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sample, and thereby it appears dynamic, sweeping across the sample along the tensile axis;
that when the stress concentration develops to a certain level the DB becomes stationary at the
location where the sample eventually fails [3] and that if the sample has a high-level, initial
stress concentration the DB can be stationary from the beginning at the location where the
sample fails [3]. This feature indicates the possibility of using the DB as an indicator of stress
concentration and failure [5].

These observations indicate that the DB is obviously related to stress concentration and
to a great extent to the fracture mechanism. From this standpoint, it is likely that the DB
represents the shear band, which is associated with the Portevin–Le Chatelie effect [6] and
often referred to as the Lüders band4 [7]. However, the DB and its dynamics cannot be
explained by conventional theories of fracture mechanism. We have noticed that most of the
previous observations on the DB seem to be explained by physical mesomechanics (PMM)
[8–10], a recent gauge theory on plastic deformation (PD) and fracture. According to PMM,
PD is a self-consistent wave phenomenon observed in the displacement field as a consequence
of symmetry in the associated physics, where the displacement wave carries away the stress
energy from the source of stress concentration in the same sense as a Poynting vector carries
electromagnetic energy away from the source. The fracture is interpreted as the final stage
of PD where the material becomes too dissipative to propagate the displacement wave so
that the flow of stress energy stagnates, and consequently, the generation of a discontinuity
becomes the only possible channel for the material to relax the stress energy. Thus in PMM the
transition from PD to fracture is characterized as the process in which the displacement wave
decays. It has been observed that in the transitional stage to fracture, a displacement wave
stops travelling, causing a localized strain [11–13]. This mesomechanical picture seems to be
consistent with the above mentioned observation that an initially dynamic DB stops sweeping
towards failure. More recently, Toyookaet al [14] made thorough analyses on DB using the
same type of ESPI at a high sampling rate. Consequently, they discovered that the banded
region where a DB appears can be resolved into a fine fringe system whose spatial density
varies periodically as the DB sweeps across the sample, and that the sweeping speed of the
DB decreases monotonically as the sweeping cycle repeats. These observations have provided
additional clues to the mesomechanical explanation of the DB.

In this paper we interpret these previous experimental observations on the DB and its
dynamics comprehensively using PMM. Note that PMM is universally applicable to any
heterogeneous medium, and therefore, the interpretation we will make in this paper is also
universal. We will confirm our previous conclusion [15] that the DB can be identified
as a current associated with the physical symmetry involved in PD [16]. Based on this
identification, the dynamics of the DB will be explained in connection with the propagation
of the displacement wave. In section 2, we will present the theoretical basis of PMM,
and interpret its meaning along the line of discussion we will develop in later sections. In
section 3, we will summarize various observations obtained in a series of tensile experiment
in which displacement and DBs are measured by in-plane displacement sensitive ESPI. These
experimental observations will be interpreted in section 4.

2. Theoretical basis

This section contains the theoretical basis of PMM. We first show the mathematical formulation
based on the principle of gauge transformation and interpret its physical meaning in connection

4 In some cases the word Lüders band is used to strictly mean a shear band observed in low carbon steel. In this
paper, we use the word Lüders band to mean a shear band observed in a given material.
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with stress relaxation and fracture. We then introduce a two-dimensional picture that we use
to interpret various experimental observations.

2.1. Physical mesomechanics

Details of PMM are found elsewhere [8–10, 16]. In short, PMM is a gauge theory applied to the
mechanical field in a heterogeneous medium under PD. PMM describes PD as a transformation
of a local bench mark (LBM) in a deformation structural element (DSE). Here the DSE is
defined as the unit volume element represented by the same local coordinates. Expressing the
LBM in terms of the components of the local coordinates, the transformation can be written
as follows.

η
µ

i = β
j

i η
µ

j (1)

whereµ represents the external indices,i and j represent the internal indices,ηµ

i is the
ith component of the LBM atµ andβ is a 3× 3 matrix representing a transformation of the
GL(3, R) group, the general transformation group of three dimension. GL(3, R) consists of nine
independent parameters of real numbers, which corresponds to the nine degrees of freedom,
i.e., rotations, translations and change of the LBM components in length. Requesting the
Lagrangian to be invariant under this transformation, PMM has introduced a gauge field, and
using the least action principle, it has derived a field equation analogous to that of the Maxwell’s
electromagnetic theory.

After the summation over the group indices, the Maxwell type field equation together with
the Bianki identity leads to the following set of equations [8, 16].
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Here �V = (u, v,w) is the rate of the displacement,�ω = (ωx, ωy, ωz) is the angle of rotation
of the LBM, ct is the phase velocity,J 0 and �J are, respectively, the temporal and spatial
components of the four vector corresponding to the charge of symmetry.
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wheregij is the matrix inverse to the metric tensor of the internal space,Dµ is the covariant
derivative,l is the characteristic size of the DSE, andC

µν
αβ is the dimensionless elastic constant

of the medium. The right-hand side of equation (6) represents the temporal change of the
local bench mark, which corresponds to the stress concentration [17]. The right-hand side of
equation (7) represents the spatial variation of the LBM. Note that when the field is purely
rotational, i.e.,�η is perpendicular to�Dη, �J is zero. Since�J represents dissipation [17], this
means that when the field is purely rotational, there is no dissipation.

From equations (3) and (4), the following wave equations can be derived.
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These equations indicate that the translational and rotational modes of displacement are
transverse waves.

In more material scientific terms, the above-mentioned dynamics can be considered as a
process of stress relaxation. When a material yields, it loses the shear stability. Consequently,
the deformation becomes spatially non-uniform, and a developed stress concentration is
generated. This makes the displacement field vortical, introducing the rotational component in
addition to the translational component. Then, these translational and rotational components
of displacement interact with each other (called the translational–rotational interaction, TRI)
so that the stress is relaxed. In a wave dynamical sense, it can be said that the TRI mechanism
carries away the energy flow associated with the stress concentration in the same sense as a
Poynting vector carries electromagnetic energy. As the deformation develops, various defects
are generated, making the material more dissipative. This makes it less efficient for the TRI to
function as a mechanism of stress relaxation, because part of the stress energy is not transferred
as a wave, being lost by the dissipating mechanism. Eventually, the material becomes so
dissipative that the TRI completely stops functioning, and consequently, the material generates
a discontinuity as the alternative mechanism of stress relaxation [18], i.e., it fractures. Based on
these considerations, PMM has defined the following pre-fracture criteria [3]: when a material
is about to fracture (1) the wavelength of the displacement wave becomes comparable to the
sample size (wavelength pre-fracture criterion), (2) the displacement wave becomes a standing
wave (standing wave pre-fracture criterion) and (3) a pair of vortices having mutually opposite
direction of rotation appear and the sample fails along the boundary of the vortices (vortex
pre-fracture criterion).

2.2. Two-dimensional model

Let us consider the above dynamics in a two-dimensional picture so that it can be compared
with the measurement by ESPI. Suppose the tensile load is given in they direction and the
sample is in thex–y plane. In this case, equation (4) becomes as follows forx andy directions.

∂ωz

∂y
= − 1

c2
t

∂u

∂t
− Jx (10)

∂ωz

∂x
= 1

c2
t

∂v

∂t
+ Jy (11)

whereu andv are thex andy components of�V = (u, v). Together with equation (3), these
equations represent transverse wavesu(x, y, t), v(x, y, t) andω(x, y, t). The mechanism that
generates these wave characteristics can be pictured by a simple model shown in figure 1,
where the dynamics are presented as the motion of DSE. In this model, the forces between
neighbouring DSEs are proportional to the deviation from the equilibrium position of the
DSEs; i.e., equivalently, the DSEs are connected to each other with a spring. Suppose
DSE(x, y + �y) rotates anticlockwise for some reason; for example, the DSEs located to the
right of DSE(x, y +�y) moves upward more than the DSE located on the left does (figure 1).
This rotation of DSE(x, y + �y) will push DSE(x, y) to the right. Thus DSE(x, y) will move
to the right byX(x, y + �y) at the boundary with DSE(x, y + �y). On the other boundary,
DSE(x, y − �y) will resist this movement of DSE(x, y) by trying to push it back to the left.
Consequently, the displacement of DSE(x, y) at this boundary,X(x, y), will be different from
the other boundary, and this causes DSE(x, y) to rotate. Based on the assumption that the
force operating between the DSEs is a spring force, the force that DSE(x, y) receives from
DSE(x, y − �y) can be written as

f (x, y) = −kX(x, y) (12)
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Figure 1. Two-dimensional model of mesomechanical picture of plastic deformation.

wherek is the spring constant. Similarly, the force that DSE(x, y+�y) receives from DSE(x, y)
at the other boundary can be written as

f (x, y + �y) = −kX(x, y + �y) (13)

and the force that DSE(x, y) receives from DSE(x, y+�y) must be the reaction tof (x, y+�y),
i.e.,−f (x, y +�y). Therefore the net force that DSE(x, y) receives from these neighbouring
DSEs is−f (x, y + �y) + f (x, y), and the equation of motion becomes

k[X(x, y + �y) − X(x, y)] = m
∂u

∂t
(14)

wherem is the mass of the DSE(x, y). In accordance with equation (3), displacement
X(x, y) can be related to rotationωz(x, y) asX(x, y) = −ωz(x, y)�y. Then, expressing
ω(x, y + �y) − ω(x, y) as�y∂ω/∂y, equation (14) becomes

k(�y)2

(
−∂ωz

∂y

)
= m

∂u

∂t
. (15)

For thex direction, the same argument holds, leading to an equation of motion equivalent to
equation (15)

k(�x)2

(
∂ωz

∂x

)
= m

∂v

∂t
(16)

whereY (x, y) = ωz(x, y)�x was used for the vertical displacement. Putting�x = �y = �l,
equation (15) and (16) lead to

∂ωz
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= − m

k(�l)2

∂u

∂t
(17)

∂ωz

∂x
= m

k(�l)2

∂v
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These equations reduce to equations (10) and (11) withJx = Jy = 0 and interpreting
m/{k(�l)2} = 1/c2

t (i.e.,
√
m/k = τ/2π , 1/�l = 2π/λ whereτ is the period andλ is

the wavelength of the displacement wave). Indeed, by partially differentiating equation (17)
with respect toy and partially differentiating equation (18) with respect tox, and adding
them together we obtain thez component of equation (9) with�J = 0. It should be
noted that with the condition�J = J 0 = 0, the wave equations (8) and (9) represent
non-decaying waves. From this standpoint, the first terms of equations (10) and (11)
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represent the synergetic interaction between the translational and rotational mode causing
the wave characteristics in the displacement, and the second terms represent the dissipation.
Note that in this formulation, the force exerted from the horizontally neighbouring DSEs
�f = f (x + �x, y) − f (x, y) = −k∂X/∂x�x can be interpreted as part ofJx , because it
does not contribute to the wave propagation. A little consideration [17] reveals that these
forces are associated with the motion of stress concentration, which corresponds to an electric
charge in the analogy to the Maxwell electromagnetic theory (called the EM analogy, hereafter).
It is interesting to note that in the EM analogy, the first term corresponds to the displacement
current and the second term corresponds to the conduction current, which represents the ohmic
loss.

3. Summary of experimental observations

In this section, we summarize various experimental observations on the DB. In the next section,
these observations will be discussed based on the mesomechanical interpretation of the DB.
Note that all the experiments discussed here are tensile experiments with a constant elongation
rate, where displacement is measured by in-plane displacement sensitive ESPI.

Figure 2. Typical DB observed in HSF and VSF. Also see figure 4 (HSF) and figure 6 (VFS),
which show clearer fringe patterns above the DB.

3.1. Observation 1: fringes around DB represent bodily rotation

Figure 2 shows typical DBs observed in fringe patterns representing the horizontal and vertical
displacements (called the horizontally sensitive fringe pattern, HSF, and the vertically sensitive
fringe pattern, VSF, respectively). Note that the DBs appear at the same location in the HSF and
VSF, which indicates that the DBs observed in HSF and VFS represent the same phenomenon.
Note that the fringes above and below the DB in the HSF are roughly equidistant and horizontal
(see figure 4 for fringes above the DB in HSF), while the fringes above and below the DB in
the VSF are roughly equidistant and vertical (see figure 6 for fringes above the DB in VSF).
These patterns of fringes indicate bodily rotations of the sample [2, 19] above and below the
DB5.

5 When a sample rotates as a rigid body by a small angleα, the horizontal and vertical displacement at (x, y) can
be written as�x = −αy and�y = αx, respectively. Thus the horizontal displacement depends only on the vertical
coordinates, whereas the vertical displacement depends only on the horizontal coordinates. Therefore, the fringes in
the HSF, which are contour lines of equi-displacement in the horizontal direction, appear to be equidistant from one
another and parallel to thex axis. For the same reason, the fringes in the VSF appear to be equidistant from one
another and parallel to they axis.
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3.2. Observation 2: DB moves when stress concentration is at a low level

Experimental studies on the DB under various stress conditions [3] have revealed that the
appearance of the DB strongly depends on the level of stress concentration. In the case where
the sample does not have an initial stress concentration, the DB typically begins to appear as
soon as the sample yields. In an early stage, the DB usually runs approximately in the direction
of the maximum shear stress, i.e., about 45◦ to the tensile axis. In this stage, sometimes more
than one DB appear at different locations of the sample simultaneously. The DB of this stage
normally sweeps across the sample along the tensile axis, and therefore appears to be dynamic.
When the stress reaches a certain level, the DB becomes stationary at the location where the
sample eventually fails. In this stage, the DB is not necessarily at 45◦ to the tensile axis, but
runs along the line of forthcoming failure. Figure 3 shows a typical time-historical trace of
the DB observed in this type of sample. In the case where the sample has an initial stress
concentration such as a welded joint, the DB appears to be stationary from the beginning at the
location where the sample eventually fails [3, 5]. If the initial stress concentration is intense,
the DB sometimes begins to appear at the stage where the stress–strain curve is still in the
elastic region [3]. In any case, the sample always fails at the location where the DB becomes
stationary, and the failure occurs along the DB.

Figure 3. Time historical trace of DB. The vertical axis indicates the pixel number of the CCD
camera that takes ESPI images. The sample failed where the DB finally became stationary.

The way the DB drifts depends on the type of material [4]. In the case of aluminum alloys,
the DB sweeps across the length of the sample several times before it becomes stationary [3, 4].
In some cases, the DB changes the direction of its sweep [4]. On the other hand, it has been
observed that in the case of a steel, the DB sweeps only once in one direction on the yielding
plateau of the stress curve [4, 20].

3.3. Observation 3: DB observed at the boundary of vortices

In [21], we observed that a DB appears at the boundary of a pair of vortices in the field of
the secondary time-derivative of displacement. Figure 4 illustrates the situation. Here the
field of the secondary time-derivative of displacement is evaluated by subtracting the rate of
displacement measured in the preceding time step from that measured in the current time step.
The DB began to appear immediately after these vortices appeared. Note that the vortices have
mutually opposite directions of rotation and that the secondary time-derivative of displacement
is proportional to the force. These indicate that the DB appears along the region where an
intense bend-torsion moment operates. This particular DB was stationary from the beginning,
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Figure 4. The vortical field of the secondary time-derivative of displacement (left) and the DB
that appears in an HSF immediately after the vortex is observed (right). Note that the DB appears
along the boundary of the vortices.

Figure 5. DB and stress drop.

and the sample failed along this location. This observation is consistent with the vortex pre-
fracture criterion mentioned in section 2.1.

3.4. Observation 4: DB is accompanied by a stress drop

We have noticed that the appearance of a DB coincides with a stress drop [3, 21]. Figure 5
illustrates the situation where the stress drops as a dynamic DB appears at different locations,
making the stress–strain curve zigzag (the phenomenon known as the Portevin–Le Chatelie
effect or a serrated loading curve [6]). Zhanget al [22] and Makarov and Romanova
[23] also observed the same phenomenon in their experimental and theoretical investigation,
respectively.

3.5. Observation 5: finer fringes are observed in DB

Toyookaet al [14] have employed a high sampling rate to increase the temporal resolution of
ESPI and discovered that the banded region where a DB appears can be resolved into a fine
fringe structure. Figure 6 shows fine fringes such as they observed in the vertical displacement
(in the tensile direction) with a sampling rate of 30 frames s−1. Each fringe pattern represents
deformation occurring in 1/6 s−1 (five frames) at a tensile speed of 3.9µm s−1, while one fringe
spacing corresponds to displacement of 0.35 µm. The number shown under each pattern is
the frame number, indicating the elapsed time from a reference frame. The rightmost pattern
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Figure 6. Fine fringe structure observed in the banded region where a dynamic DB appears. The
rightmost photograph shows the fringe system of a whole view of the sample observed with a
second camera. All fringe patterns are VSFs. After Toyookaet al [14].

Figure 7. Strain pulsation. Note that in [14] the authors define thex axis as the vertical axis but in
this paper we define they axis as the vertical axis.

shows a fringe system that they observed in the same experiment with a second camera viewing
a whole field of the sample at a lower sampling rate (40 frames min−1). This pattern (called the
whole-field pattern) represents deformation occurring in 1.5 s. Note that the fine fringe system
is always formed at the location where a DB appears and it moves together with the DB. The
entire fine fringe structure, having two to six fringes depending on the frame, corresponds to a
single DB seen in the whole-field pattern. Note that six fringes correspond to a total elongation
of 0.35µm× 6 = 2.1µm, if all the fringes represent elongation, and that this value is greater
than the motion of the tensile machine’s grip calculated as 3.9µm s−1 × 1/6 s−1 = 0.65µm.
This indicates that when the fine fringe structure shows six fringes, they represent, at least
partially, contraction of the material.

3.6. Observation 6: strain in DB varies periodically

In [14], the authors note that the density of the fine fringes changes periodically, and call
the effect the strain pulsation. Figure 6 illustrates the situation where the fringe density
alternates between the dense and coarse state. When the fringe density is in the coarse
state, the total number of fringes is typically two. Since one fringe spacing corresponds
to a displacement of 0.35µm, this means that the total elongation in the vicinity of a DB is
about 0.35 µm × 2 = 0.7 µm, which is roughly equal to the distance that the grip of the
tensile machine travels (3.9µm s−1×1/6 s−1 = 0.65µm). This indicates that the coarse state
corresponds to the situation where the elongation caused by the tensile machine is concentrated
in the region of the DB.

Figure 7 shows the strain pulsation effect observed in figure 6 in terms of the temporal
variation of the fringe density per unit time [14]. Since this fringe system represents the
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vertical displacement, figure 7 effectively represents the rate of the normal strain in the vertical
direction, where the peak of the normal strain rate corresponds to the dense fringe state in
figure 6 while the valley corresponds to the coarse fringe state. The strain rate shows clear
periodicity with a period of 1 s.

3.7. Observation 7: DB drift velocity is similar to the phase velocity of a u-wave observed in
a similar material

We observed dynamic DBs in an aluminum alloy a number of times [2, 3, 13], and have found
that those DBs show similar drift velocities to each other. In [13] we observed displacement
waves in the displacement component perpendicular to the tensile axis (called the u-wave).
We observed that the u-wave initially travelled along the tensile axis and became stationary
before the sample failed, in consistence with the standing wave pre-fracture criterion. We have
noticed that this phase velocity that the u-wave shows in its initial stage is quite similar to the
above-mentioned drift velocities of the dynamic DBs6.

Figure 8. Temporal variation of pulsation frequency and DB drift velocity as deformation
progresses. After Toyookaet al [14].

3.8. Observation 8: DB drift velocity decreases and becomes zero at failure

Figure 3 indicates that as the DB repeats the sweep across the length of the sample, its drift
velocity decreases. Figure 8 shows this effect explicitly, as observed by Toyookaet al [14]. A
similar decrease in the drift velocity of DB has been observed in other measurements [2, 3].
Note that the drift velocity always becomes completely zero when the sample fails, as seen in
figures 3 and 5. Also shown in figure 8 is the observation by Toyookaet al [14] that as the
drift velocity of the DB decreases the frequency of the strain pulsation decreases.

6 In those series of experiments where we observed the displacement wave, the DB began to appear after the
displacement wave became a standing wave and it was stationary from the beginning. On the other hand, in the
other series of experiments where we observed dynamic DBs the displacement waves were too complicated to extract
the phase velocities. Therefore, it was impossible to compare the phase velocity of the displacement wave and the
drift velocity of the DB directly in the same experiment. However, as discussed in [13], the phase velocity is likely
to be a constant for a given material with a given sample length. From this standpoint we say that this observation
implies that the drift velocity of DB is similar to the phase velocity of the displacement wave.
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4. Interpretation of the experimental observations

From the mesomechanical viewpoint, the DB can be interpreted as manifestation of currentJ

[15]. Let us consider the DB from the viewpoint of more conventional mechanics and discuss
the meaning of currentJ , accordingly. The observations described under subsection 3.2 in the
preceding section (hereafter we abbreviate these subsections as obs 2, etc) are quite similar
to the properties of a L̈uders band [7]. Classically, it is explained that a Lüders band is
formed when a number of dislocations move one after another in a chain reaction known as
the cataclysmic release of dislocations [24]. Because a movement of dislocation causes a
slip, the resemblance to the Lüders band indicates that the formation of the DB is associated
with a slip. Thus the following scenario can be naturally pictured. When the stress reaches a
certain level, a slip occurs at the boundary of two adjacent DSEs, as one of them (the primary
DSE) pushes the other (the secondary DSE) by the type of motion described in the above-
introduced two-dimensional picture. Because of this slip, the motion of the primary DSE is
not completely transferred to the secondary DSE; in other words, the kinetic energy associated
with the motion of the primary DSE is partially dissipated. In equation (10), the first term on
the right-hand side represents the transfer of the motion of the primary DSE to the secondary
DSE as a wave, while the second term (theJ current term) represents dissipation. Thus the DB
can be interpreted as this type of slip initiated at some point on the boundary of neighbouring
DSEs and flows across the sample width as currentJ 7. It is likely that on the right-hand side
of equation (10) this process corresponds to an increase in the second term and a decrease
in the first term. Since the first term is proportional to the acceleration, the decrease in this
term basically represents a decrease in force [13, 18]. In the above picture, this corresponds
to the situation where because of the slip the resisting force by the secondary DSE reduces.
This picture is consistent with the observation that a stress drop accompanies the appearance
of DB (obs 4). It is interesting to note that in the EM analogy this is equivalent to the situation
where as a medium under an electric potential becomes more conductive, the displacement
current (corresponding to our first term) decreases and the conduction current (corresponding
to our second term) increases [18]. From the gauge theoretical viewpoint, the conduction
current and currentJ are commonly interpreted as the current of a charge that is invariant
under the transformation. Also note that part of the displacement resulting from such a slip
is unrecoverable in the next phase of the displacement wave in which the DSEs move in the
opposite directions. This corresponds to the phenomenon known as the yield elongation, an
elongation that takes place around the yield point with no stress increase and during which
a Lüders band propagates along the sample. Because the elongation takes place without an
increase in stress, it remains after the stress is removed, i.e., the elongation is unrecoverable.

Along the above scenario, let us consider the other observations on DB. From the
observation that a DB appears at the boundary of vortices where an intense bend–torsion
moment operates (obs 3), the situation of the sample when a DB is about to appear can be
considered to be as shown in figure 9. Because of non-uniformity in the vertical elongation,
the type of bend–torsion moment described in obs 3 is generated around a weak region where
deformation is being concentrated. This creates the situation where the part of the sample
above this deformation-concentrated region rotates in one direction, say clockwise for example,
pulling the other part of the sample so that it rotates in the other direction (i.e., anticlockwise).
When this bend–torsion moment reaches a certain level, it becomes impossible for the lower
part to follow the motion of the upper part, and slip occurs over the horizontal width of the

7 This picture is consistent with the interpretation made by Paninet al [25] that a DSE rotate as a whole by means
of currentJ . Note that currentJ flows along the boundary of DBs, and this flow is different from the drift of the DB,
which represents the fact that the DB appears at different locations at different times.
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Figure 9. Schematic view of the formation of a DB. An intense bend–torsion moment is generated
so that the upper and lower parts of the sample receive rotational forces in mutually opposite
directions (a). When the stress reaches the threshold level, a slip occurs at the boundary of the
vortices and a DB runs.

sample. Consequently, the stress drops and the lower part bounces back clockwise as the upper
part keeps moving in the same direction with effectively no resistance from the lower part.
This slipping motion is observed as a DB being accompanied by bodily rotations of the sample
above and below the DB (obs 1).

In the spring–mass model, this process is equivalent to the following situation. Imagine
that we are dragging a mass using a spring and that the mass is connected to a second mass
behind it with a second spring. Here, the first mass corresponds to the primary DSE and the
second mass corresponds to the secondary DSE. As we go forward the resisting force from the
first spring increases. When the resisting force reaches a certain value, the first spring behind us
can no longer tolerate the force and partially breaks (i.e., it loses the function as a spring with the
original spring constant while keeping the capability of providing a recovery force). Then all
of sudden the force from the first spring decreases and we will be thrown forward. At the same
time, the first mass we have been dragging will be pulled backward by the second spring, and
consequently, the force to the second spring is reduced. This corresponds to the moment when
a slip occurs and the stress drops. In the material scientific picture, this is when a dislocation
is released. A moment later, the DSEs are rearranged and a new equilibrium is established
with new equilibrium positions of the DSEs. Accordingly, a new spring with a slightly lower
spring constant (see below) is created, and the stress increase resumes. The displacement
corresponding to the difference between the original and new equilibrium positions is not
recoverable.

This bouncing-back motion of the lower part continues until the new equilibrium is
established, consuming the displacement cumulatively gained in the past at the boundary with
the upper part. While this happens, the upper part keeps moving in the opposite direction being
driven by the tensile machine. The pulsation effect observed in figures 6 and 7 is the indication
of this bouncing-back phenomenon taking place in the displacement component parallel to the
tensile axis. The coarse-fringe state corresponds to the stage in which the deformation is being
concentrated and the dense-fringe state corresponds to the stage in which the bouncing-back
motion is taking place. This explains why the number of the coarse fringes corresponds to a
displacement similar to the motion of the grip while the number of dense fringes corresponds
to a displacement greater than the motion of the grip (obs 5). When the slip completes, the
stress restarts to increase causing a concentrated deformation and the same process repeats.
This explains the periodical change of the strain around the DB (obs 6). From this viewpoint,
the period in normal strain rate observed in figure 7 can be interpreted as representing the stress
recovery time.
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Figure 10. Fringe patterns observed with a DB (e and f) and without a DB (g). The upper patterns
are VSF and the lower patterns are HSF. The fringe pattern accompanied by a DB represents bodily
rotations above and below the DB, while the fringe pattern not accompanied by a DB represents
fairly uniform normal strain. Numbers indicate the elapsed time from the moment when the sample
started to be loaded. After Suprapedi [26].

It is interesting to analyse the fringe patterns in connection with the type of strain that the
sample is undergoing. Figure 10 shows whole-field fringe patterns (VHFs in the upper row and
HSFs in the lower row) observed at an early stage of PD (past the yield point by about 10% of
the total elongation that the sample undergoes before it fails). In this stage, the DB is formed
intermittently on fringe patterns at different locations of the sample, thereby it appears to be
sweeping along the tensile axis at a constant drift velocity. In terms of the explanation made in
the preceding paragraph, this is the stage in which the formation of a slip and the stress recovery
repeat alternatively. Figure 10 indicates that when a DB is formed (e and f) the pair of VSF
and HSF represents bodily rotations of the sample above and below the DB, whereas when a
DB is not formed (g) both VSF and HSF indicate fairly uniform normal strain spread over the
whole sample. Here the fringe pattern representing bodily rotation can be characterized by
equidistant, vertically parallel fringes in the VSF, and equidistant, horizontally parallel fringes
in the HSF [19]. These observations can be interpreted as follows: during the period in which a
DB is being formed the deformation is concentrated in the banded region so that the upper and
lower parts of sample undergo bodily rotations as discussed above. Once the DB is formed,
the stress is relaxed accordingly. Consequently, the material momentarily goes back to a stress
situation similar to the elastic regime. This makes the sample undergoes relatively uniform
normal strain as typically observed in elastic deformation, and this situation is represented by
the fringe pattern shown in figure 10(g).

Also of interest is to note in figure 6 that the fine fringe system observed within the
banded region of the DB shows normal strain (∂v/∂y) while the whole-field fringe pattern (the
rightmost pattern) taken at the same time represents the bodily rotation of sample above and
below the DB. Note that this normal strain in the fine fringe system is concentrated in the banded
region, being contrastive to the above-mentioned uniform normal strain typically observed in
the elastic regime. Obviously, these two types of normal strain are different from each other
in their mechanisms of formation. The former is due to localized deformation concentrated



14 S Yoshida and S Toyooka

in the banded region where a DB is being formed, whereas the latter is associated with rather
uniform deformation occurring over the whole sample. In the basic equations (2)–(5), the
normal strain terms appear only in equation (2), representing chargeJ 0. Thus this observation
can be interpreted as follows: when a DB is about to appear, deformation is concentrated
around the region where the DB is being formed, and this deformation contains concentrated
normal strain that corresponds to chargeJ 0. When the DB is formed, the charge flows as
currentJ and, consequently, the stress is relaxed. This interpretation is consistent with the
previous interpretation [15] that the DB is identified as currentJ , becauseJ is the flow ofJ 0.
Note that in the EM analogy,J 0 corresponds to an electric charge. When an electric charge
flows in a conductive medium, it reduces the electrical potential applied across the medium
and causes energy dissipation known as the ohmic loss. In such a picture, the stress relaxation
by means of currentJ corresponds to the reduction in the electric potential and the associated
dissipation corresponds to the ohmic loss8.

Now we consider the drift of the DB. Suppose a DB is formed at a certain location of the
sample. In accordance with the above interpretation, the formation of the DB can be explained
by the following dynamics. When the displacement grows to a certain level at some location, the
stress reaches the threshold value to cause a slip. As the slip occurs, the displacement reduces
at all the points above and below this location and a new equilibrium position is established.
Remember that in this model the displacement represents the distance from the equilibrium
position (see the paragraph following equation (11)). It will be helpful to consider the situation
using figure 1 which represents the horizontal component of the dynamics. Imagine that a
slip occurs at the boundary between DSE(x, y + �y) and DSE(x, y). This will lower the
forcef (x, y) at the other boundary of DSE(x, y), reducing the displacementX(x, y) there.
Similarly, on the other boundary of DSE(x, y + �y) the displacementX(x, y + 2�y) will
reduce. (The vertical displacement is reduced by the same mechanism and is represented
by the pulsation effect (obs 6).) After this reduction takes place, the displacement increases
again because the sample is still under the external load; then after a while, the stress reaches
the threshold value again to cause another slip. While this happens, the displacement will
travel as a transverse wave, where the u-wave represents its horizontal component propagating
in the vertical direction. Therefore, during the period in which the stress recovers from the
reduced level associated with the last slip to the threshold level causing the next slip, the u-wave
will travel in the vertical direction for a distance equal to its phase velocity (i.e., the vertical
component of the phase velocity of the total displacement wave) times the recovery time. This
distance is observed as the vertical distance of the two consecutive DBs. This explains why
the drift velocity of the DB is similar to the phase velocity of the u-wave (obs 7).

By this mechanism, the DB drifts towards one end of the sample along with the
displacement wave. At this point, the displacement wave is either reflected or transmitted
through depending on the boundary condition. While the reflection and transmission of a
displacement wave are subjects of future investigation, it will be worth making a few comments.
In general, a wave is reflected at a boundary where the material constant varies and thereby
the propagation constant changes. In the EM analogy, as an example, an electromagnetic
wave is reflected at a boundary where the real part of the electric susceptibility (i.e., the index
of refraction) varies. In the present case, the displacement wave will be reflected when it
travels through a boundary where the spring constant varies. (Note that a change in the spring
constant changes the propagation constant through

√
m/k = τ/2π . See the paragraph under

equation (18).) In figure 3 the DB initially travels from the top to the bottom. At 1000 s−1,

8 From this viewpoint, the force associated with the normal strain corresponds to a Coulomb force, which is a
longitudinal effect.
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it changes direction near the bottom of the sample. Then it keeps sweeping upward until
4800 s−1 when it changes direction again near the top of the sample. After that it changes
direction a couple of times near the centre of the sample where it fails at 6000 s−1. A possible
interpretation of this phenomenon is as follows. Based on the argument made above, as the
DB is repetitively formed the spring constant of the sample decreases. It is likely that this
decrease in spring constant is greater in the main part of the sample than the wider part at
both ends where the sample is gripped by the tensile machine. Therefore, as the deformation
progresses the spring constant in the main part becomes smaller relative to the wider part, and
at some point of time, the difference in the spring constant between the two parts becomes
so great that the displacement wave is mostly reflected near the shoulder of the sample (i.e.,
the boundary between the main part and the wider part). The first two reflections near the
two ends of the sample observed in figure 3 (at 1000 s−1 and 4800 s−1, respectively) can be
explained by this mechanism. When the deformation develops to the final stage where the
strain is concentrated at a certain location of the sample, the spring constant of that region
will become considerably lower than the other part of the sample. Thus the reflection will
take place at the boundary of this strain-concentrated region. The final couple of reflections
observed in figure 3 can be explained by this effect. As the deformation further progresses
from this stage, the strain-concentrated region will be further localized. This explains why
figure 3 converges to the location where the sample eventually fails. Note that the reflected
wave interferes with the wave travelling in the original direction, and consequently, a standing
wave can be generated. This explains why the drift velocity of the DB becomes completely
zero toward the failure (obs 8).

When a DB sweeps the sample, a slip occurs as the DB is formed at a new location.
As discussed above, a slip is equivalent to partial breakage of the spring. Thus, as the DB
repeats the sweep, the spring constant decreases. When the spring constant decreases, three
things happen. First, the rate of the work hardening decreases. Basically, the spring constant
represents the force per unit elongation. Therefore if the tensile load is given at a constant
tensile speed as is the case of all the experiment shown in the previous section, the decrease in
the spring constant results in a decrease in the rate of increase in force (i.e. the rate of stress
increase on the stress–strain curve). Consequently, the stress recovery time increases every
time after a slip occurs (i.e., it takes longer to gain a certain stress increase). This explains
why the pulsation frequency (i.e., the inverse of the stress recovery time) decreases as the
deformation develops (obs 8). Second, the phase velocity of the displacement wave decreases
(ct = √

k/m�l). This explains why the drift velocity of DB decreases as the deformation
develops toward failure (obs 8). Third, the period becomes longer (τ = 2π

√
m/k [13]). From

this standpoint, the failure can be interpreted as the situation where the period of the oscillatory
motion of the displacement becomes infinitely long.

5. Summary

We have considered the DB and its dynamics from the viewpoint of PMM. It has been found that
the DB is manifestation of a slip of DSE, corresponding to the classical phenomenon known as
the Portevin–Le Chatelie effect or the propagation of the Lüders band. In the mesomechanical
picture, a slip of DSE is a dissipation process. Therefore, if such a slip occurs, the TRI
mechanism becomes less efficient, and the displacement wave as a carrier of the stress energy
decays. Consequently, currentJ flows as the alternative mechanism of stress relaxation. This
observation is consistent with the previous interpretation of the DB as currentJ [15].

We have introduced a simple spring–mass model to intuitively explain the dynamics
responsible for the dissipative wave characteristics of the displacement field. In this model, the
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stress drop caused by a slip is interpreted as a partial breakage of the spring, which is followed
by the creation of a new spring with a lower spring constant. In the mesomechanical picture,
this corresponds to the establishment of a new equilibrium in the DSE position and recovery
of stress increase. The drift of the DB is interpreted as the travel of the displacement wave
during the period of stress recovery. As the DB repeats the sweep along the sample, the spring
constant decreases monotonically. Based on this interpretation, the experimental observation
that the drift velocity of DB is similar to the phase velocity of the displacement wave can be
explained. The observation that towards failure the drift velocity of DB decreases while the
period of the oscillatory motion of displacement increases can also be explained. Since the
displacement associated with the slip is not stored as the potential energy, it is unrecoverable
and remains as permanent strain.

The DB and its involvement in the fracture mechanism is well explained by the EM analogy.
The fact that the fine fringe system observed in the DB shows concentrated normal strain
component indicates that the associated stress concentration corresponds to an electric charge,
being consistent with the above-mentioned interpretation of DB as currentJ . The transition
from PD to fracture can be interpreted as being equivalent to an increase in the imaginary
part of the dielectric constant of the medium that an EM wave is propagating through. In this
way, the medium becomes more conductive, causing the EM wave to decay, and at the same
time, the ohmic loss caused by the conduction current to increase. As previously discussed,
this picture indicates the similarity between the electrical breakdown of a gas and fracture of
a solid-state material [18].
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