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Because of cost or convenience reasons, patients or elderly people would be hospitalized at home and
smart information system would be needed in order to assist human operators. In this case,
physiologic and position sensors give already numerous informations, but there are few studies for
sound use in patient's habitation. However, sound classification and speech recognition may greatly
increase the versatility of such a system: this will be provided by detecting specific sounds or short
sentences which could characterize a distress situation for the patient. Sounds emitted in patient's
habitation may be useful for patient's activity monitoring. The proposed sound analysis system is
made of four modules: the first module in charge of sound and speech extraction is the detection
module, it is followed by a segmentation module needed to transmit the extracted wave to the Sound
Classification module or to the Speech Recognition module. The first two modules -Detection and
Segmentation- are presented and evaluated in this paper in experimental recorded noise conditions.
The detection method uses transient models, based upon dyadic trees of wavelet coefficients to insure
short detection delay. The segmentation step is a classical Gaussian Mixture Model classifier based
on acoustical parameters like MFCC.

Key words: Gaussian Mixture Model, Noise, Segmentation, Smart Room, Sound Extraction, Sound
Classification, Wavelet Transform.

1 INTRODUCTION

In this paper a sound detection and speech/sound segmentation method is presented. This method has been
developed as part of a medical telesurvey system intended for home hospitalization. The aim of this system
is to detect a distress situation of the patient using sound analysis. In distress case a medical center is
automatically called with the aim to give assistance to the patient. The decision of calling is taken by a data
fusion system from smart sensors and particularly a sound system as explained in [1]. Others sensors give
information about patient position (infrared sensors and door contacts) and state of health (oxymeter,
tensiometer, thermometer and actimeter).

Each sound produced in the apartment is characteristic of:

e a patient's activity: the patient is locking the door, or he is walking in the bedroom,

o the patient's physiology: he his having a cough,

e a possible distress situation for the patient: a scream or a glass breaking are suddenly appearing.

If the system has a good ability of classification for such sounds [2], it will be feasible to know if the
patient is needing help. Several usual sound classes needed for this application have been defined and a
corpus has been recorded in our laboratory.

In the same way, the speech said by the patient may give precious information on the patient:

e adistress case : “Help me!”, “Doctor!”,

e anormal state : “Coffee is cold!”, “The door is open!”.
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An adapted corpus in French has been defined and recorded in our laboratory. Before sound/speech
segmentation, it is necessary in a first step to establish the start and the stop time of the sound to be classified
in the environmental noise. The precision of these two times must be sufficient to allow the segmentation
step good performances. In the context of audio signal encoding, the input signal can be decomposed into
““tonal", “‘transient" and “stochastic" components as described by Daudet in [3]; our problem is restricted to
transient detection for which large wavelet coefficients are more easily interpreted as transients. The
proposed method is based on wavelet tree analysis. In case of "transient", a significant coefficient is likely
coming with additional significant coefficients of lower scale occurring at the same time.

Segmentation is frequently studied for speaker, speech/music or speech/music/singing segmentation
in various noise recording conditions. A summary of obtained errorless segmentation rates is shown in Table
1.

Table 1 - Segmentation Results for various Class Type

Segmentation Document Type Segmentation Rate References
Musical Genre Music Recording 60-70% [13]]14]
Speech, Music, Singing Music Recording 80-90% [15]
Speech, Music, Silent Radio Broadcast News 95-98% [16][17]
Speech, Music, Silent, Speaker Radio Broadcast News 80-90% [18][19]
Speaker Meeting Recording 80-90% [18][19]
Speech, Music, Silent Motion Picture 95-98% [4]
Speech, Music, Noise, Silent Motion Picture 80-90% [6]
Whistle, Crowd (crapping, laughing), Football Matchs 80-90% [20]
Speaker

Man, Woman, Music Instrument, Various Kind of 85-90% [26]
Machine, Water, Animals Records

Life Sound Classification Home Recording 60-90% [2][5]

Segmentation methods are various, including Hidden Markov Model, KullBack-Leibler distance,
Bayesian Information Criterion, Artificial Neural Network, Decision Rules and Gaussian Mixture Models.
Results in case of speech/music discrimination are very good (98%), but they decrease of 10% if noise has to
be discriminated. For musical genre results are poor and below 70%.

The proposed speech/sound segmentation method is a classification method using GMM models
[4][5][6], evaluation is done in noisy conditions with our corpus. We also present in this paper the results of
sound detection and speech/sound segmentation system in noisy conditions on audio recordings[22].

2 THE SOUND SURVEILLANCE SYSTEM

2.1  The Telemonitoring System

The aim of our study is to obtain useful sound informations and to transmit them through network to a
medical supervising application in a medical center. The habitat we used for experiments is a 30m’
apartment situated at the TIMC laboratory inside the Faculty of Medicine of Grenoble. It is equipped with
various sensors, especially microphones in every room (hall, toilet, shower-room, living-room)[1]. The entire
tele-monitoring system is composed of three computers which exchange information through local network
(see Figure 1).

This system is designed for the surveillance of the elderly, convalescent or pregnant women. Its main
goal is to detect serious accidents or falls or faintness at any place of the apartment. It was noted that the
elderly have difficulties in accepting video camera monitoring, considering it a violation of their privacy.
Thus, the originality of our approach consists in replacing video camera by a multi-channel sound acquisition
system.



Each time a sound event is analysed, a message is sent to the Data Fusion PC, notifying occurrence
time of detection, most probable sound class or recognized sentence, localization of the emitting source.
From this and from other data obtained from localisation and physical sensors, the Data Fusion PC could
send an alarm if necessary.

- N
IS_Jocallsatlon and Physical 5 Microphones Data Fusion|
11S0TS C|> C|) (|3 C|) C|> PC
o p— E
gnitonPC { | SoundPC | | T
Medical Center
\_ Local Surveillance S W,

Figure 1 - Medical Telemonitoring System

2.2 The Sound Surveillance Architecture

The sound analysis system has been divided in four modules as shown in Figure 2. The first module is
the detection module in charge of extraction of audio events from the signal flow. Extracted signals are then
transmitted to the segmentation stage, which switches it to the classification module in case of life sounds or
to the recognition module in case of speech. At the end, the obtained information will be send to the data
fusion system, which will respond at the question: “Is it a normal case or a distress situation?”’

[ Sound Event Detection )

[ Speech/Sound Segmentation )

( Sound Classification J ( Speech Recognition )

Data Fusion System

sound "door slap” speech "L'eau est froide!”
24f11/2004 17h 6mn 35s 24/11/2004 17h 7mn 43s
kitchen kitchen

Figure 2 - Sound analysis system

3 SOUND AND SPEECH CORPUS

3.1  The sound Corpus

The everyday sounds are divided into 7 classes. The criteria used for this repartition were: statistical
probability of occurrence in everyday life, sounds significant for a distress situation (scream, person fall)
and duration of the sound (significant sounds are considered to be short and impulsive). The 7 sound classes
are related to 2 categories:

e normal sounds related to a usual activity of the patient (door clapping, phone ringing, step sound,

human sounds like cough or sneeze, dishes sound, door lock),

e abnormal sounds that generate an alarm (breaking glasses, screams, fall sounds).

As no everyday sound database was available in the scientific area, we have recorded a sound corpus.
This corpus contains recordings made at the CLIPS laboratory, files of “Sound Scene Database in Real
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Acoustical Environment” (RCWP Japan) and files from a commercial CD: door slap, chair, step, electric
shaver, hairdryer, door lock, dishes, glass breaking, object fall, water, ringing. 20 types of sounds were
selected with 10 to 300 repetitions per type.

Table 2 - Everyday sound corpus

Class of Sound Number of Files Duration Average Class Length % of the Corpus

Door Slap 523 737ms 385s 33%
Glass Breaking 88 861ms 765 6%
Ringing Phone 517 928ms 480s 40%
Step Sound 13 2257ms 29s 2%
Screams 73 1930ms 141s 12%
Dishes Sounds 163 402ms 65s 6%
Door Lock 200 36ms 7s 1%
Entire Corpus 1577 751ms 20mn 100%

The sound classes of our corpus are described in Table 2. This corpus is not yet complete, 2 classes
very useful for this application are remaining to record: Human Sounds and Fall Sounds.

3.2 The speech Corpus

This corpus has been recorded in the CLIPS laboratory by 21 speakers (11 men and 10 women) between 20
and 65 years old. It is composed of 126 sentences in French: 64 are characteristic of a normal situation for
the patient: “Bonjour!” (Hello), “Ou est le sel?” (Where is the salt)... and 64 are distress sentences: “Au
secours!” (Help), “Un médecin vite!” (A doctor quick)... This corpus has a total duration of 38 minutes and
is constituted by 2646 audio files.

3.3 The Noised Corpus

First investigations showed that white noise performances are not sufficient to insure satisfactory
performances in real conditions. For this reason, we use audio noise recorded in our test apartment: HIS
noise. It results of all noises in the building, it is a transient noise similar to usual sounds to detect, but
transients are partially reduced by propagation inside the structure of the building. This kind of noise is not a
stationary noise.

With this corpus, a noised corpus has been generated for 4 signal to noise ratios: SNR=0dB,
SNR=+10dB, SNR=+20dB and SNR=+40dB. Used noise was recorded in our experimental apartment [1].
For each SNR, the noised corpus is made of 1577 life sound files (20mn) and 2646 speech files (38mn).

4 THE DETECTION MODULE

4.1  Transient Modeling

Methods based on wavelet transforms are often used for singularity characterization and for transient
detection, because of the compact support of wavelets in conjunction of the dyadic properties of these
transforms.. These two properties are allowing the analysis of reduced parts of the processing window. The
Figure 3 shows a wavelet tree with 3 level depth beginning at the highest hierarchical level. Each node is
corresponding to a wavelet whose support is drawn in frequency and time domain. For wavelets of highest
level the support in time is twice the sampling period.
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Figure 3 - Tree of wavelet coefficients for N=2048 sample window (tree depth of 3 levels)

For our purpose it is not necessary to determine the full tree corresponding to the transient, we limit our
study to these 3 levels and we characterize each tree by his energy e, the sum of the energy of all nodes. We
have chosen Daubechies wavelets ¥ with 6 vanishing moments to compute DWT on 2048 sample windows

J
(128 ms), the wavelet basis is generated by translation (—2 #n term) and scaling (Lj and L factors) of
: J
2 2
. | t— 2j n
the mother wavelet V' : Win (1) = F b4 >
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The mother wavelet is a function with finite energy and fast decay. The Figure 3 illustrates the variation
of the support of wavelets of highest hierarchical level: the higher the coefficient level is, the more the
support of the wavelet function is compact in time and large in frequency. This is valid for all levels.

As we consider the energy e of the tree, the non-significant nodes are implicitly not taken into account
because they are negligible in the summation. With this approach the tree is not pruned and we don't
eliminate nodes at scale 2'° if their mother node at scale 2° is not significant, but this might not be very
harmful because of the low depth of the tree.

A signal of a falling chair with HIS noise is drawn on the left of Figure 4. The sound appears at time
t=10s. The right sub-figure displays tree energy evolution across the time. Energy corresponding to useful
signal is surrounded by isolated noise pulses, which are sometimes greater, but useful signal is associated
with numerous adjacent trees and in this way could be detected.

Chair fall in HIS5 neise occuring at t=10s Tree Energy (3 highest level summation)

Magnhitude
<
Energy

' L]
10 20 10 20

Time {s) Time {s)

Figure 4 - Signal in HIS noise with corresponding tree energy over the time (tree depth of 3 levels)

4.2  Detection Algorithm

Evaluation of the detection algorithm was done from Receiver Operating Curves (ROC) giving
missed detection rate (MDR) as a function of false detection rate (FDR), the Equal Error Rate (EER) being
achieved when MDR=FDR. Results for the proposed algorithm are given in Table 3 in noisy conditions.

4.2.1 Start of sound

This algorithm is based on several wavelet tree means. DWT is calculated on N = 2048 sample windows
(128ms) as shown in Figure 5. From this DWT the energy e:of each tree is obtained by 500us time
translation across the transform. The processing window is cut into 4 consecutive frames containing 64 trees.
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64
Thus at 16 kHz sampling rate, corresponding width for these 64 values is 32 ms. Energy ez(z &) of each
i=1

frame is calculated in order to suppress noise influence. A transient is characterized by a large increase of e.
The detection threshold th, which is applied on e, is adaptive: th=x+1.2 Llewens , With Lemeans

referring to the mean of the thirty last values of ¢ and x to an adjusting parameter (see Table 3). The
coefficient 1.2 was introduced because of remaining oscillations on e.

As soon as the threshold is overrun, the detection time or start of detected sound and the signal energy
are memorized. This threshold will be used for end of signal detection.

DWT Frame Acquisition
P r—_ &' prurmions
el I LRI -

A +

Energy and Statistical Analysis

Threshold f Energy Memorisation
determination Start of Frame Recording

Acoustic Detection

Figure 5 - Detection algorithm using energy tree evaluation

4.2.2 End of sound

As soon as the beginning of a sound is detected in previous step, incoming signal is recorded until the end of
sound is detected. The energy value at detection time, corrected by a constant, is used as end threshold on the
same wavelet signal energy. It is necessary to allow silence sequences until 384ms length (12 frames of 64
trees) to take into account word separation in case of speech: 12 consecutives frames below the threshold
must be counted as shown in Figure 6. These 12 frames are not considered as a part of extracted signal unless
tree energy of the following frame is above the threshold: in this case these frames are a silent part.

Frame Acquisition and DWT Analysis

%] T

Tree Energy Analysis

Ersad consecutive?
1x& j[ Stop of Frame Recording
Threshold yes: n=n+1
Short Silence Consideration e

Figure 6 - End of signal determination
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4.2.3  Sound extraction example

Speech Record (SNR=0dB)

1,00 T
Signal
= .
& 0
)
n
'Appelez quelqu’un!”
1 oo LFAERSTST auelauy . . . . .
L] 1 2 3 4 5 6
Time (s)
Signal Detection
0.008 F Tree Energy ! ! |
= Gtart Threshold ——
o Stop Threshold
g ©.004 1
; VAV VS
o - ; ai ; A A I
L] 1 2 3 4 5 6

Time (s)

Figure 7- Extraction of a Door Slap

The top window of Figure 7 presents the sentence “Appelez quelqu’un” mixed with HIS noise at 0
dB of SNR. In the bottom window wavelet tree energy is represented in dark colour; the adaptative start
threshold in grey color with finest line and, respectively, the end threshold with the largest line. We can

observe that the start and end signal are detected with precision. According to Table 4 the precision of signal
end is almost independent of SNR.

4.3  Detection Results

Evaluation of the algorithm was done from Receiver Operating Curves (ROC) giving missed detection rate
(MDR) as function of false detection rate (FDR), the Equal Error Rate being achieved when MDR=FDR.
Results are given in Table 3, x is the coefficient used to fix detection threshold. Worst results (6.5%) are

obtained for 0dB SNR and even in this case the number of false or missed detection will be low for a value
of . k=0.002.

Table 3 - Detection Results in noisy environment (HIS noise)

SNR EER MDR FDR

[ dB] [%] K [ %] [ %]
0 6.5 2.8 12.9
10 0 0.002 0 0
20 0 0 0
40 0 0 0

In order to insure the best classification results, a short detection delay is very important. The precision
of start and end signal detection, for short signals (signals with a length <2s),are given in Table 4 for each
SNR in the previous conditions (threshold fixed to 0.002). We can observe that beginning and ending
detection time precision is approximately independent of SNR.

Table 4 - Mean of signal extraction precision

SNR Global [ms] Sounds [ms] Speech [ms]

[dB] Start Stop Start Stop Start Stop
0 119 222 106 190 130 248
10 95 242 116 192 77 280
20 99 258 117 228 84 280
40 103 301 118 241 90 346




5 THE SEGMENTATION MODULE

We have used a Gaussian Mixture Model (GMM) in order to segment the sounds into speech and usual
sounds [8][9]. There are other possibilities for classification: HMM, Bayesian method, etc. GMM has been
chosen because it procures comparable performances and requires low processing time.

5.1  GMM Method

The classification with a GMM method supposes that the acoustical parameters repartition for a sound class
may be modelled with a sum of Gaussian distributions. This method evolves in two steps: a training step and
a classification step. The GMM evaluation has been done on the Elisa platform.

In the training step for the sound class and the speech class a Gaussian model is estimated, each model
contains the characteristics of each Gaussian distribution. The number of distributions will be discussed later.
The training step start with a K-Means algorithms followed by EM algorithm (Expectation-Maximization) in
20 steps.

In the classification step the likelihood for each sound class is calculated for each acoustical vector (or
16ms frame) of the detected signal. The global likelihood for each class is the geometrical average of all
acoustical vector likelihood. The signal belongs to the sound class for which likelihood is maximum.

Since identification decision is made by comparison between average of all vector likelihood, a signal
truncation is less important than an addition of noise vectors at the end of signal. This addition will alter
average with noise likelihood in the same ratio of number of added vectors to number of original vectors.

5.2 Acoustical Parameters

GMM classification is not done directly on signal but uses extracted acoustical parameters before the training
step and the classification step. Acoustical parameters are a synthetic representation of time signal.

Acoustical parameters classically used in speech/speaker recognition are: MFCC(Mel Frequencies
Cepstral Coefficients), LFCC (Linear Frequencies Cepstral Coefficients), LPC(Linear Predictive
Coefficients). MFCC were chosen because of their characteristics which are very similar to human hearing.
MFCC parameters are cepstral coefficient frequently used un speech recognition. They allow deconvolution
of exciting signal and conduit contribution. Obtained results are very good [11] and these features are used as
reference in case of new parameter study [12][13].

H

fof, fn
Figure 8 - Triangular MEL filter response

The calculus steps for the MFCC parameters are: pre-accentuation and windowing; Fast Fourier
Transform of the analysis frame signal; Mel triangular filtering (see Figure 8); logarithm calculus of the
filtered coefficients and inverse cosines transform. The Mel frequency scale is logarithmic:

100

Ml ﬂn(m—l)
c[n]zZE[m] cos Tz ,0<n<M.

fMe1:2595.log(l f j The inverse  cosinus transform is  obtained according  to:



Acoustical parameters used in speech/music/noise segmentation are : ZCR (zero crossing rate), RF
(roll-off point), centroid. Zero Crossing Rate (ZCR) is the number of crossings on time-domain through
zero-voltage within an analysis frame (see Figure 10(a)). Roll-off Point (RF) is the frequency, which is
above 95% of the power spectrum (see Figure 10(b)). Centroid represents the balancing point of the spectral

power distribution within a frame (see Figure 10(c)).

(a) Zero Crossing Rate (b) Roll-Off Point (c) Centroid
1]
o
A : :
o f\ =g g
H i 7 i
5 AV I ?
o
(73]
Time Frequency Frequency

Figure 9 - Zero Crossing Rate (a), Roll Off Point (b) and Centroid (c)

Normalised energy of the frame is used as additional parameter. For each frame, the energy is
normalised with the average of energies of the frames of the complete signal. This parameter is in this way
less dependent of experimental recording conditions.

5.3  Model Selection

The Bayesian Information Criterion (BIC) is used in this paper in order to determinate the optimal number of
Gaussian models. BIC criterion selects the model trough the maximization of integrated likelihood:

BICwx=-2Lnk+vnkIn(n). Where Lmx is logarithmic maximum of likelihood, equal to
log flx m,K,g) ( f is integrated likelihood), m is the model and K the component number of the model,
vmk is the number of free parameters of model m and n is the number of frames. The minimum value of

BIC indicates the best model.

(a) BIC Criterium for Speech Class (b} BIC Criterium for Life Sound Class

- -
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Number of Gaussian Models Number of Gaussian Models

Figure 10 - BIC Coefficient Evolution for Speech (a) and Sounds (b) as a Function of Gaussian Model Number

The BIC criterion has been calculated for the sound class and for the speech class in noiseless
conditions, for 2, 4... and 64 Gaussian models in case of 16 MFCC parameters in conjunction with Zero
Crossing Rate, Roll-Off Point and Centroid. The results of the figure 11 are given for a number of Gaussian
models between 2 and 64 in case of speech class (subfigure a) and sound class (subfigure b). Performances
will be optimal when the BIC criterion is minimal. As it appears on these 2 curves, a number of Gaussian
models between 20 and 32 seems to correspond to the best sound modelling. We have decided to use 24
Gaussian models, which may be a good compromise between segmentation performances and calculus

consumption (real time constraints).
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5.4  Segmentation Results in Noisy Conditions

The analysis window was set to 16ms with an overlap of 8ms. Usual length for speech analysis is 20 ms.
With used sampling rate (16 kHz) the nearest value is 16 ms (2* samples). The GMM model is made of 24
Gaussian distributions for each class: life sound and speech. Training is made with pure sounds and testing
with sounds mixed with HIS noise at 0, +10, +20 and +40dB. The test uses a “cross-validation” protocol:
training is achieved with 80% of the corpus, and each file of the 20% remaining is tested according to the
models. Firstly the full corpus is cut into five parts of same size (speech, each class of life sounds) and
secondly the speech of each part is still divided in two parts to insure that no test will be done on a model
trained with the same speaker or the same sentence (see Figure 11).

©
sy 3(2|8 ] sy 3/3|8 8
28 2188 3 28 AR B 8
== T 2 SIS o = D= - o =] = e =
ae 28R & L2 gaa ]
3| @ 3| 3 3§ 3| 5|5 g
| & »| Bk 0 | w|wlw %3
Speaker 1 Speaker 1
. Speakar 2 5 Speaker 2
20% Speaker 3 20% Speaker 3
Speaker 4 Speaker 4
Speakar 5 N Speakar 5
Speaker 6 Speaker &
80% ! 80% !
1 1
Speaker 21 Speaker 21 N
<
XY | EARNING 0 TEST

Figure 11 - Speech Corpus Partition in order to insure test independence from speaker and from sentence

The sound classification performances are evaluated through the error segmentation rate (ESR)
which represents the ratio between the bad classified sounds and the total number of sounds to be classified.
In Table 5, the classification results are presented for 16 MFCC acoustical parameters coupled or not with
Zero-Crossing-Rate, Roll-Off-Point, Centroid and normalized energy. We can observe that in low noise
conditions (+40dB), best results are achieved for MFCC coupled with normalized energy: ESR=4.5%. These
results are remaining stable for SNR>+10dB , but they decrease below, ESR=22% at 0dB.

Table 5 - Segmentation Error Rate (24 Gaussian models)

16 MFCC 16MFCC + normalised energy | 16 MFCC+ZCR+RF+Centroid
SNR o o o
[dB] [%] [%] [% ]
Global Speech Sounds| Global Speech Sounds Global Speech  Sounds
0 23.6 33.6 7.0 22.0 29,.9 8.6 58.1 90.5 3.8
10 6.0 33 10.6 4.2 5.9 3.1 7.5 10.3 2.7
20 5.1 1.5 11.3 4.4 9.1 1.6 5 2.8 8.5
40 5.0 1.4 11.2 4.5 9.6 1.4 6.1 2.7 11.9

ZCR and RF parameters are dependent of high frequency components of the signal and thus very noise
sensitive. Results are poor at low SNR for that reason.

Normalised energy is processed on the complete sound file. In case of speech, normalisation is affected
by silences between words. We can notice that except for 0 dB, results are better for 16 MFCC without

normalised energy in case of speech: +8% at +20 and +40 dB. It’s the other way round in case of sounds:
+10% at +20 dB and +40 dB.
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6 RESULTS WITH CRESSON CORPUS

It should be interesting to test this system with sounds recorded in real conditions. The CRESSON laboratory
of the Architecture School of Grenoble has made such sounds [22] available for our study. These sounds
have been recorded in yards or apartments of buildings located in the historical centre or new districts of the
Grenoble town. Some extracts relevant with our study have been selected: speech, dialog, cough, fall, laugh,
slap, steps, barking and birds. These sounds could be related to an activity inside of the apartment or outside
if the door or a window is open. It should be pointed out that these sounds have been recorded with important
noise and reverberation conditions.

Classification has been made in the previous conditions using GMM models obtained with 80% of our
corpus (speech and sounds). Results with 32 selected files are shown in Table 6.

Table 6- Segmentation Error Rate for Cresson Corpus (24 Gaussian)

16 MFCC + normalised 16 MFCC + ZCR, RF,

Type of Sound 16 MFCC energy Centroid
Speech (14 files) 0 1 file 2 files
Sound (18 files) 6 files 3 files 7 files
Global (32 files) 19% 16% 28%

Zero Crossing Rate, Roll off Point and Centroid are not suitable for our application. Best results are
obtained with MFCC and MFCC in conjunction with normalised energy. Speech is well classified in these
two cases. Sounds like barking, bird singing, fall, laugh, street noise and tyres crunching are not represented
in the training corpus. Classification errors occur in case of bird singing, tyres crunching and street noise,
which are often classified as speech. All of these sounds present some similarities with speech: for example
street noise comports some speech distorted by reverberation. Using a wider corpus may solve this problem.

7 CONCLUSIONS

Extraction method presented in this paper is allowing us to detect and segment between sounds and speech
acoustical events recorded in a nursing home. An evaluation of the proposed detection method has been
made on an adapted corpus in an experimental noisy environment. This method introduces a low delay after
signal beginning —100ms typical - and acceptable end of signal truncation so that link to classification step is
not disturbed. In the same way word of a same sentence are not separated if the silent duration is shorter than
385ms.

Detection is error-less for 10dB and upper and segmentation error below 5% is reached in the same
conditions: according to these two results we can conclude that this detection/segmentation system may be
used under realistic conditions with moderate noise.

We are working to implement these algorithms coupled with life sound classification and speech
recognition in order to develop a complete acoustical analysis system.
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