
HAL Id: hal-01092637
https://hal.science/hal-01092637

Submitted on 9 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Approach for Contextual Planning
Management: Application to Smart Campus

Environment
Ahmed-Chawki Chaouche, Amal El Fallah-Seghrouchni, Jean-Michel Ilié,

Djamel Eddine Saïdouni

To cite this version:
Ahmed-Chawki Chaouche, Amal El Fallah-Seghrouchni, Jean-Michel Ilié, Djamel Eddine Saïdouni. A
Formal Approach for Contextual Planning Management: Application to Smart Campus Environment.
the 14th edition of the Ibero-American Conference on Artificial Intelligence, Nov 2014, Santiago, Chile.
pp.791 - 803, �10.1007/978-3-319-12027-0_64�. �hal-01092637�

https://hal.science/hal-01092637
https://hal.archives-ouvertes.fr

A Formal Approach for Contextual Planning
Management: Application to Smart Campus

Environment

Ahmed-Chawki Chaouche1,2, Amal El Fallah Seghrouchni1, Jean-Michel Ilié1

and Djamel Eddine Säıdouni2

1 LIP6 Laboratory, University of Pierre and Marie Curie
4 Place Jussieu, 75005 Paris, France

{ahmed.chaouche,amal.elfallah,jean-michel.ilie}@lip6.fr
2 MISC Laboratory, University Constantine 2

Ali Mendjeli Campus, 25000 Constantine, Algeria
saidouni@misc-umc.org

Abstract. In this paper, we address the building of ambient systems as
autonomous and context-aware intelligent agents. The original contribu-
tion is an algebraic language, namely AgLOTOS, used to automatically
build the plan of an agent from its intentions. As plans are formally
conceived as a structured set of concurrent processes, we show how to
define a guidance service, helping the agent to maximize the satisfaction
of its intentions. The underlying structure, called Contextual Planning
System (CPS), takes the contextual information into account to predict
the ability to execute the processes in plans. The last part of the paper
talks about our current experiment integrating the proposed technique
to assist user in a smart campus university.

Keywords: context-awareness, BDI agent, planning language, planning
guidance, smart campus.

1 Introduction

Multi-agent System (MAS) approaches offer interesting frameworks for the devel-
opment of ambient intelligence (AmI) systems, since their agents are considered
as intelligent, proactive and autonomous [1]. This paper introduces an efficient
planning management process into the architecture of the agent. In particular,
we aim at offering to each AmI agent, a powerful predictive service. Like in other
recent MAS approaches, e.g. [2, 3], which are dedicated to the planning and the
validation of agents in MAS, we focus on one agent rather than on the whole
MAS. Regarding AmI systems, this eases us to consider whatever dynamic fea-
tures in the environment for the agents and to propose solutions consistent with
the openness of the system.

Belief-Desire-Intention (BDI) are well-known intentional structure emphasiz-
ing the reasoning tasks of the agent, up to obtain rationality properties. Such
properties are really appreciate in AmI systems since this enforces the confidence

on the system. The authors of [4] took profit from the fact that the plan of a BDI
agent can be derived from its intentions, themselves resulting from the reasoning
of the BDI interpreter [5]. In this context, the AgLOTOS language was defined
to specify the plans accordingly to the following two criteria: (1) enhance the
modular and concurrent aspects related to the execution of plans, up to see the
plan as composed of concurrent processes, (2) handle the well-ordered composi-
tion of intentions, i.e. an agent can attribute weights to privilege execution with
respect to some intentions.

In this paper, the AgLOTOS language is considered again but its semantics
is enriched to automatically produce a state transition structure, namely Con-
textual Planning System (CPS for short). The aim is to capture the evolution of
the plan in a predictive way, meaning that actions are supposed to be run suc-
cessfully, but also that the context of the agent can evolve under the execution of
actions. Automatic searches on this structure will allow us to propose guidance
services, particularly helpful for the decision of agent in expected contexts.

Moreover, we aim at showing how our formal approach can be embedded in
the development of the AmI agents. To our opinion, this contributes to making
the operational bridge between AmI software engineering and formal approaches.
Our project consisting in the design of a smart university campus is the very
right place to embed our AmI agents architecture through a float of smart-devices
dedicated to assisting users. In this project, the discovery of physical locations
and the moves of users are taken into account. Unlike pure MAS approaches,
this cannot be reduced to social problem and communication between software
agents.

The outline of the paper is the following: Section 2 recalls the agent soft-
ware architecture we consider, namely the HoA architecture, and its specific
planning language used to associate plans with intentions. In Section 3, a con-
textual planning management is presented based on the building of the CPS
structure. Section 4 details the concrete stages of the smart-campus project to
conceive the AmI systems. A realistic scenario is given as an illustration of the
concepts proposed in the paper. The last section concludes and brings out our
next perspectives.

2 The HoA Architecture and its Planning Language

Figure 1 highlights the agent architecture we consider for AmI systems. Called
Higher-order Agent architecture (HoA), it enhances a clear separation in three
processes:

– The Context process is in charge of the context information of the agent. It is
triggered by new perceptions of the environment and also by internal events
informing about the executions of actions. At a low level, it is in charge of
observing the realization of the action executions, in order to state they are
successfully achieved or not.

– The Mental process corresponds to the reasoning part of the agent. It is no-
tified by the context process so that it can be aware of the important context

Process

Actions

internal event

Context

BDI

Mental
Planning

LibP

E
xe

cu
tio

n

Process

Perc.

Environment

Process

Evt

Context

Fig. 1. Higher-order Agent architecture

changes and can provoke possible revisions of the beliefs (B), desires (D),
and intentions (I) data.
As highlighted in Figure 1, the mental process represents the reasoning mech-
anism, which manages the BDI states of the agent. Triggered by the perceived
events, it updates the B,D and I structures. In order to organize its selected
intentions, the mental process is able to schedule them by associating with
each one a given weight.

– The Planning process is called by the mental process. Helped by a library of
plans (LibP), it mainly produces a plan of actions from the set of weighted
intentions, but also offers some services related to the management of plans
(see Section 3).

PlanningI
P

P̂0 P̂1 P̂j

P0,0 P0,1 P0,k

E0,0

process
Mental
process

I = {iw0
0 , iw1

1 , ..., iwj
j }

⊙ ∈ {|||,≫}

⊙

E0,1 E0,k

Agent plan

Intention plans

Elementary plans

Behavior expressions

Fig. 2. Agent planning structure

In our approach for each BDI state, the plan of the agent is described by
using the AgLOTOS language, as detailed in [4]. The language itself extends the
LOTOS language [6] in order to specify concurrency between actions in plans. In
addition as schemed by Figure 2, it refers to two level planning structures: (1) the
Agent plan is made of sub-plans called Intentions plans, each one dedicated to
achieve the associated selected intention; (2) each intention plan is an alternate
of several sub-plans, called Elementary plans, extracted from the LibP library.
This allows one to consider different ways to achieve the associated intention.

Further, we assume that the LibP library is indexed by the set of all the possible
intentions for the agent.

Syntax of Elementary Plans. Each elementary plan is specified by a pair
composed of a name to identify it and an AgLOTOS expression to feature its
behavior. Consider that the names of elementary plans are ranged over P,Q, ...
and that the set of all the possible behavior expressions is denoted E , ranged
over E,F, The AgLOTOS elementary expressions are written by composing
(observable) actions through the LOTOS operators. The syntax of an elementary
plan P is defined inductively as follows:

P ::= E Elementary plan
E ::= exit | stop

| a;E | E � E (a ∈ O)
| hide L in E

H ::= | move(`) (H ⊂ O, ` ∈ Θ)
| x!(ν) | x?(ν) (x ∈ Λ, ν ∈M)

� = { |||, |[L]|, ||, [],�, [> }

The expression of an elementary plan refers to a (finite) set O of observable
actions which are practically described as instantiated predicates, below ranged
over a, b, This set includes the subset H of the so-called AmI primitives which
represent the mobility and communication, based on the two following assump-
tions about the AmI system: (1) every agent can perceive the enter and leave
of other agents in the AmI system, (2) it can suggest some move between the
AmI system locations and (3) it can communicate with another agent in the
system. In the syntax, the primitive move(`) is used to represent the move of
the assisted user to some location ` (` ∈ Θ, a finite set of locations). The action
x!(ν) specifies the emission to the agent x (x ∈ Λ, the set of neighbor agents)
of the message ν (ν ∈M, the set of possible messages), whereas, the expression
x?(ν) means that the message ν is received from some agent x.

In addition, two non-observable actions are also introduced, so that the total
set of actions is denoted Act = O∪{τ, δ}, where τ /∈ O is the internal action and
δ /∈ O is a particular observable action which features the successful termination
of the considered elementary plan.

The basic expression stop specifies a plan behavior without possible evolution
and exit represents the successful termination of some plan. In the syntax, the set
� represents the standard LOTOS operators: E []E specifies a non-deterministic
choice, hide L in E a hiding of the actions of L that appear in E with L being
any subset of O, E � E a sequential composition and E [> E the interruption.
The LOTOS parallel composition, denoted E |[L]|E can model both synchronous
composition, E ||E if L = O, and asynchronous composition, E |||E if L = ∅. In
fact, the AgLOTOS language exhibits a rich expressivity such that the sequential
executions of plans appears to be only a particular case.

Syntax of Agent Plans. The building of an agent plan requires adding the
following AgLOTOS operators to compose some elementary plans:

– at the agent plan level, the parallel ||| and the sequential � composition
operators are used to build an agent plan from the intentions of the agent
and the associated weights.

– the alternate composition operator, denoted ♦, allows to specify an alternate
of elementary plans. In particular, an intention is satisfied iff at least one of
the associated elementary plans is successfully terminated.

Let P̂ be the set of names used to identify the possible intention plans: P̂ ∈ P̂
and let P be the set of names qualifying the possible agent plans: P ∈ P.

P̂ ::= P | P ♦ P̂ Intention plan

P ::= P̂ | P̂ ||| P | P̂ � P Agent plan

With respect to the set of intentions I of the agent, the agent plan is formed in
two steps: (1) by an extraction mechanism of elementary plans from the LibP
library, (2) by using the composition functions called options and plan:

– options : I → P̂, yields for any i ∈ I, an intention plan of the form P̂i =
♦P∈libP (i) P .

– plan : 2I → P, creates the final agent plan P from the set of weighted
intentions I. Depending on how I is ordered, the intention plans yielded by
the different mappings P̂i = options(i) (i ∈ I) are composed by using the
AgLOTOS composition operators ||| and �.

The function weight : I −→ N that defines the weights of the intentions,
in fact yields the way to compose the corresponding intention plans. The inten-
tion plans corresponding to the same weight are composed by using the con-
current parallel operator |||. In contrast, the intention plans corresponding to
distinct weights are ordered by using the sequential operator �. For instance,
let I = {i10, i21, i12, i03} be the considered set of intentions, such that the superscript

information denotes a weight value, and let P̂0, P̂1, P̂2, P̂3 be their corresponding
intention plans, the constructed agent plan could be viewed (at a plan name

level) as: plan(I) = P̂1 � (P̂0|||P̂2)� P̂3.

A Simple AmI Example. Let us consider the following AmI scenario presented
in [7], where Alice and Bob are two users of some University, each one assisted by
a HoA software agent. The proposed problem of Alice is that she cannot make
the two following tasks in the same time: (1) to meet with Bob in the location `1,
and (2) to get her exam copies from the location `2. Clearly, the Alice’s desires
are conflicting since Alice cannot be in two distinct locations simultaneously.
However, after having perceived that Bob is in `2, meaning in the same location
as the exam copies, Alice asks for his help to bring her the copies.

The intentions of Alice and Bob are specified separately within their respec-
tive agents. These last ones can pervasively coordinate to help achieving the in-
tentions of their assisted users. Here, the actions in plans are simply expressed by
using instantiated predicates, like get copies(`2). Intention plans are composed
from elementary plans which are viewed as concurrent processes, terminated by
exit, a la LOTOS.

Alice’s scenario

IA = {meeting(Bob, `1), asking(Bob, get copies(`2))}
PA = Bob!(get copies(`2)); exit � meet(Bob); exit

Bob’s scenario

IB = {meeting(Alice, `1), getting copies(`2)}
PB = get copies(`2); exit ||| move(`1);meet(Alice); exit

The mental process of an HoA agent can order its set of intentions, according
to some preferences of the assisted user. For instance, the intention set related to
Alice IA = {meeting(Bob, `1), asking(Bob, get copies(`2))} can be ordered such
that weight(meeting(Bob, `1)) < weight(asking(Bob, get copies(`2)). The cor-
responding agent plan expression of Alice is: PA = Bob!(get copies(`2)); exit �
meet(Bob); exit, which is built by using the options and plan mappings. Pay
attention that some actions can be processed concurrently, so is the case in
the agent plan PB , for the intention plans get copies(`2); exit and move(`1);
meet(Alice); exit.

3 Contextual Planning System

We show now how to build the Contextual Planning System, denoted CPS for
short, from the specification of an agent plan. It is a transition system represent-
ing all the possible evolutions of the plan. The building of these last ones are
formally driven by a semantics of AgLOTOS constrained by contextual infor-
mation. As a service instance that can be defined at the planning process level,
a guidance mechanism is defined, that works over the evolutions represented by
the CPS.

Building of the Contextual Planning System. The AgLOTOS operational
semantics is basically derived from the one of LOTOS. A pair (E,P) represents
a process identified by P , such that its behavior expression is E. Basic LOTOS
semantics is detailed in [7] which formalizes how a process can evolve under

the execution of actions. In particular, the rule P :=E E
a−−→E′

P
a−−→E′

, specifies how

(E,P) pair is changed to (E′, P) under any action a. Actually, P := E means

to consider any (E,P) source pair and P
a−→ E′ means changing E to E′ for

P under the execution of a. As far as AgLOTOS is concerned, these rules also
represent the operational semantics of elementary plans, viewed as processes.

The next definition specifies how the expression of an agent plan is formed
compositionally from the expressions of the intentions plans of the agent, them-
selves built from an alternate of elementary plans and their behavior expressions.
With respect to some agent plan P , we introduce a notion of configuration of
plans in order to specify that a part of the plan can already be executed. Further,
the notation [P] represents the configuration of the agent plan P , it is an AgLO-
TOS expression, which is obtained by composition of the different intention plan
configurations of the agent, like (E, P̂).

Definition 1. Any agent plan configuration [P] has a generic representation
defined by the following two rules:

1.
P ::=P̂ P̂ ::=♦k=1..n Pk Pk::=Ek

[P]::=(♦k=1..nEk, P̂)

2.
P ::=P1 � P2 �∈{|||,�}

[P]::=[P1] � [P2]

The planning state of the agent is now defined contextually, taking into ac-
count the agent location and the termination information about the different
intention plans defined for the agent.

Definition 2. A (contextual) planning state is a tuple (C, `, T), where C is an
agent plan configuration [P], ` corresponds to an expected location for the agent,
and T is the subset of intention plans which will be terminated in this state.

Table 1. Semantic rules of intention and agent plan configurations

Intention plan level

(Action)
E

a−−→E′ a∈O∪{τ}
(E,P̂)

a−−→(E′,P̂)

E
δ−→E′

(E,P̂)
τ−−→̂
P

(E′,P̂)

Agent plan level

(Action)
C

a−−→C′ a∈O∪{τ}
(C,`,T)

a−−→(C′,`,T)

C
τ−−→̂
P
C′

(C,`,T)
τ−−→(C′,`,T∪{P̂})

(Communication)
C

x!(ν)−−−−→C′ x∈Λ

(C,`,T)
x!(ν)−−−−→(C′,`,T)

C
x?(ν)−−−−→C′ x∈Λ

(C,`,T)
x?(ν)−−−−→(C′,`,T)

(Mobility)
C
move(`′)−−−−−→C′ `6=`′

(C,`,T)
move(`′)−−−−−→(C′,`′,T)

C
move(`)−−−−→C′

(C,`,T)
τ−−→(C′,`,T)

(Sequence)
C1

a−−→C′1 a∈O∪{τ}
C1�C2

a−−→C′1�C2
C1

τ−−→̂
P
C′1

C1�C2
τ−−→̂
P
C′1�C2

(Parallel)
C1

a−−→C′1 a∈O∪{τ}
C1|||C2

a−−→C′1|||C2
C1

τ−−→̂
P
C′1

C1|||C2
τ−−→̂
P
C′1|||C2

C1
a−−→C′1 a∈O∪{τ}
C2|||C1

a−−→C2|||C′1
C1

τ−−→̂
P
C′1

C2|||C1
τ−−→̂
P
C2|||C′1

Table 1 shows the operational semantic rules defining the possible planning
state changes for the agent. These rules are applied to produce the CPS, from
an initial planning state, e.g. ([P], `, ∅), meaning that the agent is initially at

location `, and its plan configuration is [P]. There are two kinds of transition
rules:

Intention plan level: When an intention plan is assumed to be treated, the
left hand side transition (C1, a, P̂ , C2), denoted C1 a−−→̂

P
C2, expresses a change

of intention plan configuration, from C1 to C2, and assumes the execution of
the action a from E

a−−→ E′ and P := E. The right hand side transition
highlights the termination case, keeping trace of the intention plan P̂ that
is going to be terminated. By calling CN the set of all the possible intention
plan configurations for the agent, the transition relation is a subset of CN ×
O∪{τ}× P̂ ×CN . For sake of clarity, the transition (C1, a, nil, C2) is simply

denoted C1 a−−→ C2. Observe that due to the fact we consider a predictive
guidance in this paper, only expected successful executions are taken into
account, thus abstracting that a plan may fail. Moreover, the semantics of
the alternate operator is reduced to a simple non-deterministic choice of
LOTOS: ♦k=1..nEk ≡ []k=1..nEk, in order to possibly take into account
every elementary plan to achieve the corresponding intention.

Agent plan level: the possible changes of the planning states, like (C, `, T),
are expressed at this level. In the Communication rules, the action send
x!(ν) (resp. receive x?(ν)) is constrained by the discovery of the agent x
in its neighborhood. In the Mobility rule, the effect of the move(`′) action
yields the agent to be placed in `′. The Action rules refer to the ones of
the intention plan level. The left hand side one exhibits the case of a regular
action, whereas the right hand side one specifies the termination case of some
intention plan, which is added to T .

The building of the CPS takes the three following contextual information into
account: (1) the reached location in a planning state, (2) the set of intention
plans that are terminated when reaching a planning state, and (3) more globally,
the set Λ of neighbors currently known by the agent.

Definition 3. Let I be a set of weighted intentions for the agent. The Contextual
Planning System (CPS) is a labeled kripke structure 〈S, s0, T r,L, T 〉 where:

– S is the set of (contextual) planning states,
– s0 = ([P], `, ∅) ∈ S is the initial planning state of the agent, such that [P] is

the agent plan configuration of the agent and ` represents its current location,
– Tr ⊆ S ×O ∪ {τ} × S is the set of transitions which are denoted s

a−→ s′,
– L : S → Θ is the location labeling function,

– T : S → 2P̂ is the termination labeling function which captures the termi-
nated intention plans.

Application to the scenario. We reconsider the scenario of Section 2. The
pairs (Em, P̂m) and (Eg, P̂g) are two intention plan configurations corresponding
to Bob. The first one corresponds to the intention meeting(Alice, `1) and the
second one to getting copies(`2), such that Em = move(`1);meet(Alice); exit
and Eg = get copies(`2); exit.

s0

s2

move

s1

s4

getC

getCmove

s3

s6

τ

move

s5

meeting

s7

getC

s9

s8

s10

getC

s11

τ

τ

τ

meeting

meeting

τ

τ

τ

{ℓ1}

{ℓ2}

{ℓ2}

{ℓ2, P̂1} {ℓ1}

{ℓ1{ℓ1}

{ℓ1}

{ℓ1, P̂1}

{ℓ1, P̂1}

{ℓ1, P̂2}

{ℓ1, P̂1, P̂2}

, P̂2}

Fig. 3. The CPSB corresponding to the agent plan PB

The CPS corresponding to Bob, denoted CPSB , is illustrated in Figure 3. It is
built from the initial CPS state, s0 = ([PB], `2, ∅), taking into account the current
location `2 of Bob. In the figure, the dashed edges represent the unrealizable
transitions from the states s ∈ {s2, s5, s8}, because pre(getC) = `2 6∈ L(s).

In a CPS, the transitions from any state s only represent actions that are
realizable. Like in STRIPS description language [3], actions to be executed are
modeled by instantiated predicates submitted to preconditions and effects. In
this paper, the preconditions only concern the contextual information known in
that state. Let pre(a) be the precondition of any action a, then pre(x!(ν)) =
pre(x?(ν)) = (x ∈ Λ) and for any other action a, pre(a(`)) = ` ∈ L(s).

Planning Guidance. In order to guide the assisted user, the planning process
can select an execution trace through the CPS such that the number of intention
plan terminations is maximized, in respect to the mapping T of the planning
states. This can be captured with the notion of Maximum trace, based on a

trace mapping end : Σ −→ 2P̂ used to specify the set end(σ) of the termination
actions that occur in a trace σ ∈ Σ. From an algorithmical point of view, the
configurations having the maximum number of terminated intention plans could
be straightforwardly detected by parsing the CPS structure, with regards to the
set of terminated intention plans of each built planning state. By labeling these
states with a specific proposition MAX, the search of maximum traces is reduced
to the traces which satisfies the (LTL) temporal logic property AF(MAX).

Considering again CPSB corresponding to Bob, an example of maximum
trace derived from s0 is the following, expressing that Bob should get the copies
before moving to the meeting with Alice:

((Eg, P̂g)|||(Em, P̂m), `2, ∅)
getC−−−→ ((E′

g, P̂g)|||(Em, P̂m), `2, ∅)
τ−−→̂
Pg

((Em, P̂m), `2, {P̂g})

move−−−→ ((E′
m, P̂m), `1, {P̂g})

meet−−−→ ((E′′
m, P̂m), `1, {P̂g})

τ−−−→̂
Pm

((stop, P̂m), `1, {P̂g, P̂m})

4 Experimentation: The Smart-Campus Project

We experiment our agent-based approach in a distributed system project called
Smart-Campus. Our aim is to design a powerful system that assists users in their
activities within a complex university campus to better interact and adapt to
users’ needs and demands. This project is in progress but we concretely equip
a float of Android Smart-Devices3 (SD) by the smart-campus application. In
this application, the software architecture is composed of an HoA agent and a
specific graphical user interface (GUI) to interact with the user to be assisted.
Hence, this allows us an explicit presentation of the reasoning of an agent and
the concrete use of the guidance service driven by the mental process, according
to the change of context process information. From a smart-campus architecture,
we now scheme the deployment of the smart-campus application in the SD, and
the way to develop the HoA agent main processes.

Fig. 4. Smart-campus architecture

Smart-Campus Architecture. The campus system is concretized by the smart-
campus starting service which automatically runs the smart-campus application
and connects the SD to the "CAMPUS" network, through one of the possible WiFi
Access Points (AP). As illustrated in Figure 4, the SD can automatically access
to the server ”SC Directory” which is viewed as a middleware maintaining the
persistence of contextual information like the discovery and the locations of other
users (through their SD) and objects concerning the campus. The starting ser-
vice is also dedicated to declare the public information of the user to the server,
in particular its location. One of the specificity of this project is that the HoA
agent embedded in the SD remains autonomous when the SC directory cannot
be reached or when the user is exiting the campus. It can continue assisting the
user, due to the context information and persistent data previously stored in the
SD, can be pervasively updated with the help of other neighbor agents.

Context Process. The context process is based on services currently imple-
mented over the smart-campus architecture, based on physical localization and
(a)synchronous communication mechanisms. They are supported by the smart-
device API facilities, in particular the WiFi API. As an example, the navigation

3 Devices: Google Nexus 5, 7 − Android 4.4 KitKat (API level 19).

service takes profit from the underlyied localization service to determine on the
fly, the position and the move of the assisted user.

Observe that the localization service must work over the campus ground as
well as the different stairs of the buildings. The best localization indoor tech-
nique is currently a research in progress e.g. [8]. Currently, we use different WiFi
access points within the campus to compute the geographical locations, since
this works in both indoor and outdoor locations. Anyway, the localization pro-
cess requires a tune calibration phase to store specific information in the SC
directory, concerning a set of physical reference points that must be selected
over the campus, as mentioned in the fingerprinting approach.

In our case, information includes the physical location of the reference point
(GPS), its symbolic name (place/room/corridor) and above all the perceived
signal attenuation (RSSI4) from that location, in respect to the different WiFi
access points. The localization service on the SD can then compare its proper
perceptions of the WiFi attenuation in respect to the same references stored in
the SC directory, so that to deduce an approximation of its position through
statistical computations and trilateration concepts.

Mental and Planning Processes To interact with the assisted user, the GUI
is an important issue of our application. Figure 5 brings out an instance of three
relevant screenshots of the developed GUI. Bob is here the assisted user, being
notified on his SD in real time, of the evolution of its intentions, its current
location and the (best) direction to meet Alice.

Fig. 5. Smart-campus scenario

– The first one (left hand side) shows the current weighted intentions managed
by the mental process, coming from the assisted user desires or the pervasive
activity of the HoA agent.

– The second screen is a debug view showing the agent plan and all the pos-
sible CPS traces. The contextual guidance service allows the agent to assist

4 RSSI: Received Signal Strength Indication

the user in realizing his desires in proposing different alternatives of plans,
optionally inducing the proposition of spatial paths.

– The last screen (right hand side) highlights the used navigation interface
showing a global view of the campus during the execution of the Bob’s
scenario. As a specific GUI, graphical maps are modern and useful interfaces
for the users. The application is able to manage the maps of the campus,
over which additional layers are used to render maps interactive and to show
different locations and paths.

5 Conclusion

The algebraic language AgLOTOS appears to be a powerful way to express
an AmI agent plan as a set of concurrent processes, helped by an adapted
plan library describing elementary plans. The proposed operational semantics
of AgLOTOS allows one to build a Contextual Planning System (CPS), for any
BDI state of the agent.

In respect to the current set of the agent intentions, the CPS structure allows
to evaluate all the possible plans. Despite the concurrent execution of plans, the
predictive mechanism we propose, allows to guide the agent contextually, over its
next possible executions. The problem to search an optimal solution maximizing
the number of (sub) plans to be executed, is reduced to a reachability problem
over the CPS structure.

In the smart campus project, the presented formal predictive technique is
applied to assist users in their daily activities, based on basic contextual infor-
mation corresponding to spatial location and dynamic neighborhood. Hence, it
can also be viewed as a concrete spatial guidance over the campus.

References

[1] Olaru, A., Florea, A.M., El Fallah Seghrouchni, A.: A context-aware multi-agent
system as a middleware for ambient intelligence. MONET 18(3) (2013) 429–443

[2] Sardina, S., de Silva, L., Padgham, L.: Hierarchical planning in BDI agent pro-
gramming languages: a formal approach. In: AAMAS ’06. (2006) 1001–1008

[3] Meneguzzi, F., Zorzo, A.F., da Costa Móra, M., Luck, M.: Incorporating planning
into BDI agents. Scalable Computing: Practice and Experience 8 (2007) 15–28

[4] Chaouche, A.C., El Fallah Seghrouchni, A., Ilié, J.M., Säıdouni, D.E.: A dynamical
plan revising for ambient systems. Procedia Computer Science 32 (2014) 37 – 44

[5] Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In Nebel,
B., Rich, C., Swartout, W.R., eds.: KR, Morgan Kaufmann (1992) 439–449

[6] Brinksma, E., ed.: ISO 8807, LOTOS - A Formal Description Technique Based on
the Temporal Ordering of Observational Behaviour. (1988)

[7] Chaouche, A.C., El Fallah Seghrouchni, A., Ilié, J.M., Säıdouni, D.E.: A Higher-
order Agent model for ambient systems. Procedia Computer Science 21 (2013) 156
– 163

[8] Galvn-Tejada, C.E., Garca-Vzquez, J.P., Garca-Ceja, E., Carrasco-Jimnez, J.C.,
Brena, R.F.: Evaluation of four classifiers as cost function for indoor location
systems. Procedia Computer Science 32(0) (2014) 453 – 460

	A Formal Approach for Contextual Planning Management: Application to Smart Campus Environment

