance, consider a N -sample of the uniform distribution: the probability of drawing a learning M -sample of numbers lower than 0.5 and a test M -sample of numbers greater than 0.5 is not null (with M = 5, it is 0.0625 and with M = 10, it is about 0.0020). This indeed depends upon the power of the test, and [START_REF] Stephens | On the half-sample method for goodness-of-fit[END_REF] observed that the power of the half-sample goodness-of-fit test is uneven.

Consequently, we suggest to discard ill-suited subsamples such that the

Kolmogorov-Smirnov random distance D KS ( F L M , F T M ) := sup x∈[0,1] F L M (x) -F T M (
x) is excessive: in such a case, finding from the learning sample a mesh wellsuited for the test sample is hopeless! Consider two samples of same size M of the same distribution, and the distribution-free statistics D KS (F 1 , F 2 ) associated with the Kolmogorov-Smirnov homogeneity test. Gnedenko and Korolyuk (1951) obtained the exact distribution of this statistics; this probability measure D M is defined by: [START_REF] Der Megreditchian | Un test non paramétrique unilatéral de rupture d'homogénéité de "K" échantillons[END_REF] or Gnedenko and Korolyuk (1951)). In our case, because (H 0 ) is true, we can write:

P (D M ≥ x) = 1 when x ≤ 1/M , P (D M ≥ x) = 0 when x ≥ 1 and P (D M ≥ x) = 1 - ⌊1/x⌋ ∑ i=-⌊1/x⌋ (-1) i   2M M -i ⌊M x⌋     2M M   , when x ∈]1/M, 1[ (see Der
D KS ( F L M , F T M ) L = D M .
Suppose now we randomly draw a pair of subsamples S L M and S T M from the data, and let

d := D KS ( F L M , F T M )
be the computed distance between the associated e.d.f.s. If the p-value P (D M ≥ d) is big enough (≥ 0.95, say) the pair (L, T ) is "good" since (H 0 ) may be accepted with little risk.

In this case we will use S L M to build a sequence

{ F L M,m : 1 ≤ m ≤ m 0 } of
"coarsened" e.d.f.s, each F L M,m being described by its jump set given by ( 8). If this isn't the case (i.e. if the pair (L, T ) is "bad"), we draw another pair of subsamples, until (H 0 ) is acceptable.

Suppose now that (H 0 ) is accepted. It is noteworthy that the m th coarsening process introduced above actually consists in replacing each

X L i ∈ [ k m , k+1
m [ by the value k m . In other words, this is a nonlinear transformation

C m : [0, 1] → U m such that x ∈ [ k m , k+1 m [⇒ C m (x) = k m .
Consequently, we consider that the e.d.f. F L M,m has been obtained from a sample of size M of the induced probability distribution, C m * X. Thus, computing D KS

( F L M,m , F L M )
should enable us to decide whether or not the hypothesis (H m ) :

C m * X L = X
is acceptable, i.e. whether or not the coarsening significantly alters the data.

But, since both these e.d.f.s are based on the same learning sample, testing

this hypothesis from D KS ( F L M,m , F L M ) is impossible. On the other hand, us- ing D KS ( F L M,m , F T M )
is straightforward, since S L M and S T M are independent: to accept or reject (H m ), we just have to test whether or not the computed

distance D KS ( F L M,m , F T M ) is an unlikely observation of D M .
We could compute all the distances [START_REF] Beer | Upper semicontinuous functions and the Stone approximation theorem[END_REF].

{ D KS ( F L M,m , F T M ) , 1 ≤ m ≤ m 0 } from if the theoretical d.f. F is continuous, the propositions ∥F K -F ∥ -→ 0 K→∞ and d H (F K , F ) -→ 0 K→∞ are equivalent
To sum up, we will select m * ≤ 21 such that both (H m * ) is acceptable and d H (F N,m * , F N ) is visually small (see the lower panels of Figures 2 &5).

Numerical illustrations

The method is tested hereunder on two data sets which can be found in the classical book of [START_REF] Silverman | Density estimation for Statistics and Data Analysis[END_REF].

The suicide Data

This data set is a classical benchmark in Density Estimation [START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF](Leblanc , , 2012a;;[START_REF] Silverman | Density estimation for Statistics and Data Analysis[END_REF][START_REF] Eilers | Flexible smoothing with B-splines and penalties (with discussion)[END_REF], which consists of the duration (in days) of psychiatric treatment for 86 patients used in a study of suicide risks. These durations range between 1 and 737; consequently they must be rescaled to the unit interval with a transformation ψ a,b (x) := x-a b-a . Following [START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF]Leblanc ( , 2012a)), we chose a = 0 and b = 800.

Notice that the integer closest to 86/ ln (86) is m 0 = 19, which was also the data-driven optimal choice found by Leblanc (2012a). Plots of the criteria proposed in the previous section are shown in Figure 2 )

: 1 ≤ i ≤ 50 } were lower than 0.80. The reader can see that this is also a satisfactory value from the fidelity point of view (lower panel of Figure 2).

Next, putting together the methodology of [START_REF] Manté | Application of iterated Bernstein operators to distribution function and density approximation[END_REF] and Definition 2, we first fix K, which determines the resolution of the discrete trajectory:

{ P m * -1 ∋ f m * (K+j) := dI K+j m * ;K [F N,m * ](x) dx , 0 ≤ j } associated with the K th "root" of the restricted operator G m * (1/K) . This
trajectory consists in a sequence of polynomials, computed through Proposition 4. Remember that ∀ (m, K) ,

I K m;K [f ] = I 1 m (f ) = B m [f ]. Consequently,
such a trajectory which starts in

F + ∩ F 1 ( f m (K) = d F N,m (x) dx = f N,m (x) is al-
ways bona fide) and progressively get out of this closed convex set (in general,

dI ∞ m;K [F N,m * ](x) dx = dLm[F N,m * ](x) dx / ∈ F + ∩ F 1
). Thus, once m * has been determined, it is quite natural to search for the first

I * > K such that f m * (I * ) belongs to F + ∩ F 1 while f m * (I * +1)
doesn't. For that purpose, we proposed [START_REF] Manté | Application of iterated Bernstein operators to distribution function and density approximation[END_REF] to control the graph of f m * (i)

through two "stresses" : the positivity stress

π(i) := 1 ∫ 0 ( f m * (i) -f m * (i) ) (x)dx, ( 9 
)
and the unit total mass stress

ν(i) := 1 ∫ 0 ( f m * (i) + f m * (i) ) (x)dx -2. ( 10 
)
The approximation

f m * (i)
is bona fide if and only if both of these stresses are null.

Remark 3. As in [START_REF] Manté | Application of iterated Bernstein operators to distribution function and density approximation[END_REF], all of the computations are made in the Bernstein basis.

We fixed K = 10, and plotted stresses ( 9) and (10) in Figure 3, together with the Kolmogorov distance (in percents)

K.D.(i) := 100 sup x∈[0,1] x ∫ 0 f m * (K+i) (t)dt -F N (x) .
Since in our case 

∫ 1 0 f m * (K+i) ( 
I K+I * m * ;K [F N,m * ],
which is also a polynomial of degree 18.

On the lower panel, we plotted the three corresponding density estimators.

Please note that the exponential aspect of these three densities have been highlighted in previous studies [START_REF] Eilers | Flexible smoothing with B-splines and penalties (with discussion)[END_REF][START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF]Leblanc , , 2012a)). Nevertheless, kernel [START_REF] Silverman | Density estimation for Statistics and Data Analysis[END_REF] or spline estimators [START_REF] Eilers | Flexible smoothing with B-splines and penalties (with discussion)[END_REF], p. 99) behaved differently from ours near zero. Such differ- Approximation with m 18 and r 1.7 ences likely come from the fact that, contrary to most other methods, Bernstein estimators are well-behaved near boundaries [START_REF] Bouezmarni | Bernstein estimator for unbounded density function[END_REF]Leblanc , 2012b).

The Old faithful data

This data set consists of 107 eruption lengths of the Old Faithful geyser, situated in the Yellowstone National Park. These lengths range between 1.67 and 4.93 minutes. Thus, we embedded these data in the interval [1.5, 5] and rescaled them to the unit interval (following [START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF]). In this case, m 0 = 23 although Figure 5 shows that choosing m * = 18 is quite reasonable: (of degree 18) while our estimate is rather different: it is similar to estimates obtained by various authors with kernel [START_REF] Silverman | Density estimation for Statistics and Data Analysis[END_REF] p.17, S.T. [START_REF] Chiu | Bandwidth selection for kernel density estimation[END_REF]) p. 1897[START_REF] Sain | Comment of "Flexible smoothing with B-splines and penalties[END_REF]) or spline estimators [START_REF] Eilers | Flexible smoothing with B-splines and penalties (with discussion)[END_REF], pp. 99 and 118). The Bernstein estimator of [START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF] was more "bumpy", probably because it belonged to P 65 , while ours lies in P 18 . Nevertheless it is worthwhile to take the comparison of these results a bit further.

Following the pioneering work of [START_REF] Vitale | A Bernstein Polynomial Approach to Density Function Estimation[END_REF], [START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF] proved that f N,m (x) := d dx F N,m (x) is biased, and proposed instead the biased-corrected estimator 2 f N,m (x) -f N,m/2 (x). He was inspired by a paper by [START_REF] Politis | Bias-corrected nonparametric spectral estimation[END_REF] which was dedicated to spectral density estimation.

Roughly speaking, the method of Politis & Romano consisted in reducing the bias of the Bartlett spectral estimator f (ω) by computing instead 2 f (ω) -f (ω), where f (ω) was an over-smoothed Bartlett spectral estimator. Now, in the setting of density estimation and with the notations of [START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF], if m has been well-chosen, f N,m is a pertinent estimator while f N,m/2 is necessarily an oversmoothed estimator. Consider now our

estimate f m * (2) = dI 2 m * [F N,m * ](x) dx
, and notice that (see formula 5):

I 2 m * [F N,m * ] = ( 1 -(1 -B m * ) 2 ) [F N,m * ] = ( 2 B m * -B 2 m * ) [F N,m * ].
It is well-known [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF] that, because of the eigenvalues of B n , iterated operators B k n act as filters, such that lim

k→∞ B k n [f ] = L 1 [f ]. Thus, f m * (2)
has the same structure as the biased-corrected estimator of [START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF], except that the over-smoothed component B 2 m * [F N,m * ] is built differently. This might explain why for a lot of data sets studied the optimal fractional iteration number r * := K+I * K was close to 2. Approximation with m 18 and r 1.9

determines the best subspace while r * corresponds to the optimal number of iterations of an operator acting inside this subspace. Thus, simultaneous bivariate optimization is unnatural.

It is noteworthy that m 0 was independently proposed by [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF] as an upper number of classes in the setting of automatic histograms construction. Unfortunately, m 0 is generally too big for us (numerical issues), but we stress that big values of m are indeed linked to the sluggish convergence of Bernstein approximations. For instance, the Voronovsky theorem [START_REF] Davis | Interpolation and approximation[END_REF] proves that the rate of uniform convergence of the Bernstein approximation of a twice differentiable function is O (1/m), while the rate of convergence of the best polynomial approximation is much better: it is ε (m) ln (m) /m 2 , with lim m→∞ ε (m) = 0 [START_REF] Laurent | Approximation et optimisation[END_REF], p. 303). In the special case of distribution functions, we proved [START_REF] Manté | Application of iterated Bernstein operators to distribution function and density approximation[END_REF] that one can expect only O (1/ √ m) as a rate of convergence of the Bernstein approximation. However, it is possible to compensate for this drawback thanks to the acceleration of convergence method used here: similar estimates can be obtained either with a small number of iterations in a large space of polynomials or else with a large number of iterations in a smaller space (compare Figures 6 & 7; see also Remark 1 ).

Contrary to the method of [START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF], the method of [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF] gives an optimal value m BR which is generally too small for our purpose. For instance, in the case of the suicide data, it gives the single optimum m BR = 6 ≪ m 0 = 19. In the case of the geyser data, one should choose m BR = 9 ≪ m 0 = 23 (this is the greater optimum of this criterion).

Thus, the associated density estimators are of very low degree (respectively and8). This can be offset by using a large iteration number: indeed, in the first case we could find a good approximation with r * = 5 while in the second case r * = 18 would be correct (see Figure 7). On the contrary, the classical Bernstein estimators, of the same degree, (gray curves on Figure 7) are extremely oversmoothed. This is displayed in more detail on Figure 8, where we plotted the difference between the raw e.d.f. F 107 and its Bernstein estimate B 9 [F 107,9 ], superimposed with F 107 -I 20 9;1 [F 107,9 ], also of degree 9. Thus, using K-fractional Sevy approximation sequence, it is possible to obtain satisfactory estimators, even with low-degree polynomials, when the density is smooth enough! Clearly, in the case of the Old Faithful data, degree 9 is not enough for regions of strong curvature (both the extremities of the curves), but it is enough for weakly curved regions (see Figure 8) when the number of iterations is sufficient.

The main issue is indeed the condition that m ≤ 21, which stems from the numerical problems raised in Section 5.1. These difficulties are due to the ill-conditioning of matrices involved in the expression: M at

( • B n ; L n , W n ) = ΠW [n] •Λ [n] •LΠ [n] .
At first sight, one cannot do anything against the curse of ill-conditioning... Nevertheless, we stressed in Section 5.1 the excessive computational cost of the polynomials calculated from the complicated recurrence formula of [START_REF] Cooper | The eigenstructure of the Bernstein operator[END_REF]. The observed loss of accuracy is probably due to the complexity of these calculations.

Please note that on the one hand M at

( • B n ; W n , W n ) = LW [n] and M at ( • B n ; L n , L n ) = LW [n] (see Lemma 2) while on the other hand, B n [f ] = n ∑ j=0 λ [n] j π [n] j ⊗ π * [n] j (L n [f ]
) . As a consequence, Π [n] can be calculated by polynomial interpolation of the eigenvectors of LW [n] . This is quicker and much more numerically stable, and makes it possible to go beyond the limit m = 21 (for further details, see (Manté , 2014)).

In spite of this exciting perspective, one should be warned that, no matter what, m is necessarily bounded by max [m 0 , M ] (where M is to be determined) because

• for large values of this upper value, the method proposed in Section 6.1

for determining m * would be excessively computationally expensive

• m * itself must be bounded, because of the ill-conditioning problems, and more generally because "it is impractical to employ polynomials with degrees running to hundreds or thousands in "real-world" problems" [START_REF] Farouki | The Bernstein polynomial basis: a centennial retrospective[END_REF].

Indeed, the proposed method is heuristic, constructive, and well-suited for moderate sample sizes in its current state.

Figures captions

Figure 1: plot of the logarithm of the norms

{ ΠW [n] • Λ [n] • LΠ [n] -I n ∞ , 1 ≤ n ≤ 35 } ,
as an indicator of loss of numerical accuracy in the computation of M at

( • B n ; L n , W n ) ,
due to transformation matrices. 

{ D KS ( F L i 43,m , F T i 43 ) , 1 ≤ i ≤ 50; 1 ≤ m ≤ m 0 =
{ D KS ( F L i 53,m , F T i 53 ) , 1 ≤ i ≤ 50; 1 ≤ m ≤ m 0 = 23 } , assuming that each D KS ( F L 53,m , F T

Appendix: proofs of intermediate results

Proof of Corollary 1

Since B n [(f -L n [f ])] = 0, we can restrict ourselves to the case where

f ∈ P n = R (B n ). Since { π [n] 0 , • • • , π [n] n
} is a basis of this space, and { µ

[n] 0 , • • • , µ [n] n
} is a basis of P * n we can write, using the standard notation u ⊗ v * (w) := u ⟨v * , w⟩ [START_REF] Bowen | Introduction to Vectors and Tensors Volume 1: Linear and Multilinear Algebra[END_REF]:

B n [f ] = • B n • L n [f ] = n ∑ j=0 λ [n] j π [n] j ⟨ µ [n] j , L n [f ] ⟩ = n ∑ j=0 λ [n] j π [n] j ⊗ π * [n] j (L n [f ])

Proof of Lemma 3

Notice first that:

( 1 -(1 -B n ) I ) = I ∑ k=1 (-1) k-1   I k   B k n .
Then, thanks to Lemma 1, we can write:

I ∑ k=1 (-1) k-1   I k   B k n =   I ∑ k=1 (-1) k-1   I k   • B k n   •L n = ( 1 - ( 1 - • B n ) I ) •L n

Proof of Proposition 2

Remember that

• G n can be considered as a symmetrical bilinear application, whose matrix can be written M at

( • G n ; E [n] , E [n] ) = Q [n] Γ [n] Q t [n]
, where Q [n] is orthogonal and Γ [n] is the diagonal matrix associated with the vector (0, 0, 1/n, (3n -2)/n 2 , • • • , 1 -n!/n n ). Eliminating its two first ) ∥f -g∥

Proof of Proposition 6

Notice first that:

I I m;K [F N ] -F ≤ I I m;K [∆ N ] + I I m;K [F ] -F ,
and, because of Theorem 2, we have the asymptotical relation [START_REF] Laurent | Approximation et optimisation[END_REF] From another side, consider the vector:

δ m;N := { ∆ N (0), ∆ N ( 1 m ) • • • , ∆ N ( m -1 m ) , ∆ N (1)
} .

The • LΠ [m] • δ m;N (see Diagram (3)). In particular:

H K [m;K] (δ m;N ) = LΠ -1 [m] • Λ (1) [m] • LΠ [m] • δ m;N = W L [m] • δ m;N = B m [∆ N ] ,
and of course: 

lim I→∞ I I m;K [∆ N ] = LΠ -1 [m] • Λ ( 
I I m;K [∆ N ] ≤ H I [m;K] ∞ ∥δ m;N ∥ ∞ ∥L m ∥

  , it is quite natural to propose the following definition of fractional sequences. Definition 2. Let K ≥ 2 be an integer, and f ∈ C [0, 1]. The K-fractional Sevy approximation sequence of f is defined by:
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 2 Figure 2: (suicide data). Upper panel: box-plots of the p-values of
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 3 Figure 3: (suicide data) Plot, with the step 1/10, of the stresses ν(i) and π(i) characterizing f 18 (i), against the Kolmogorov distance (in percents)
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 4 Figure 4: (suicide data). Upper panel: plot of both the Bernstein estimators B 19 [F 86,19 ] of Babu et al. (2002) (dashed gray) and B 18 [F 86,18 ] (gray) superimposed to the proposed one, I 17 19;10 [F 86,19 ] (black), and to F 86 (dots) and the associated Gnedenko confidence bands with coverage probability 0.95 (red) and 0.999 (green). Lower panel: the density estimates, with the same graphic directives as in the upper panel.
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 5 Figure 5: (geyser data). Upper panel: box-plots of the p-values of

53 )

 53 obeys D 53 . Lower panel: plot of the Hausdorff distances {d H (F 107,m , F 107 ) , 1 ≤ m ≤ 23}.

Figure 6 :

 6 Figure 6: (geyser data). Upper panel: plot of both the Bernstein estimators B 23 [F 107,23 ] of Babu et al. (2002) (dashed gray)and B 18 [F 107,18 ](gray) superimposed to the proposed one, I 19 18;10 [F 107,18 ] (black), and to F 107 (dots) and the associated Gnedenko confidence bands with coverage probability 0.95 (red) and 0.999 (green). Lower panel: the density estimates, with the same graphic directives as in the upper panel.
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 7 Figure 7: (geyser data). Upper panel: plot of both the Bernstein estimators B 23 [F 107,23 ] of Babu et al. (2002) (dashed gray) and B 9 [F 107,9 ](gray) superimposed to the proposed one, I 17 9;1 [F 107,9 ] (black), and to F 107 (dots) and the associated Gnedenko confidence bands with coverage probability 0.95 (red) and 0.999 (green). Lower panel: the density estimates, with the same graphic directives as in the upper panel.
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 8 Figure 8: (geyser data). Plot of the differences F 107 -B 9 [F 107,9 ] (gray) and F 107 -I 20 9;1 [F 107,9 ] (black) between the raw d.f. and iterated Bernstein estimates.

Proof of Proposition 5

 5 Let us first define the closed subsetC a,b := {f ∈ C [0, 1] | f (0) = a, f (1) = b}.If F is a d.f. supported by the unit interval, F ∈ C 0,1 while, if F N a e.d.f. associated with a N -sample, (F N -F ) ∈ C 0,0 .Both the inequalities claimed result from the fact that the restrictionB m | C a,b : C a,b → C a,b is a contraction. More precisely,[START_REF] Rus | Iterates of Bernstein operators, via contraction principle[END_REF] proved that for all f, g ∈ C a,b , ∥B m [f -g]∥ ≤ (

  [F ] -F ≤ (1 + ∥L m ∥) inf P ∈Pn ∥P -F ∥ .

  coordinates of I I m;K [∆ N ] in the Lagrange basis are given by H I [m;K] (δ m;N ) := LΠ -

  ∞) [m] • LΠ [m] • δ m;N = δ m;N = L m (∆ N ) .Thus, for each I ≥ K + 1, I I m;K [∆ N ] depends on the matrixH I [m;K] : δ m;N → δ I m;N , such that H I [m;K] (δ m;N ) =

Acknowledgements

The author is very grateful to the referees for their numerous and helpful comments and suggestions, and to Starrlight Augustine for greatly improving the English text.

some good pair (L, T ) and scan the corresponding list of p-values; acceptable values of m will be those for which the p-value is big enough (≥ 0.90, say). But since such random lists are highly fluctuating, it seems preferable to perform a reasonable number (e.g. 50) of good trials (such that (H 0 ) is acceptable), and to summarize the obtained 50 lists of p-values by the associated m 0 box-plots (see the upper panel of Figures 2 &5).

The reader can see in the upper panel of Figure 2, for instance, that pvalues corresponding to m < 7 are very small. Consequently, such a coarsening would deeply alter the histogram structure. On the contrary, for m > 15 most p-values are greater than 0.5 and we can conclude that such a coarsening is quite acceptable.

A complementary fidelity criterion

We just proposed a method for obtaining a list of acceptable numbers of bins in histograms, but there are generally several candidates. To select one of them, we proceed with the complete sample S N . This time, we compute the list of Hausdorff distances {d H (F N,m , F N ) , 1 ≤ m ≤ m 0 }, which quantify the similarity of successive coarsened distributions with the complete e.d.f. (see the lower panel of Figures 2 &5). Notice that these coarsened distributions are tightly associated with the classical estimator [START_REF] Vitale | A Bernstein Polynomial Approach to Density Function Estimation[END_REF][START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF][START_REF] Bouezmarni | Bernstein estimator for unbounded density function[END_REF][START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF]Leblanc , , 2012a,b) ,b) through Eq. ( 7). [START_REF] Beer | Upper semicontinuous functions and the Stone approximation theorem[END_REF] and [START_REF] Cuevas | On visual distances in density estimation : the Hausdorff choice[END_REF] : d H is a metric in the space of Upper Semi Continuous (USC) functions, and any d.f. is USC. Furthermore,

Remark 2. The choice of the Hausdorff distance is supported by the works of

Discussion

In this paper we propose an original method for estimating distribution functions and densities with Bernstein polynomials. On the one hand, we take advantage of results about the eigenstructure of the Bernstein operator to improve Sevy's convergence acceleration method. On the other hand, we work out an original adaptative method for choosing the number of bins m of a regular histogram. As [START_REF] Birgé | How many bins should be put in a regular histogram?[END_REF] noticed: this is an old and still open problem. In the setting of Bernstein estimation of distribution functions and densities, [START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF] proposed the upper value m 0 := N/ ln (N ) as an "acceptable" solution to this problem, even if one should theoretically choose m = o (N/ ln (N )). In theory, the number of bins should not be the same for fitting both the d.f. and the density. [START_REF] Leblanc | A Bias-reduced approach to density estimation using Bernstein polynomials[END_REF]Leblanc ( , 2012a) ) ) 2

) in the latter one.

Thus the density estimator should be built from a smoother d.f. estimator than the optimal d.f. estimator itself. A similar result was proved by [START_REF] Hjort | A note on kernel density estimators with optimal bandwidth[END_REF] regarding kernel density estimation. This is probably due to the fact that, roughly speaking, the differentiation operator is a high-pass filter whose action must generally be balanced by smoothing.

Our two-step method takes both functions into account: m * ≤ m 0 -wellsuited for density estimation [START_REF] Babu | Application of Bernstein polynomials for smooth estimation of a distribution and density function[END_REF] is first tuned according to the structure of the e.d.f., and then r * is tuned according to the density which should be bona fide. These steps cannot be interchanged because m * eigenfunction (basis of Ker(

amounts to restrict this operator to P n .

As a consequence, we may write M at

where and Γ [n] is the diagonal matrix associated with the vector (1/n, (3n -2)/n 2 , • • • , 1 -n!/n n ). Then, we have first: log

where ∆ [n] is the diagonal matrix associated with the vector

Proceeding the same way with the exponential operator, we find:

t

Proof of Proposition 3

We demonstrate this proposition by induction. Firstly, note that I 1 n (P ) = B n (P ) = P 1 +B n ( P ) = P 1 +I 1 n ( P ) ; let us now suppose that for some k > 1, I k n (P ) = P 1 + I k n ( P ) . Then: