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2 Department of Environmental Science and Human Engineering, Saitama University,
255 Shimo-okubo, Urawa, Saitama, Japan

Abstract

The shear band and associated stress relaxation classically known as the
Portevin—Le Chatelie effect is considered based on physical mesomechanics, a
recent field theory on plastic deformation and fracture. Using the mathematical
analogy to the Maxwell’s electromagnetic theory, the field theoretical meanings
of various properties of plastic deformation are considered. For more intuitive
understanding, a simple, two-dimensional spring-mass model is introduced.
Along these considerations, interpretations are given to various experimental
observations, in which the shear band is detected as an optical interferometric
band structure. The results of this investigation are consistent with our
previous identification of the optical band structure as a current associated with
symmetry.

1. Introduction

In the course of tensile analysis by in-plane displacement sensitive, electronic speckle pattern
interferometry (ESPI) [1], we discovered an interesting band structure in fringe patterns [2].
This band structure, called the decorrelation band (DB}, was conspicucus because of its
sharper edges and more uniform brightness as compared with the surrounding interferometric
fringes. The most intriguing feature of the DB was that its motion indicated whether the
sample was close to failure and where the failure would occur. It began to appear as soon
as the sample vielded and in its early stage it swept across the sample along the tensile axis.
After sweeping across the sample several times, it became stationary at a certain location,
where the sample eventually failed. Our subsequent studies [ 3, 4] revealed that when the level
of stress concentration is low, the DB is formed intermittently at different locations of the

* When we observed this band structure for the first time, it looked brighter in our black and white TV monitor.
Therefore, we called it the white band in [2] and all our previous publications. However, since it is caused by
decorrelation, and in some cases the brightness is lower than the surrounding bright fringes, it is more appropriate to
call it the decorrelation band.



sample, and thereby it appears dynamic, sweeping across the sample along the tensile axi
that when the stress concentration develops to a certain level the DB becomes stationary at tt
location where the sample eventually fails [3] and that if the sample has a high-level, initial

stress concentration the DB can be stationary from the beginning at the location where the
sample fails [3]. This feature indicates the possibility of using the DB as an indicator of stress
concentration and failure [5].

These observations indicate that the DB is obviously related to stress concentration anc
to a great extent to the fracture mechanism. From this standpoint, it is likely that the DB
represents the shear band, which is associated with the Portevin—Le Chatelie effect [6] an
often referred to as theilders banti[7]. However, the DB and its dynamics cannot be
explained by conventional theories of fracture mechanism. We have noticed that most of the
previous observations on the DB seem to be explained by physical mesomechanics (PMM
[8-10], a recent gauge theory on plastic deformation (PD) and fracture. According to PMM,
PD is a self-consistent wave phenomenon observed in the displacement field as a consequen
of symmetry in the associated physics, where the displacement wave carries away the stre:
energy from the source of stress concentration in the same sense as a Poynting vector carri
electromagnetic energy away from the source. The fracture is interpreted as the final stag
of PD where the material becomes too dissipative to propagate the displacement wave s
that the flow of stress energy stagnates, and consequently, the generation of a discontinuit
becomes the only possible channel for the material to relax the stress energy. Thus in PMM th
transition from PD to fracture is characterized as the process in which the displacement wave
decays. It has been observed that in the transitional stage to fracture, a displacement way
stops travelling, causing a localized strain [11-13]. This mesomechanical picture seems to b
consistent with the above mentioned observation that an initially dynamic DB stops sweeping
towards failure. More recently, Toyoolehal [14] made thorough analyses on DB using the
same type of ESPI at a high sampling rate. Consequently, they discovered that the bande
region where a DB appears can be resolved into a fine fringe system whose spatial densit
varies periodically as the DB sweeps across the sample, and that the sweeping speed of t
DB decreases monotonically as the sweeping cycle repeats. These observations have provid
additional clues to the mesomechanical explanation of the DB.

In this paper we interpret these previous experimental observations on the DB and its
dynamics comprehensively using PMM. Note that PMM is universally applicable to any
heterogeneous medium, and therefore, the interpretation we will make in this paper is alsc
universal. We will confirm our previous conclusion [15] that the DB can be identified
as a current associated with the physical symmetry involved in PD [16]. Based on this
identification, the dynamics of the DB will be explained in connection with the propagation
of the displacement wave. In section 2, we will present the theoretical basis of PMM,
and interpret its meaning along the line of discussion we will develop in later sections. In
section 3, we will summarize various observations obtained in a series of tensile experimen
in which displacement and DBs are measured by in-plane displacement sensitive ESPI. Thes
experimental observations will be interpreted in section 4.

2. Theoretical basis

This section contains the theoretical basis of PMM. We first show the mathematical formulation
based on the principle of gauge transformation and interpret its physical meaning in connectior

4 In some cases the wordiders band is used to strictly mean a shear band observed in low carbon steel. In this
paper, we use the wordiiders band to mean a shear band observed in a given material.



with stress relaxation and fracture. We then introduce a two-dimensional picture that we use
to interpret various experimental observations.

2.1. Physical mesomechanics

Details of PMM are found elsewhere [8-10, 16]. In short, PMM is a gauge theory applied to the
mechanical field in a heterogeneous medium under PD. PMM describes PD as a transformatio
of a local bench mark (LBM) in a deformation structural element (DSE). Here the DSE is
defined as the unit volume element represented by the same local coordinates. Expressing t
LBM in terms of the components of the local coordinates, the transformation can be written
as follows.
= B/n 1)

where i represents the external indicesand j represent the internal indices,’ is the
ith component of the LBM at and g is a 3x 3 matrix representing a transformation of the
GL(3, R) group, the general transformation group of three dimension. GL(3, R) consists of nine
independent parameters of real numbers, which corresponds to the nine degrees of freedor
i.e., rotations, translations and change of the LBM components in length. Requesting the
Lagrangian to be invariant under this transformation, PMM has introduced a gauge field, anc
using the least action principle, it has derived afield equation analogous to that of the Maxwell’s
electromagnetic theory.

After the summation over the group indices, the Maxwell type field equation together with
the Bianki identity leads to the following set of equations [8, 16].
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HereV = (u, v, w) is the rate of the displacemet,= (w,, wy, »,) is the angle of rotation
of the LBM, ¢, is the phase velocity/° and J are, respectively, the temporal and spatial
components of the four vector corresponding to the charge of symmetry.

J0 = —g'nins /17 (6)
Tt = gne Dyl Cly ) 12 7)

whereg'/ is the matrix inverse to the metric tensor of the internal spaxeis the covariant
derivative/ is the characteristic size of the DSE, a(ﬁg(g is the dimensionless elastic constant
of the medium. The right-hand side of equation (6) represents the temporal change of the
local bench mark, which corresponds to the stress concentration [17]. The right-hand side o
equation (7) represents the spatial variation of the LBM. Note that when the field is purely
rotational, i.e.;j is perpendicular tdy, J is zero. Since/ represents dissipation [17], this
means that when the field is purely rotational, there is no dissipation.
From equations (3) and (4), the following wave equations can be derived.
- -
VZV—%H=Q+W° (8)
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These equations indicate that the translational and rotational modes of displacement ar
transverse waves.

In more material scientific terms, the above-mentioned dynamics can be considered as
process of stress relaxation. When a material yields, it loses the shear stability. Consequentl
the deformation becomes spatially non-uniform, and a developed stress concentration i
generated. This makes the displacement field vortical, introducing the rotational component ir
addition to the translational component. Then, these translational and rotational component
of displacement interact with each other (called the translational-rotational interaction, TRI)
so that the stress is relaxed. In a wave dynamical sense, it can be said that the TRl mechanis
carries away the energy flow associated with the stress concentration in the same sense as
Poynting vector carries electromagnetic energy. As the deformation develops, various defect
are generated, making the material more dissipative. This makes it less efficient for the TRI to
function as a mechanism of stress relaxation, because part of the stress energy is not transferr
as a wave, being lost by the dissipating mechanism. Eventually, the material becomes s
dissipative that the TRI completely stops functioning, and consequently, the material generate
adiscontinuity as the alternative mechanism of stress relaxation [18], i.e., it fractures. Based ol
these considerations, PMM has defined the following pre-fracture criteria [3]: when a material
is about to fracture (1) the wavelength of the displacement wave becomes comparable to th
sample size (wavelength pre-fracture criterion), (2) the displacement wave becomes a standin
wave (standing wave pre-fracture criterion) and (3) a pair of vortices having mutually opposite
direction of rotation appear and the sample fails along the boundary of the vortices (vortex
pre-fracture criterion).

2.2. Two-dimensional model

Let us consider the above dynamics in a two-dimensional picture so that it can be compare
with the measurement by ESPI. Suppose the tensile load is given indhrection and the
sampleisintha—y plane. In this case, equation (4) becomes as follows &ordy directions.

dw, 1 ou
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whereu andv are thex andy components of = (u,v). Together with equation (3), these
equations represent transverse waM@s y, t), v(x, y, t) andw(x, y, t). The mechanism that
generates these wave characteristics can be pictured by a simple model shown in figure !
where the dynamics are presented as the motion of DSE. In this model, the forces betwee
neighbouring DSEs are proportional to the deviation from the equilibrium position of the
DSEs; i.e., equivalently, the DSEs are connected to each other with a spring. Suppost
DSE(, y + Ay) rotates anticlockwise for some reason; for example, the DSEs located to the
right of DSE(, y + Ay) moves upward more than the DSE located on the left does (figure 1).
This rotation of DSEX, y + Ay) will push DSE(, y) to the right. Thus DSE(, y) will move

to the right byX (x, y + Ay) at the boundary with DSE( y + Ay). On the other boundary,
DSE({x, y — Ay) will resist this movement of DSE( y) by trying to push it back to the left.
Consequently, the displacement of DSEY) at this boundaryX (x, y), will be different from

the other boundary, and this causes DSE] to rotate. Based on the assumption that the
force operating between the DSEs is a spring force, the force thatD$F(eceives from
DSE(, y — Ay) can be written as

Fx,y)=—kX(x,y) (12)



(N
DSE(x, y+Ay)

Figure 1. Two-dimensional model of mesomechanical picture of plastic deformation.

wherek is the spring constant. Similarly, the force that DSE(+Ay) receives from DSE(, y)
at the other boundary can be written as
flx,y+Ay)=—kX(x,y+Ay) (13)

and the force that DSE( y) receives from DSK(, y+Ay) mustbe the reactiontf(x, y+Ay),
i.e.,— f(x,y+ Ay). Therefore the net force that DSE(y) receives from these neighbouring
DSEsis—f(x,y+ Ay) + f(x, y), and the equation of motion becomes

ou

KX Gy +Ay) = X, )] =m— (14)
wherem is the mass of the DSE(y). In accordance with equation (3), displacement
X (x, y) can be related to rotatiod, (x, y) as X (x, y) = —w,(x, y)Ay. Then, expressing
w(x,y+Ay) —w(x,y) asAydw/dy, equation (14) becomes

dw, ou
k(A (=) =m—. 15
(97 (=52 ) =3y (15)

For thex direction, the same argument holds, leading to an equation of motion equivalent to
equation (15)

2 awz _ a_v
k(Ax) ( o ) =m ” (16)

whereY (x, y) = w,(x, y) Ax was used for the vertical displacement. Puting= Ay = Al,
equation (15) and (16) lead to

dw, ___m 8_14 a7)
ay k(AD?Z 3t
do;  m v (18)

dx  k(ADZat’

These equations reduce to equations (10) and (11) With= J, = 0 and interpreting
m/{k(A)?} = 1/c? (i.e., ym/k = t/2m, 1/Al = 21/) wheret is the period and. is

the wavelength of the displacement wave). Indeed, by partially differentiating equation (17)
with respect toy and partially differentiating equation (18) with respectxtoand adding
them together we obtain the component of equation (9) witd = 0. It should be
noted that with the conditio’ = J° = 0, the wave equations (8) and (9) represent
non-decaying waves. From this standpoint, the first terms of equations (10) and (11)



represent the synergetic interaction between the translational and rotational mode causin
the wave characteristics in the displacement, and the second terms represent the dissipatic
Note that in this formulation, the force exerted from the horizontally neighbouring DSEs
Af = f(x+Ax,y)— f(x,y) = —kdX/dxAx can be interpreted as part &f, because it

does not contribute to the wave propagation. A little consideration [17] reveals that these
forces are associated with the motion of stress concentration, which corresponds to an electri
charge inthe analogy to the Maxwell electromagnetic theory (called the EM analogy, hereafter).
It is interesting to note that in the EM analogy, the first term corresponds to the displacement
current and the second term corresponds to the conduction current, which represents the ohm
loss.

3. Summary of experimental observations

Inthis section, we summarize various experimental observations on the DB. In the next section
these observations will be discussed based on the mesomechanical interpretation of the DE
Note that all the experiments discussed here are tensile experiments with a constant elongatic
rate, where displacement is measured by in-plane displacement sensitive ESPI.

Horizontal

Figure 2. Typical DB observed in HSF and VSF. Also see figure 4 (HSF) and figure 6 (VFS),
which show clearer fringe patterns above the DB.

3.1. Observation 1: fringes around DB represent bodily rotation

Figure 2 shows typical DBs observed in fringe patterns representing the horizontal and vertica
displacements (called the horizontally sensitive fringe pattern, HSF, and the vertically sensitive
fringe pattern, VSF, respectively). Note thatthe DBs appear at the same location in the HSF an
VSF, which indicates that the DBs observed in HSF and VFS represent the same phenomenol
Note that the fringes above and below the DB in the HSF are roughly equidistant and horizonta
(see figure 4 for fringes above the DB in HSF), while the fringes above and below the DB in
the VSF are roughly equidistant and vertical (see figure 6 for fringes above the DB in VSF).
These patterns of fringes indicate bodily rotations of the sample [2, 19] above and below the
DB®.

5 When a sample rotates as a rigid body by a small amgtle horizontal and vertical displacement aty) can

be written asAx = —ay andAy = ax, respectively. Thus the horizontal displacement depends only on the vertical
coordinates, whereas the vertical displacement depends only on the horizontal coordinates. Therefore, the fringes i
the HSF, which are contour lines of equi-displacement in the horizontal direction, appear to be equidistant from one
another and parallel to the axis. For the same reason, the fringes in the VSF appear to be equidistant from one
another and parallel to theaxis.



3.2. Observation 2;: DB moves when stress concentration is at a low level

Experimental studies on the DB under various stress conditions [3] have revealed that the
appearance of the DB strongly depends on the level of stress concentration. In the case whe|
the sample does not have an initial stress concentration, the DB typically begins to appear a
soon as the sampleyields. In an early stage, the DB usually runs approximately in the directior
of the maximum shear stress, i.e., about #bthe tensile axis. In this stage, sometimes more
than one DB appear at different locations of the sample simultaneously. The DB of this stage
normally sweeps across the sample along the tensile axis, and therefore appears to be dynam
When the stress reaches a certain level, the DB becomes stationary at the location where tt
sample eventually fails. In this stage, the DB is not necessarily‘atodthe tensile axis, but

runs along the line of forthcoming failure. Figure 3 shows a typical time-historical trace of
the DB observed in this type of sample. In the case where the sample has an initial stres
concentration such as a welded joint, the DB appears to be stationary from the beginning at thi
location where the sample eventually fails [3, 5]. If the initial stress concentration is intense,
the DB sometimes begins to appear at the stage where the stress—strain curve is still in th
elastic region [3]. In any case, the sample always fails at the location where the DB becomes
stationary, and the failure occurs along the DB.
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Figure 3. Time historical trace of DB. The vertical axis indicates the pixel number of the CCD
camera that takes ESPI images. The sample failed where the DB finally became stationary.

The way the DB drifts depends on the type of material [4]. In the case of aluminum alloys,
the DB sweeps across the length of the sample several times before it becomes stationary [3, 4
In some cases, the DB changes the direction of its sweep [4]. On the other hand, it has bee
observed that in the case of a steel, the DB sweeps only once in one direction on the yielding
plateau of the stress curve [4, 20].

3.3. Observation 3: DB observed at the boundary of vortices

In [21], we observed that a DB appears at the boundary of a pair of vortices in the field of
the secondary time-derivative of displacement. Figure 4 illustrates the situation. Here the
field of the secondary time-derivative of displacement is evaluated by subtracting the rate of
displacement measured in the preceding time step from that measured in the current time ste|
The DB began to appear immediately after these vortices appeared. Note that the vortices hay
mutually opposite directions of rotation and that the secondary time-derivative of displacement
is proportional to the force. These indicate that the DB appears along the region where ar
intense bend-torsion moment operates. This particular DB was stationary from the beginning



Figure 4. The vortical field of the secondary time-derivative of displacement (left) and the DB
that appears in an HSF immediately after the vortex is observed (right). Note that the DB appears
along the boundary of the vortices.
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Figure5. DB and stress drop.

and the sample failed along this location. This observation is consistent with the vortex pre-
fracture criterion mentioned in section 2.1.

3.4. Observation 4: DB is accompanied by a stress drop

We have noticed that the appearance of a DB coincides with a stress drop [3, 21]. Figure -
illustrates the situation where the stress drops as a dynamic DB appears at different location:
making the stress—strain curve zigzag (the phenomenon known as the Portevin—Le Chateli
effect or a serrated loading curve [6]). Zhasgal [22] and Makarov and Romanova
[23] also observed the same phenomenon in their experimental and theoretical investigatior
respectively.

3.5. Observation 5: finer fringes are observed in DB

Toyookaet al [14] have employed a high sampling rate to increase the temporal resolution of
ESPI and discovered that the banded region where a DB appears can be resolved into a fir
fringe structure. Figure 6 shows fine fringes such as they observed in the vertical displacemer
(in the tensile direction) with a sampling rate of 30 frame’s $£ach fringe pattern represents
deformation occurring in 1/673 (five frames) at a tensile speed 0®a&m s, while one fringe
spacing corresponds to displacement &5um. The number shown under each pattern is
the frame number, indicating the elapsed time from a reference frame. The rightmost patterr
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Figure 6. Fine fringe structure observed in the banded region where a dynamic DB appears. The

rightmost photograph shows the fringe system of a whole view of the sample observed with a
second camera. All fringe patterns are VSFs. After Toyosilah [14].
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Figure7. Strain pulsation. Note that in [14] the authors definexittais as the vertical axis but in
this paper we define theaxis as the vertical axis.

shows a fringe system that they observed in the same experiment with a second camera viewir
awhole field of the sample at a lower sampling rate (40 framesiThis pattern (called the
whole-field pattern) represents deformation occurring in 1.5 s. Note that the fine fringe system
is always formed at the location where a DB appears and it moves together with the DB. The
entire fine fringe structure, having two to six fringes depending on the frame, corresponds to &
single DB seen in the whole-field pattern. Note that six fringes correspond to a total elongation
of 0.35um x 6 = 2.1 um, if all the fringes represent elongation, and that this value is greater
than the motion of the tensile machine’s grip calculated.8g@ st x 1/6 s = 0.65um.

This indicates that when the fine fringe structure shows six fringes, they represent, at leas
partially, contraction of the material.

3.6. Observation 6: strainin DB varies periodically

In [14], the authors note that the density of the fine fringes changes periodically, and call
the effect the strain pulsation. Figure 6 illustrates the situation where the fringe density
alternates between the dense and coarse state. When the fringe density is in the coar:
state, the total number of fringes is typically two. Since one fringe spacing corresponds
to a displacement of.85 um, this means that the total elongation in the vicinity of a DB is
about 035 um x 2 = 0.7 um, which is roughly equal to the distance that the grip of the
tensile machine travels @um s* x 1/6 s = 0.65,m). This indicates that the coarse state
corresponds to the situation where the elongation caused by the tensile machine is concentrats
in the region of the DB.

Figure 7 shows the strain pulsation effect observed in figure 6 in terms of the temporal
variation of the fringe density per unit time [14]. Since this fringe system represents the



vertical displacement, figure 7 effectively represents the rate of the normal strain in the vertical
direction, where the peak of the normal strain rate corresponds to the dense fringe state il
figure 6 while the valley corresponds to the coarse fringe state. The strain rate shows clea
periodicity with a period of 1 s.

3.7. Observation 7: DB drift velocity is similar to the phase velocity of a u-wave observed in
a similar material

We observed dynamic DBs in an aluminum alloy a number of times [2, 3, 13], and have found
that those DBs show similar drift velocities to each other. In [13] we observed displacement
waves in the displacement component perpendicular to the tensile axis (called the u-wave)
We observed that the u-wave initially travelled along the tensile axis and became stationary
before the sample failed, in consistence with the standing wave pre-fracture criterion. We have
noticed that this phase velocity that the u-wave shows in its initial stage is quite similar to the
above-mentioned drift velocities of the dynamic DBs
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Figure 8. Temporal variation of pulsation frequency and DB drift velocity as deformation
progresses. After Toyoolai al [14].

3.8. Observation 8: DB drift velocity decreases and becomes zero at failure

Figure 3 indicates that as the DB repeats the sweep across the length of the sample, its dri
velocity decreases. Figure 8 shows this effect explicitly, as observed by Togoalkd4]. A

similar decrease in the drift velocity of DB has been observed in other measurements [2, 3].
Note that the drift velocity always becomes completely zero when the sample fails, as seen ir
figures 3 and 5. Also shown in figure 8 is the observation by Toy@bleh [14] that as the

drift velocity of the DB decreases the frequency of the strain pulsation decreases.

6 In those series of experiments where we observed the displacement wave, the DB began to appear after th
displacement wave became a standing wave and it was stationary from the beginning. On the other hand, in th
other series of experiments where we observed dynamic DBs the displacement waves were too complicated to extra
the phase velocities. Therefore, it was impossible to compare the phase velocity of the displacement wave and th
drift velocity of the DB directly in the same experiment. However, as discussed in [13], the phase velocity is likely
to be a constant for a given material with a given sample length. From this standpoint we say that this observation
implies that the drift velocity of DB is similar to the phase velocity of the displacement wave.



4. Interpretation of the experimental observations

From the mesomechanical viewpoint, the DB can be interpreted as manifestation of durrent
[15]. Let us consider the DB from the viewpoint of more conventional mechanics and discuss
the meaning of current, accordingly. The observations described under subsection 3.2 in the
preceding section (hereafter we abbreviate these subsections as obs 2, etc) are quite simil
to the properties of a liders band [7]. Classically, it is explained that aders band is
formed when a number of dislocations move one after another in a chain reaction known as
the cataclysmic release of dislocations [24]. Because a movement of dislocation causes
slip, the resemblance to thaitlers band indicates that the formation of the DB is associated
with a slip. Thus the following scenario can be naturally pictured. When the stress reaches ¢
certain level, a slip occurs at the boundary of two adjacent DSEs, as one of them (the primary
DSE) pushes the other (the secondary DSE) by the type of motion described in the above
introduced two-dimensional picture. Because of this slip, the motion of the primary DSE is
not completely transferred to the secondary DSE; in other words, the kinetic energy associate!
with the motion of the primary DSE is partially dissipated. In equation (10), the first term on
the right-hand side represents the transfer of the motion of the primary DSE to the secondan
DSE as a wave, while the second term (fheurrent term) represents dissipation. Thus the DB
can be interpreted as this type of slip initiated at some point on the boundary of neighbouring
DSEs and flows across the sample width as curféntt is likely that on the right-hand side
of equation (10) this process corresponds to an increase in the second term and a decrea
in the first term. Since the first term is proportional to the acceleration, the decrease in this
term basically represents a decrease in force [13, 18]. In the above picture, this correspond
to the situation where because of the slip the resisting force by the secondary DSE reduce:
This picture is consistent with the observation that a stress drop accompanies the appearan
of DB (obs 4). Itis interesting to note that in the EM analogy this is equivalent to the situation
where as a medium under an electric potential becomes more conductive, the displacemel
current (corresponding to our first term) decreases and the conduction current (correspondin
to our second term) increases [18]. From the gauge theoretical viewpoint, the conduction
current and currenf are commonly interpreted as the current of a charge that is invariant
under the transformation. Also note that part of the displacement resulting from such a slip
is unrecoverable in the next phase of the displacement wave in which the DSEs move in the
opposite directions. This corresponds to the phenomenon known as the yield elongation, al
elongation that takes place around the yield point with no stress increase and during whick
a Luders band propagates along the sample. Because the elongation takes place without
increase in stress, it remains after the stress is removed, i.e., the elongation is unrecoverable
Along the above scenario, let us consider the other observations on DB. From the
observation that a DB appears at the boundary of vortices where an intense bend—torsio
moment operates (obs 3), the situation of the sample when a DB is about to appear can b
considered to be as shown in figure 9. Because of non-uniformity in the vertical elongation,
the type of bend—torsion moment described in obs 3 is generated around a weak region whel
deformation is being concentrated. This creates the situation where the part of the sampl
above this deformation-concentrated region rotates in one direction, say clockwise for example
pulling the other part of the sample so that it rotates in the other direction (i.e., anticlockwise).
When this bend—torsion moment reaches a certain level, it becomes impossible for the lowe
part to follow the motion of the upper part, and slip occurs over the horizontal width of the

7 This picture is consistent with the interpretation made by Peainih [25] that a DSE rotate as a whole by means
of currentJ. Note that currenf flows along the boundary of DBs, and this flow is different from the drift of the DB,
which represents the fact that the DB appears at different locations at different times.



(a) (b)

Figure9. Schematic view of the formation of a DB. An intense bend—torsion moment is generated
so that the upper and lower parts of the sample receive rotational forces in mutually opposite
directions (a). When the stress reaches the threshold level, a slip occurs at the boundary of the
vortices and a DB runs.

sample. Consequently, the stress drops and the lower part bounces back clockwise as the upy
part keeps moving in the same direction with effectively no resistance from the lower part.
This slipping motion is observed as a DB being accompanied by bodily rotations of the sample
above and below the DB (obs 1).

In the spring—mass model, this process is equivalent to the following situation. Imagine
that we are dragging a mass using a spring and that the mass is connected to a second mg
behind it with a second spring. Here, the first mass corresponds to the primary DSE and the
second mass corresponds to the secondary DSE. As we go forward the resisting force from th
first spring increases. When the resisting force reaches a certain value, the first spring behind
can no longer tolerate the force and partially breaks (i.e., itloses the function as a spring with the
original spring constant while keeping the capability of providing a recovery force). Then all
of sudden the force from the first spring decreases and we will be thrown forward. At the same
time, the first mass we have been dragging will be pulled backward by the second spring, an
consequently, the force to the second spring is reduced. This corresponds to the moment whe
a slip occurs and the stress drops. In the material scientific picture, this is when a dislocatior
is released. A moment later, the DSEs are rearranged and a new equilibrium is establishe
with new equilibrium positions of the DSEs. Accordingly, a new spring with a slightly lower
spring constant (see below) is created, and the stress increase resumes. The displacemt
corresponding to the difference between the original and new equilibrium positions is not
recoverable.

This bouncing-back motion of the lower part continues until the new equilibrium is
established, consuming the displacement cumulatively gained in the past at the boundary witl
the upper part. While this happens, the upper part keeps moving in the opposite direction bein
driven by the tensile machine. The pulsation effect observed in figures 6 and 7 is the indication
of this bouncing-back phenomenon taking place in the displacement component parallel to the
tensile axis. The coarse-fringe state corresponds to the stage in which the deformation is bein
concentrated and the dense-fringe state corresponds to the stage in which the bouncing-bal
motion is taking place. This explains why the number of the coarse fringes corresponds to &
displacement similar to the motion of the grip while the number of dense fringes corresponds
to a displacement greater than the motion of the grip (obs 5). When the slip completes, the
stress restarts to increase causing a concentrated deformation and the same process repe
This explains the periodical change of the strain around the DB (obs 6). From this viewpoint,
the period in normal strain rate observed in figure 7 can be interpreted as representing the stre
recovery time.
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Figure 10. Fringe patterns observed with a DB (e and f) and without a DB (g). The upper patterns
are VSF and the lower patterns are HSF. The fringe pattern accompanied by a DB represents bodily
rotations above and below the DB, while the fringe pattern not accompanied by a DB represents
fairly uniform normal strain. Numbers indicate the elapsed time from the moment when the sample
started to be loaded. After Suprapedi [26].

Itis interesting to analyse the fringe patterns in connection with the type of strain that the
sample is undergoing. Figure 10 shows whole-field fringe patterns (VHFs in the upper row and
HSFs in the lower row) observed at an early stage of PD (past the yield point by about 10% of
the total elongation that the sample undergoes before it fails). In this stage, the DB is formec
intermittently on fringe patterns at different locations of the sample, thereby it appears to be
sweeping along the tensile axis at a constant drift velocity. In terms of the explanation made in
the preceding paragraph, this is the stage in which the formation of a slip and the stress recover
repeat alternatively. Figure 10 indicates that when a DB is formed (e and f) the pair of VSF
and HSF represents bodily rotations of the sample above and below the DB, whereas when
DB is not formed (g) both VSF and HSF indicate fairly uniform normal strain spread over the
whole sample. Here the fringe pattern representing bodily rotation can be characterized by
equidistant, vertically parallel fringes in the VSF, and equidistant, horizontally parallel fringes
inthe HSF [19]. These observations can be interpreted as follows: during the period in which a
DB is being formed the deformation is concentrated in the banded region so that the upper an
lower parts of sample undergo bodily rotations as discussed above. Once the DB is formed
the stress is relaxed accordingly. Consequently, the material momentarily goes back to a stre:
situation similar to the elastic regime. This makes the sample undergoes relatively uniform
normal strain as typically observed in elastic deformation, and this situation is represented by
the fringe pattern shown in figure 10(Qg).

Also of interest is to note in figure 6 that the fine fringe system observed within the
banded region of the DB shows normal strdin(0y) while the whole-field fringe pattern (the
rightmost pattern) taken at the same time represents the bodily rotation of sample above an
below the DB. Note that this normal strain in the fine fringe system is concentrated in the bandec
region, being contrastive to the above-mentioned uniform normal strain typically observed in
the elastic regime. Obviously, these two types of normal strain are different from each other
in their mechanisms of formation. The former is due to localized deformation concentrated



in the banded region where a DB is being formed, whereas the latter is associated with rathe
uniform deformation occurring over the whole sample. In the basic equations (2)—(5), the
normal strain terms appear only in equation (2), representing ctidrgenus this observation

can be interpreted as follows: when a DB is about to appear, deformation is concentratec
around the region where the DB is being formed, and this deformation contains concentratec
normal strain that corresponds to chatfe When the DB is formed, the charge flows as
currentJ and, consequently, the stress is relaxed. This interpretation is consistent with the
previous interpretation [15] that the DB is identified as curtertecausd is the flow of J°.

Note that in the EM analogy]® corresponds to an electric charge. When an electric charge
flows in a conductive medium, it reduces the electrical potential applied across the medium
and causes energy dissipation known as the ohmic loss. In such a picture, the stress relaxatic
by means of current corresponds to the reduction in the electric potential and the associated
dissipation corresponds to the ohmic foss

Now we consider the drift of the DB. Suppose a DB is formed at a certain location of the
sample. In accordance with the above interpretation, the formation of the DB can be explainec
by the following dynamics. When the displacement grows to a certain level at some location, the
stress reaches the threshold value to cause a slip. As the slip occurs, the displacement reduc
at all the points above and below this location and a new equilibrium position is established.
Remember that in this model the displacement represents the distance from the equilibriun
position (see the paragraph following equation (11)). It will be helpful to consider the situation
using figure 1 which represents the horizontal component of the dynamics. Imagine that &
slip occurs at the boundary between DSE( + Ay) and DSEg, y). This will lower the
force f(x, y) at the other boundary of DSE(y), reducing the displacemeft(x, y) there.
Similarly, on the other boundary of DSE(y + Ay) the displacemenk (x, y + 2Ay) will
reduce. (The vertical displacement is reduced by the same mechanism and is represente
by the pulsation effect (obs 6).) After this reduction takes place, the displacement increase:
again because the sample is still under the external load; then after a while, the stress reach
the threshold value again to cause another slip. While this happens, the displacement wil
travel as a transverse wave, where the u-wave represents its horizontal component propagatit
in the vertical direction. Therefore, during the period in which the stress recovers from the
reduced level associated with the last slip to the threshold level causing the next slip, the u-wav
will travel in the vertical direction for a distance equal to its phase velocity (i.e., the vertical
component of the phase velocity of the total displacement wave) times the recovery time. This
distance is observed as the vertical distance of the two consecutive DBs. This explains why
the drift velocity of the DB is similar to the phase velocity of the u-wave (obs 7).

By this mechanism, the DB drifts towards one end of the sample along with the
displacement wave. At this point, the displacement wave is either reflected or transmitted
through depending on the boundary condition. While the reflection and transmission of a
displacement wave are subjects of future investigation, it will be worth making a few comments.
In general, a wave is reflected at a boundary where the material constant varies and therek
the propagation constant changes. In the EM analogy, as an example, an electromagnet
wave is reflected at a boundary where the real part of the electric susceptibility (i.e., the index
of refraction) varies. In the present case, the displacement wave will be reflected when it
travels through a boundary where the spring constant varies. (Note that a change in the sprin
constant changes the propagation constant thrqighik = t/27. See the paragraph under
equation (18).) In figure 3 the DB initially travels from the top to the bottom. At 1000 s

8 From this viewpoint, the force associated with the normal strain corresponds to a Coulomb force, which is a
longitudinal effect.



it changes direction near the bottom of the sample. Then it keeps sweeping upward until
4800 st when it changes direction again near the top of the sample. After that it changes
direction a couple of times near the centre of the sample where it fails at 6508 possible
interpretation of this phenomenon is as follows. Based on the argument made above, as th
DB is repetitively formed the spring constant of the sample decreases. It is likely that this
decrease in spring constant is greater in the main part of the sample than the wider part &
both ends where the sample is gripped by the tensile machine. Therefore, as the deformatio
progresses the spring constant in the main part becomes smaller relative to the wider part, ar
at some point of time, the difference in the spring constant between the two parts become:
so great that the displacement wave is mostly reflected near the shoulder of the sample (i.e
the boundary between the main part and the wider part). The first two reflections near the
two ends of the sample observed in figure 3 (at 1000amd 4800 s!, respectively) can be
explained by this mechanism. When the deformation develops to the final stage where the
strain is concentrated at a certain location of the sample, the spring constant of that regior
will become considerably lower than the other part of the sample. Thus the reflection will
take place at the boundary of this strain-concentrated region. The final couple of reflections
observed in figure 3 can be explained by this effect. As the deformation further progresses
from this stage, the strain-concentrated region will be further localized. This explains why
figure 3 converges to the location where the sample eventually fails. Note that the reflectec
wave interferes with the wave travelling in the original direction, and consequently, a standing
wave can be generated. This explains why the drift velocity of the DB becomes completely
zero toward the failure (obs 8).

When a DB sweeps the sample, a slip occurs as the DB is formed at a new location.
As discussed above, a slip is equivalent to partial breakage of the spring. Thus, as the DE
repeats the sweep, the spring constant decreases. When the spring constant decreases, tt
things happen. First, the rate of the work hardening decreases. Basically, the spring constat
represents the force per unit elongation. Therefore if the tensile load is given at a constan
tensile speed as is the case of all the experiment shown in the previous section, the decrease
the spring constant results in a decrease in the rate of increase in force (i.e. the rate of stre:
increase on the stress—strain curve). Consequently, the stress recovery time increases eve
time after a slip occurs (i.e., it takes longer to gain a certain stress increase). This explain:
why the pulsation frequency (i.e., the inverse of the stress recovery time) decreases as th
deformation develops (obs 8). Second, the phase velocity of the displacement wave decreas
(c; = k/mAl). This explains why the drift velocity of DB decreases as the deformation
develops toward failure (obs 8). Third, the period becomes longer 27 \/m/k [13]). From
this standpoint, the failure can be interpreted as the situation where the period of the oscillaton
motion of the displacement becomes infinitely long.

5. Summary

We have considered the DB and its dynamics from the viewpoint of PMM. It has been found that
the DB is manifestation of a slip of DSE, corresponding to the classical phenomenon known as
the Portevin—Le Chatelie effect or the propagation of thddrs band. In the mesomechanical
picture, a slip of DSE is a dissipation process. Therefore, if such a slip occurs, the TRI
mechanism becomes less efficient, and the displacement wave as a carrier of the stress enet
decays. Consequently, currehflows as the alternative mechanism of stress relaxation. This
observation is consistent with the previous interpretation of the DB as cutidsa.

We have introduced a simple spring—mass model to intuitively explain the dynamics
responsible for the dissipative wave characteristics of the displacement field. In this model, the



stress drop caused by a slip is interpreted as a partial breakage of the spring, which is followe:
by the creation of a new spring with a lower spring constant. In the mesomechanical picture,
this corresponds to the establishment of a new equilibrium in the DSE position and recovery
of stress increase. The drift of the DB is interpreted as the travel of the displacement wave
during the period of stress recovery. As the DB repeats the sweep along the sample, the sprin
constant decreases monotonically. Based on this interpretation, the experimental observatio
that the drift velocity of DB is similar to the phase velocity of the displacement wave can be

explained. The observation that towards failure the drift velocity of DB decreases while the
period of the oscillatory motion of displacement increases can also be explained. Since the
displacement associated with the slip is not stored as the potential energy, it is unrecoverabl
and remains as permanent strain.

The DB and its involvementin the fracture mechanismis well explained by the EM analogy.
The fact that the fine fringe system observed in the DB shows concentrated normal strair
component indicates that the associated stress concentration corresponds to an electric char
being consistent with the above-mentioned interpretation of DB as cufrefhe transition
from PD to fracture can be interpreted as being equivalent to an increase in the imaginary
part of the dielectric constant of the medium that an EM wave is propagating through. In this
way, the medium becomes more conductive, causing the EM wave to decay, and at the sam
time, the ohmic loss caused by the conduction current to increase. As previously discussec
this picture indicates the similarity between the electrical breakdown of a gas and fracture of
a solid-state material [18].
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