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Abstract: We have developed a unique optical interferometric technique
for deformation analysis and have applied it to tensile analyses of aluminum
based samples. Using a recent theory of plastic deformation, this technique
is capable of diagnosing whether the sample is close to a fracture and where
the fracture will occur. It is also capable of diagnosing the current degree of
stress concentration being developed in the sample. The theoretical basis of
this method and some experimental results are presented.
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1. Introduction

In most of the conventional techniques of nondestructive testing (NDT) of solid-state
materials, it is a usual practice to inspect the object for a crack and monitor its development.
Thus the existence of a crack is prerequisite. This type of approach is reliable to predict the
location and timing of a fracture once the crack responsible for the fracture is found, but it
does not provide any clue of fracture until a crack is found. In addition, it is not easy to find a
crack in its early stage, and in some cases the crack is too large when it is found. For these
reasons, we are interested in a technique that enables us to diagnose the current degree of
deformation, to predict how the deformation progresses from that point of the time, and to
locate where the material eventually fractures without relying on the existence of a crack. Our
idea is basically to monitor deformation by an optical interferometric technique, diagnose the
current mechanical state of the material and update the diagnosis at every time step so that the
fracture may be predicted as an early state as possible.

For such an approach, two features are important; first, it is essential to use a theory
of deformation that describes all the stages of deformation inclusively so that the evolution of
deformation can be diagnosed properly at each stage in connection with the fracture.
Recently, Panin et. al. [1] have developed a theory of plastic deformation and fracture called
mesomechanics that meets this requirement. Using a gauge theoretical approach,
mesomechanics is capable of describing all the stages of plastic deformation, including the
fracture as its final stage, in the same theoretical system. It is also important to note that
mesomechanics is applicable universally to solid-state materials that have an inner-structure.
The other feature important for our approach is the capability of acquiring data on a real time
basis with the minimum amount of computation so that the diagnosis may be updated as the
deformation evolves with as a small interval as possible. For this purpose, we employ the
electronic speckle pattern interferometry (ESPI) [2] for image acquisition. The advantages of
our particular ESPI arrangement are: it does not require rearrangement of the optics and
therefore suitable for real-time data acquisition, it is robust against ambient vibration and
therefore is realistic for field uses, and the amount of computation is small.

With the above-mentioned features in mind, we have carried out a number of
experiments. We have found that a specific optical band pattern observed in an
interferometric fringe system can be used for the above-mentioned type of diagnosis. Since
this optical band pattern appeared conspicuously white on our black-and-white monitor when
we discovered it, we call it the white band (WB) [3]. By monitoring the shape and motion of a
WB, it is possible to diagnose whether the material is about to fracture and predict where the
fracture will occur. It is also possible to judge if the material has initial stress concentration
[4]. The latter can be used, for example, to evaluate the residual stress in the heat affected
zone of a weld [5]. Using mesomechanics, we have explained the WB as representing a
material scientific band structure [6] called the mesoband [7]. According to mesomechanics,
the mesoband represents strain localization responsible for the generation of a crack. This
situation has generated the possibility of using the present method as a unique optical NDT
that can be widely applied to a various types of materials. The aim of this paper is to introduce
this method and demonstrate its operation using results of our recent tensile analyses of
aluminum alloys. Toyooka et all [8] have observed the same phenomenon in stainless steels.

2. Theoretical basis

2.1 Mesomechanics and mesoband

According to mesomechanics [9, 10], the plastic deformation is the loss of shear stability. It is
a relaxation process that develops through a hierarchy of scale levels called micro-, meso- and
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macro-level. In each level, stress concentration caused by defects relaxes through interaction
between tanslational and rotational modes of deformation. Intuitively, this interaction may be
understood as follows. If a slip (translational-mode deformation) occurs in a specimen under
stress, it causes part of the material (deformation structural element, DSE) to rotate
(rotational-mode deformation). This material rotation, called the primary rotation, induces a
secondary rotation of the opposite direction in the neighboring DSE so that the total angular
momentum may be conserved. This secondary rotation in turn causes a new slip called the
secondary slip in that DSE. In this way, a translational flow of a lower level induces a rotation
of a higher level, causing the plastic deformation to develop its scale level. Because of such
interaction between the translational and rotational modes, the plastic deformation is basically
a spatial-temporal wave phenomenon and the displacement vector field is vortical (See
Fig1and Fig3).

In each level of deformation, a band structure appears at the boundary of adjacent
vortexes that have mutually opposite directions of rotation [7]. In dissipation theoretical
terms, the formation of a band is associated with relaxation of the system. Because of these
opposite rotations, a bend moment operates along the band structure and strain tends to be
localized where the band appears. As the deformation evolves, neighboring vortexes are
integrated to a vortex of a larger scale. Thus the scale of the vortexes grows whereas the
number of vortexes decreases. During this process, the level of the band structure grows, and
consequently, a larger bend moment operates at the band. This makes the material tend to be
discontinuous at the band, and this can cause a crack. If the degree of deformation is not
critically high, however, the strain localization possibly fades as the stress concentration
relaxes, and the material recovers from the discontinuous situation [10]. The vortexes at both
sides of the band disappear and a similar band is formed at a different location where the
same process occurs. In other words, the band is dynamic. This situation is illustrated in Fig.1
where a set of displacement velocity fields calculated by P. V. Makarov show (a) a pair of
developed vortexes, (b) the material is observed to be discontinuous at the boundary of these
vortexes, and (c) some time later the vortexes disappear so does the discontinuity. The band
structure appears at the boundary of such a pair of vortexes.

FIG.1 Vortexes observed in a set of calculated displacement velocity fields (ref.11). (a) A pair
of vortexes appear; (b) the material becomes discontinuous at the boundary region (see arrow);
(c) some time later the vortexes disappear and the material recovers from the discontinuous
situation.

When the deformation enters the final stage, all the vortexes are integrated into two
highly developed vortexes having mutually opposite direction of rotation, and a large-scale
band structure called the mesoband appears along the boundary of the two vortexes (see
Fig3). In this condition, the strain is mostly concentrated along the mesoband, and this
situation is called intensive strain localization. (Imagine a sample whose upper and lower
parts are respectively rotated in the opposite directions.) In this stage, the material becomes

(a)

(b)

(c)
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discontinuous around the mesoband and does not recover, and this causes the generation of a
crack. If this happens, the stress relaxation is sustained by further enhancing the discontinuity
(intensive strain localization) and the material can fracture at any moment. The band at this
stage is sometimes called the macroband (there is no clear boundary between the usage of the
words mesoband and macroband. In this paper we use the word mesoband to mean a band of
this stage inclusively).

2.2 Electronic speckle-pattern interferometry and white band (WB)

The WB is observed in a fringe pattern formed in the subtraction mode of in-plane sensitive
ESPI. The principle of the fringe formation can be found in a number of literatures [12]. In
short, a fringe pattern is generated by the follow mechanism. Imagine an object illuminated
by two coherent beams from a common laser source with the same angle of incidence α
(Fig.2). The total intensity of an image of this object can be written as

                                      Ibf(x, y)=I1 + I2 + 2(I1 I2)1/2 cos(θ(x,y))                                       (1)

where I1 and I2 are the average intensities (dc term) of the respective beams, θ(x,y) is the
phase difference between the two speckles formed by the respective beams at a point P(x, y)
on the object and the subscript bf indicates that Ibf is the image taken before the displacement
of interest occurs. If point P displaces in a direction parallel to the x axis in such a way that
the optical path for the first beam may be increased by φ (x,y)/2, the optical path for the other
beam will be decreased by φ(x,y)/2. Thus the total change of the phase difference between the
two speckles will be φ(x,y) and the resultant intensity can be written as

                             Iaf(x, y)=I1 + I2 + 2(I1 I2)1/2 cos(θ(x,y) + φ(x,y)),                                 (2)

where the subscript af indicates that Iaf is the image taken after the displacement of interest
occurs. Then if Iaf is subtracted from Ibf, the result is

FIG.2 Experimental setup. Two arms of interferometers have the same angle of incidence α 
For clarity only the horizontal interferometer is shown.

                         ∆I(x, y)= 2(I1 I2)1/2 sin(θ(x,y) + φ(x,y)/2) sin(φ(x,y)/2).                           (3)
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Equation (3) indicates that if the phase change φ(x,y) is a multiple of 2π, ∆I(x, y) becomes
zero no matter what the initial phase difference θ(x, y) may be. If the displacement is a
smooth function of x, as is usually the case of elastic deformation, φ(x,y) varies from a certain
value to a different value through periods of 2π over a given distance on the object. This
causes ∆I(x, y) to vary from zero to a peak value periodically, where ∆I(x, y) becomes zero
when φ(x,y)=2Nπ , i.e., if Ibf (x, y) and Iaf(x, y) correlate with each other completely, and

∆I(x, y) takes a peak value when φ(x,y)=(2N+1)π with N being an integer , i.e., Ibf(x, y) and

Iaf(x, y) do not correlate with each other. Therefore, the map of ∆I(x, y) shows a system of
fringes, where the dark fringe corresponds to φ(x,y)=2Nπ, the bright fringe corresponds to
φ(x,y)=(2N+1)π, and the intermediate intensity (gray level) corresponds to an intermediate
value of φ(x,y). Note that the spatial variation of ∆I(x, y) is sinusoidal provided that the
spatial variation of φ(x,y) is moderate.

In a deformation analysis, the above procedure is taken continuously with a given
interval. Fig.2 illustrates an experimental arrangement in which we observe the WB. We
apply a tensile load to the sample object by a universal-test-machine at a cross-head speed
ranging from 0.35 to10 mm/min. The optical setup is a usual in-plane sensitive, two-
dimensional, double-beam ESPI arrangement [2], where a pair of dual-beam interferometers
sensitive to the vertical and horizontal displacement of the object, respectively, are
arranged.(In Fig.2 only the horizontal interferometer is shown to avoid complexity. The
vertical interferometer is identical to the horizontal interferometer except that it is rotated by
90 deg around an axis normal to the object.) At a time step ti, we take Ibf(i) by a CCD (charge
coupled device) camera and transfer the output to a computer memory through a frame
grabber. After a preset deformation duration ∆t, we take Iaf(i). Then the computer makes
subtraction between Ibf(i) and Iaf(i) and the resultant fringe pattern is displayed on the TV
monitor. This procedure is repeated with a preset data acquisition interval of ∆T until the
sample fractures. We usually use ∆t=2 - 6 s and ∆T=10 - 15 s. In parallel to this image
acquisition, we record the elongation of the object together with the load by an x-y plotter.

The WB is observed in a fringe pattern as a bright band that can be differentiated
from the bright peaks of surrounding fringes by its sharper edges and uniform intensity. As is
the case of the bright peak of a usual fringe system, the WB is formed by decorrelation
between Ibf and Iaf when a band-shaped block of the material displaces as a whole. Since the
entire region of this block displaces by the same amount, it corresponds to a common value of
phase change φ. Therefore, the intensity is uniform unlike the case of the bright peak of a
usual fringe system where the intensity varies sinusoidally depending on the spatial function
φ(x, y) (eq. (3)). The brightness of a WB is determined by the value of this spatially constant
φ through sin(φ/2), i.e., as φ gets closer to (2N+1)π, the brightness increases and, to the
contrary, if φ happens to be 2Nπ, the brightness becomes zero. In fact we occasionally
observed such a completely dark WB (should be called a black band?) in our experiments.

From the material scientific viewpoint, the WB is interpreted as the band-shaped
displacement associated with the formation of a mesoband [7]. According to mesomechanics,
a mesoband is formed at the boundary of two meso-scale vortexes having opposite rotations
when a meso-scale defect propagates as a process of stress relaxation [9]. This indicates that
if the WB represents a mesoband it should be observed at the boundary of such a pair of
vortexes and that its formation should be accompanied by stress relaxation. We have
confirmed that these are the cases in our previous experiments. Fig.3 illustrates our
observation that a pair of highly developed vortexes having mutually opposite directions of
rotation appear at both sides of a region along which a WB is observed immediately
afterwards [6]. We have also observed that the appearance of the first WB coincides with the
initiation of zigzag characteristic observed in the stress-strain curve (see Fig.5 and Fig.8
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below) [6]. Mesomechanics explains that this zigzag characteristic is initiated when the stress
reaches the critical level in which the carrier of plastic deformation starts to move and
finishes when the stress reaches the minimum level to maintain this motion of the
deformation carrier [13]. Thus it can be said that the displacement responsible for the
formation of a WB is caused by this motion of the deformation carrier.

Fig.3 WB and a pair of vortexes observed at both sides of a WB (ref.6). (a) and (b) show
displacement vector fields observed at time steps 31 and 32, respectively. (c) shows the change
of these displacement fields. A pair of vortexes rotating clockwise (upper) and
counterclockwise are observed. (d) shows a stationary WB that appears shortly after at the
boundary of the vortexes. (e) The sample eventually fractures along this WB.

2.3 Diagnosis of deformation by WB

As mentioned in 2.1, a mesoband is formed when and where strain localization occurs, and it
disappears if the strain localization fades out; if the strain localization is intensive, the
mesoband stays at the same location making the material discontinuous, and this leads to the
formation of a crack and eventually a fracture. This and the fact that the WB represents the
mesoband indicate that this transition of a mesoband should be manifested as a temporal
change of the corresponding WB. Fig.4 shows an example of such a change of a WB
observed in a tensile-loaded aluminum alloy sample. This sample is free of initial stress
concentration and this is one of the cases where the transition of the stress condition is
manifested as the change in the WB’s feature most clearly. When the material is free of initial
stress concentration, the WB normally begins to appear as soon as the deformation enters the
plastic region. In an early stage when the stress concentration is still low, the WB appears to
be relatively broad and usually runs in the direction of the maximum shear stress (45 deg to
the tensile axis). This indicates that the displacement due to the associated stress relaxation is
in the direction of the maximum shear stress and the strain is localized in a relatively broad
region. Often, more than one WB are observed simultaneously (Fig4a), and they disappear
after a while and similar band reappear at different locations of the object. These manifest the
above-mentioned phenomenon that strain localization occurring under a not critically high
degree of deformation fades out as the stress concentration relaxes and similar strain
localization is generated at a different location of the object. WBs showing these features
indicate that intensive strain localization has not developed yet, and therefore the material is
not yet in the stage of fracture. Since the WB looks like moving around the object, we say that
the WB is dynamic and therefore the material will not fracture yet.

As the deformation progresses, the WB tends to be narrower (Fig.4b), and does not
necessarily run in the direction of the maximum shear stress. This indicates that the strain is
localized in a narrower region. In this stage, normally one WB is observed at a time and it
tends to be stationary. When the deformation further progresses, the WB becomes completely
stationary and runs in the direction of the line along which the material eventually fractures

(a)

(u, v) t31

(b) (c) (d) (e)

(u, v) t32 (∆u, ∆v) t32-31
WB Fracture
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(Fig.4c). Apparently this corresponds to the above-mentioned stationary mesoband
representing intensive strain localization that is responsible for the fracture. We say that the
WB becomes stationary and the material can fracture at any moment. Very importantly, the
fracture always occurs at the location where the WB becomes stationary (Fig. 4d). Fig.4e
shows the time historical change of the location of the WB on the object surface, where the
location is expressed in pixel number of the image (hereafter we call this change of WB’s
location the dynamic characteristics of a WB). In Fig.4f, we display a series of WB images
observed in a similar sample to show how this transition from dynamic WBs to stationary
WBs appear on a TV monitor.

Fig.4 Typical WB observed in a sample free of initial stress concentration; (a) multiple WBs
observed in an early stage; (b) dynamic WBs in the intermediate stage; (c) stationary WBs in
the final stage; (d) the fracture; (e) the time historical change of WB location (dynamic
characteristics of WB); and (f) transition from dynamic to stationary WBs as observed on a TV
monitor (animated images). The white lines seen in the background of the images are part of
the hands of a clock placed behind the sample.
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From what described above, the basic diagnostic criteria can be concluded as
follows:
(1) If a WB does not appear, there is no meso-scale strain localization in the material.
(2) If a WB appears and is dynamic, there is strain localization of the meso-scale, but it has

not reached the intensive level and therefore the material is not in the stage of fracture.
(3) If the WB becomes stationary, the strain localization is on the intensive level and the

material can fracture at any moment at the location where the WB becomes stationary.

3.WB under various stress conditions

Being associated with strain localization, the characteristics of the WB are strongly related to
stress concentration. Therefore, if the material has initial stress concentration, the feature of
the WB varies dramatically, depending on the degree of the stress concentration. Here the
word initial is used to mean prior to the application of a tensile load. In this section we
discuss how initial stress concentration of various degrees affects the characteristics of the
WB. We gave initial stress concentration to samples by welding them with a carbon dioxide
laser under different welding conditions. Voids generated in the heat affected zone cause
stress concentration.

3.1 Samples

All the samples have a common size of 150 mm in effective length, 25 mm wide and 2 mm
thick. The aluminum alloys tested are A5052H112, A5052H32 and AA6063. The first two are
standard materials with specification guaranteed by the manufactures. They have the same
chemical composition and both are work-hardened after the casting process. The only
difference between them is that A5052H32 is given stabilization treatment after the hardening
treatment while A5052H112 is not. The sample based on AA6063 is a low grade material
whose specification is not guaranteed except that its composition is known to be AA6063. We
welded some of the A5052H32 samples. Table1 summarizes the conditions of these samples:

Table 1. Samples

sample ID material stabilization welding condition

(1) SFS A5052H32 stabilized not welded
(2) SFN A5052H112 unstabilized not welded
(3) RS AA6063 unstabilized not welded
(4) SW A5052H32 stabilized shallow welded, vweld=6 m/min
(5) DW A5052H32 stabilized deep welded, vweld=2 m/min
(6) BW A5052H32 stabilized butt- welded, vweld=2 m/min
(7) GC A5052H32 stabilized graphite coated, vweld=2.5 m/min

vweld denotes the welding speed. SW, DW and GC are welded by the bead-on-plate method.

3.2 Dynamic characteristics of WB and first WB

For diagnosis of the deformation status, we note two factors: the dynamic characteristics of
the WB and the appearance of the first WB. The former indicates if strain localization is
intensive and the latter indicates when the meso-level strain localization is initiated.

The WBs observed in this investigation can be generally classified into three types in
terms of the dynamic characteristics: (i) first-moving-eventually-stationary type (called move-
and-stay, MS type), (ii) stationary-from-the-beginning type (called stay-and-stay, SS type),
(iii) start-appearing-at-a-late-stage-and-directly-stationary type (called late-start-stationary,
LS type). From these characteristics of the WB we can diagnose the stress condition of a
sample, as discussed below.
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3.3 SFN and SFS

These are the samples that we did not weld and therefore assumed to be free of initial stress
concentration. Fig.5 and 6 show the dynamic characteristics of the WB and the corresponding
stress-strain characteristics for these samples. The dynamic characteristics are expressed by
the WB location in the pixel number whereas the stress-strain characteristics are expressed by
the tensile load in kN. Both are plotted as a function of object elongation in mm. Points A, B
and C indicated in Fig.5 denote, respectively, the point when the first WB appears, the WB
starts decelerating, and the WB becomes completely stationary. Point F denotes the vertical
location where the fracture occurs. Apparently, SFS shows an MS type WB and SFN shows
an SS type WB. Note in Fig.5 that the moment the first WB appears coincides with the
initiation of the zigzag character of the stress-strain curve. This indicates that, as mentioned
above (see 2.2), the movement of a plastic deformation carrier is responsible for the formation
of a WB. The fact that the stress keeps relaxing and increasing reciprocally indicates that the
strain localization represented by one WB fades out before the next strain localization
represented by another WB is generated. Thus it is most likely that each of the MS type WBs
corresponds to different stress concentration. In the case of Fig.6, on the other hand, the stress
does not show the zigzag characteristics, indicating that in this case a single stress
concentration is responsible for the fracture.

Fig.5 Dynamic characteristics of WB observed in SFS. The image at the right shows the fracture.

Fig.6 Dynamic characteristics of WB observed in SFN. The image at the right shows the stationary WB.

While the dynamic characteristics of the WB are completely different, SFS and SFN
have important properties in common. First and most importantly, both specimens fracture at
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the location where the WB becomes stationary. (Note that the pixel number where the WB
becomes stationary in the dynamic characteristics in Fig.5 is the same as where the fracture is
seen in the object image shown right to the dynamic characteristics. In Fig.6, the fracture
occurred at the stationary WB location, though an image of the fractured object is not shown.)
Second, the first WB appears as soon as the object enters the plastic region in the stress-strain
characteristics. Third, once the WB becomes completely stationary (point C in Fig.5), the
stress begins to decrease. These can be interpreted as follows. First, from the fact that the
sample fractures at the location of a stationary WB indicates that apparently the intensive
strain localization manifested as the stationary WB causes the fracture. Second, the fact that
the first WB appears after the material enters into plastic region indicates that in both cases
the sample initially does not have stress concentration in the level to causes local plasticity in
a particular part of the object before it yields globally. In other words, it is only after the
whole sample shows global plasticity that the part of the object reaches the deformation-level
in which the stress concentration is high enough to cause a mesoband observed as a WB. The
third observation that the stress begins to decrease as soon as the WB becomes stationary
indicates that once the deformation reaches the level of intensive strain localization its further
evolution is rather uniform over the whole sample. This is contrastive to the situation where a
part of the material has an intensive initial stress concentration. In such a case the sample can
be work hardened even after a stationary WB appears at a certain location. (see below).

Based on this interpretation, the behavior of the respective samples can be explained
as follows. Since the two samples are the same in the material compositions and the post
casting hardening treatment, and the only difference is that SFS is stabilized after the
hardening treatment, the difference in the dynamic characteristics of WB is considered to be
caused by whether or not this stabilization treatment is given. In the case of SFN, when the
first WB appears around the yield point the strain localization is already on the level of a
stationary WB due to the post casting hardening treatment not followed by stabilization
treatment. At the location of the stationary WB, there should initially be stress concentration
that is larger in scale than other locations so that the stress relaxes by further developing
deformation at this particular location, but not large enough to be manifested as a WB. In the
case of SFS, on the other hand, the stabilization treatment homogenizes stress concentration
so that there is no particular region that has higher stress concentration than the other parts
and this causes the WB to be dynamic until a late stage. Thus from the dynamic
characteristics of the WB, we can diagnose that a sample, which we did not weld and
therefore believed to be free of initial stress concentration, had actually a low level stress
concentration from the beginning.

3.4 RS

The peculiarity of the RS sample is that it shows different WB types among different samples
cut from the same bulk material. This is probably because as a low grade material, it lacks
homogeneity in the mechanical property. Thus, while SFS and SFN show only one WB type,
namely MS type and SS type WB, respectively, RS shows all of MS, SS and LS type WBs
depending on the mechanical property possessed by that particular part of the bulk material.
Interestingly, this diversity provides us with an insight into the relationship between the WB
type and global plasticity.

In Table2, we summarize the types of the WB that we observed in fifteen samples
prepared from the same RS bulk material. For each sample, we show the maximum load (the
tensile load when the object is under the ultimate tensile strength) and parameters
representing where the first WB, the yield point, the first stationary WB, maximum load,
fracture are found on the stress-strain characteristics. These parameters are expressed in the
unit of the serial data acquisition number. From Table2 the following features are found.
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(i) In the cases of MS type and SS type, the first WB is observed near the yield point, as is the
case of samples SFS and SFN.
(ii) For all types of WB, once a WB becomes stationary, soon or later the stress begins to
decrease. (Compare the first stationary WB point and the maximum load point. They are close
to each other regardless of the type of the WB.) This is also consistent with the case of SFS
and SFN.
(iii) The MS type and SS type tend to show lower maximum loads and longer distances
between the yield point and fracture point than the LS type. This means that the MS type and
SS type are lower in the ultimate tensile strength and higher in ductility. In other words, it
seems that the earlier the first WB appears, the more plastic the object is. Thus we introduce
another parameter called plastic factor defined as (yield point - fracture point)/maximum load,
where yield point and fracture point are in data number, and examine its relationship with the
appearance of the first WB point.  Note that the numerator of the plastic factor indicates the
length of the plastic region in the stress-strain characteristics while the denominator indicates
the ultimate tensile strength. Fig.7 shows the plastic factor and the maximum load as a
function of the first WB point (the data acquisition number where the first WB is observed). It
is certainly seen that the earlier the WB starts appearing, the lower is the maximum load and
the higher is the plastic factor. This is understandable because earlier appearance of a WB
means a faster growth rate of defects, hence faster evolution of plastic deformation.

Table 2. Summary of RS

WB type 1st WB
(data#)

max load
(kN)

yield
point

(data#)

1st
stationary
WB point

(data#)

max load
point

(data#)

fracture
point

(data#)

plastic
factor

MS 50 4.48 60 180 175 195 30.1
MS 44 4.08 44 150 150 171 31.1
LS 143 6.14 101 143 151 161 9.8
LS 98 6.07 49 98 105 116 11.0
LS 138 6.62 63 138 142 156 14.0
LS 122 5.8 81 122 131 146 11.2
MS 50 5.8 50 157 156 184 23.1
LS 107 6.9 61 107 111 126 9.42
MS 15 4.0 16 95 124 146 32.5
LS 72 5.0 28 72 93 106 15.6
LS 94 6.0 29 94 100 116 14.5
LS 121 7.0 39 121 123 141 14.6
LS 96 7.0 45 96 109 126 11.6
LS 100 6.3 30 100 103 121 14.4
SS 31 3.7 30 31 31 104 20

Fig.7 Plastic factor and maximum load.
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3.5 Sample with welds

Figs 8 - 11 show the dynamics characteristics and stress-strain curves for the welded samples
together with a WB observed in the final stage. The material for these samples is the same as
SFS. When a sample is welded, voids formed in the heat-affected zone around the weld cause
stress concentration. Defect densities for these samples are shown in Fig.12. Below we
discuss the dynamic characteristics of WB observed in the respective samples.

Fig.8 WB observed in shallow-welded (SW) sample.

The WB observed in the SW sample in which the void density is very low shows
basically the same dynamic characteristics as the non-weld case (SFS). The WB begins to
appear past the yield point and it is dynamic until a very late stage. This indicates that the
initial stress concentration is negligibly small. Note that however, the sample eventually
fractures along the welded line. From this standpoint, the initial stress concentration caused
by weld influences the fracture, while its degree is not higher enough than the other part of
the material to cause a stationary WB.

Fig.9 WB observed in deep-welded (DW) sample.

When the sample is deep-welded (DW), the first WB appears before the yield point.
This indicates that there is local plasticity that causes strain localization manifested as a WB
in the stage of deformation when other parts can still be work hardened. The dynamic
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characteristics of the WB is basically stationary but occasionally dynamic. This is a sort of
intermediate between the cases of the shallow-welded sample and the butt-welded sample. It
is interesting that unlike the non-weld and shallow-welded cases, the stress-strain curve does
not show zigzag characteristics. This indicates that in the case of the DW sample, the stress
relaxation is actualized by enhancing the strain localized at this pseudo-stationary WB rather
than by generating abrupt stress decrease being associated with WB occasionally observed at
other locations. Note that as soon as the WB finally gets stationary, the stress decreases as is
the non-welded case.

Fig.10 WB observed in butt-welded (BW) sample.

In the case of the butt-welding (BW), the WB is completely stationary from the
beginning at the weld where the sample fractures. The first WB is observed in the elastic
region of the stress-strain curve. It can be said that the initial stress concentration of this
sample is strong enough to cause intensive strain localization at the weld and maintain it at
the same location until the material fractures. As is the case of the deep welding, after the
appearance of the first WB the other part of the sample is still work hardened. This indicates
that the level of the local plasticity of the butt-welded sample is such that the associated strain
localization is intensive enough to make the WB stationary but since it is localized the other
part of the material can be work hardened.

Fig.11 WB observed in graphite-coated (GC) sample.

When the sample is coated by graphite, it is well known that the void density is
increased. In this case, the WB begins to appear as soon as the tensile load is started. The WB
is stationary from the beginning and the sample fractures before the stress-strain curve
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reaches the yield point. The characteristics of the local plasticity is basically similar to the
case of the butt-welded sample, but since the associated strain localization is more intensive
the first WB appears earlier and the material fractures there while other part is still being
work hardened. In other words, the level of local plasticity is higher than the BW sample and
it can cause the sample to fracture while the other part is still being work hardened.

Fig.12 Voids observed around weld. Voids are seen as black dots.

Table 3. Summary of welded samples

weld type void
density

1st WB
region

WB type Max load
(kN)

yield load
(kN)

stationary
WB
location
(pixel#)

fracture
location
(pixel #)

no weld no plastic MS 9.2 6.5 296/274* 296/274*
Shallow no plastic MS 6.5 4 236/272* 236/272*
Deep very low elastic MS 7.6 6.8 264 264
Butt low elastic SS 4.5 3.6 240 240
Graphite high elastic SS 5.0 - 252 252

Samples are welded at the center of the sample (pixel#240 - 260)
* Two numbers denote the right and left locations of the WB/fracture line.

Table 3 summarizes the results of welded samples. Note that in all the cases the
sample fractures at the location where the WB becomes stationary.
From these observations, the following things can be said:
(1) All the samples eventually fracture where WB becomes stationary
(2) WB becomes stationary at the weld
(3) As the void density, hence the degree of initial stress concentration, increases, the WB

tends to (i) begins to appear earlier than the yield point and (ii) tends to be stationary
from the beginning.

In (3), (i) indicates local plasticity and (ii) indicates that the level of associated strain
localization is intensive from the beginning. In terms of the level of the initial stress
concentration, (i) can appear at a lower level. In other words, when the degree of the initial
stress concentration increases, the first symptom is the initiation of local plasticity that is
manifested as the first WB appearing in the elastic region. As the level of the initial stress
concentration increases, the local plasticity can cause intensive strain localization manifested
as a WB stationary from the beginning. In this fashion, it is possible to diagnose the level of
the initial stress concentration by noting when the first WB appears and whether it is
stationary.

4. Summary

In conclusion, the series of experiment show that the WB represents strain localization and its
characteristics are well explained by mesomechanics. From what described above, the overall
criteria of diagnosis of the material’s mechanical condition based on the observation of the
WB can be summarized as follows.

Shallow welded Deep welded Butt-welded Graphite-coated
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(1) The WB appears when meso-scale strain localization is initiated in the material.
(2) When the degree of the strain localization has not reached the intensive level, the WB is

dynamic. While the WB is dynamic, the material does not fracture.
(3) When the degree of the strain localization has reached the intensive level, the WB

becomes stationary and the material can fracture at that location at any moment.
(4) If the material is free of initial stress concentration, the first WB appears after the yield

point (in the plastic region).
(5) When the material has initial stress concentration, the first WB can appear in the elastic

region and the degree of the initial stress concentration can be diagnosed as follows.
(5.1) If the degree of the initial stress concentration is not high enough to cause intensive
strain localization, the WB is dynamic.
(5.2) If the degree of the initial stress concentration is high enough to cause strain
localization, the WB appearing in the elastic region can be stationary from the very
beginning.
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