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its transformation that makes the Lagrangian invariant, and apply the least action prin-
ciple to the Lagrangian. This leads to the physical-mesomechanical field equations that
describe the law of displacement vectors in plastically deforming materials. Previously
[5], we discussed the mathematical aspect of this procedure in some detail. From the
physical viewpoint, the above formalism can be interpreted as follows: when a material
is in the elastic regime, it follows the global transformation. When it enters the plastic
regime, the transformation is still locally elastic but the parameters characterizing the
transformation depend on the coordinates. The dynamics is prescribed through the inter-
action of local transformations with the field. In this dynamics, the longitudinal resistive
force of materials in response to external force plays a key role; if the resistive force is
proportional to the local stretch or compression, the dynamics is energy conservative and
the deformation is recoverable. If it is proportional to the local velocity, the dynamics
is energy dissipative and the deformation is unrecoverable. In this paper, we discuss the
physical meaning of the dynamics focusing on the longitudinal force.

FORMULATION

Field Equation and Deformation Charge

The physical-mesomechanical field equation can be expressed in the following form
[5], [6]

∇ ·~v =
ρ

ε
, (1)

∇×~ω =−εµ
∂~v
∂ t

−~j, (2)

∇×~v =
∂~ω

∂ t
, (3)

where ~v is the velocity of the deforming material at point (x,y,z), ε is the density of
the medium ρ/ε and ~j are, respectively, the time and spatial component of the charge
of symmetry, ~ω is the angle of rotation of the local volume element from its rotational
equilibrium, and 1/µ is the shear modulus. The right-hand side of Eq. (1) can be viewed
as a source term that causes divergence in the velocity field. By choosing coordinate xs
in the direction of the velocity vector at (x,y,z), we can rewrite the left-hand side of
Eq. (1) as

∇ ·~v =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂ z
=

dvs

dxs
(4)

where vx, vy and vz denote the components of the velocity vector. Apparently, the right-
hand side of Eq. (4) represents the rate of normal strain in the direction of xs. By
multiplying the density ε on both hand sides of Eq. (1), we can express the quantity
ρ as

ρ = ε
dvs

dxs
. (5)
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(a) (b) 

FIGURE 1. External force accelerates the whole volume (a) and stretches the volume (b)

On the other hand, the change in momentum of a unit volume flowing in the direction of
xs over unit time is

d ps

dt
= ε

dvs

dt
= ε(

∂vs

∂ t
+

∂vs

∂xs

dxs

dt
) = ε(

∂vs

∂ t
+

∂vs

∂xs
vs) = ε

∂vs

∂ t
+ρvs. (6)

The first term on the rightmost-hand side represents the change in momentum of the
unit volume due to the change in velocity over time as a whole; the whole volume gets
accelerated. The second term represents the momentum change due to the fact that as
the unit volume flows, the leading edge and trailing edge have different velocities due to
the velocity gradient. Both are caused by external force acting on the unit volume. The
work done by the external force associated with the first term contributes to a change in
the kinetic energy of the unit volume. The work done by the external force associated
with the second term is stored in the unit volume as energy of stretch or compression.
If the material is elastic, this energy can be retrieved as work (free energy). Figure 1
illustrates the situation schematically. Figure 1(a) represents a case where the leading
and trailing edge have the same velocity (dvs/dxs = 0). In this case, the unit volume is
not stretched or compressed, and the work done by the external force simply changes
the velocity of the unit volume. Figure 1(b) represents a case where the leading edge has
greater velocity than the trailing edge (dvs/dxs > 0). In this case, part of the work done
by the external force is stored as spring (elastic) energy.

Thus, we can interpret the charge density ρ = ε(dvs/dxs) as a quantity representing
stretch or compression of a unit volume. We call this the density of deformation charge.

Deformation Charge Current and Permanent Deformation

Application of divergence to Eq. (2) with the use of Eq. (1) leads to

∂ρ

∂ t
=−∇ · (

~j
µ

). (7)

which can be viewed as an equation of continuity. Based on the above interpretation
of ρ as representing stretch/compression, we can interpret Eq. (7) as follows. Imagine
a volume element in a material and consider the total deformation charge (ρ times the
volume). Eq. (7) states that the change in the total charge over time is solely determined
by the divergence of (−~j/µ). As schematically illustrated in Figure 2, this can be
interpreted as follows: the quantity (−~j/µ) represents normal force acting on the volume
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element. If (−~j/µ) is diverging, the total stretch inside the volume will increase (∂ρ/∂ t
times volume >0). Thus, without the negative sign in front, ~j/µ represents the reaction
of the material to the external force, i.e., the material’s resisting force. Eq. (7) can be
interpreted as the case when the volume is a unit volume.

 

  

  
    

 

 
  

 

 
 

FIGURE 2. Diverging normal force causing increase in charge density over time

When the divergence of (−~j/µ) is non-zero there are two ways for ∂ρ/∂ t to be
non-zero. The first is that the velocity gradient increases or decreases inside the unit
volume over time; the continuous pattern of stretch/compression changes its density.
The second is that an isolated pattern of stretch or compression comes into/goes out of
the unit volume that is initially either stretched nor compressed. Figure 3 illustrates both
cases schematically. The plastic deformation is associated with the second way. Naively
speaking, this is equivalent to dislocation. In terms of more general mechanics, this is
the case when a spring attached to a mass on one end and to a wall on the other end is
detached from the wall. The work done by the external force is no longer stored as the
spring’s potential energy but dissipates via friction.

 

                      

(a) (b) 

FIGURE 3. Two ways for charge density to increase over time. Energy conservative (a) and dissipative
(b)

We can view the second case as the isolated charge flowing at drift velocity Wd , and
express ~j/µ as follows.

~j
µ

= ~Wdρ. (8)

Comparison with Eq. (6) indicates that if Wd is in the same direction as vs, the flow
causes momentum loss. Putting Wd = σvs, we can rate the degree of momentum loss;
when σ = 1, it is natural momentum change in the flow [Eq. (6) itself]. The greater
the parameter σ , the greater the momentum loss. Figure 4 explains the momentum
loss caused by a flow of positive charge in the direction of velocity vs in the simplest
case where the flow field is characterized by two levels of velocity; the high level
at the leading edge and the low level at the trailing edge. The intermediate region is
characterized by a positive charge ε∂vs/∂xs > 0. As the charge flows, the hatched part
of the material loses its momentum.

~j
µ

= σρ~vs. (9)
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FIGURE 4. Positive charge flow causing momentum loss

Equation of Motion and Wave Characteristics

With the above interpretation of the source term and rearranging the terms, we may
write Eq. (2) in the form of

ε
∂~v
∂ t

=− 1
µ

(∇×~ω)−
~j
µ

. (10)

We interpret the resultant equation as the equation of motion describing dynamics of
a unit volume represented by mass ε . Here the left-hand side is the mass times the
acceleration, the first and second term on the right-hand side represent the transverse
and longitudinal external force acting on the unit volume respectively [6].

Eq. (10) essentially represents the wave nature of the displacement field [7]. Let us
choose coordinates xs and xp where the former is perpendicular to the normal strain
and the latter is parallel (Figure 5). The velocity components are vs and vp, and the
displacement components are ξs and ξp. z is the third coordinate, perpendicular to
both xs and xp. It is assumed that strain is purely normal in the direction of xs. Thus,
displacement components have only xs dependence, i.e., ∂/∂xp = ∂/∂ z = 0. With this
choice of coordinates and condition,

ωz =
∂ξs

∂xp
−

∂ξp

∂xs
=−

∂ξp

∂xs
, (11)

ωs =
∂ξp

∂ z
− ∂ξz

∂xp
= 0, (12)

ωp =
∂ξz

∂xs
− ∂ξs

∂ z
=

∂ξz

∂xs
, (13)

(∇×~ω)p =
∂ωz

∂xs
− ∂ωs

∂ z
=−

∂ 2ξp

∂ 2xs2 , (14)

(∇×~ω)s =
∂ωp

∂ z
− ∂ωz

∂ p
= 0. (15)

Utilizing Eq. (8), Eq. (10) becomes as follows for the s and p components

150

Downloaded 30 Mar 2011 to 147.174.36.115. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



ε
∂ 2ξp

∂ t2 =
1
µ

∂ 2ξp

∂xs2 −Wd pρ, (16)

ε
∂ 2ξs

∂ t2 =−Wdsρ, (17)

where Wd p and Wds are the p and s components of Wd , and~v = ∂~ξ/∂ t.

 

sv

 

pv  

FIGURE 5. Components perpendicular (s) and parallel (p) to the normal strain representing a deforma-
tion charge

Elastic Limit

In this case, we know the solution to the wave equations (16) and (17). As a pure
longitudinal wave, only Eq. (17) is meaningful, and its solution can be put in the form
of Eq. (18). Also, the charge density can be expressed as Eq. (19).

ξs = ξs0ei(kxs−ωswt). (18)

ρ = ε
∂vs

∂xs
= ε

∂

∂xs

∂ξs

∂ t
=−ε

∂

∂xs

∂ξs

∂xs

ωsw

k
=−ε

∂ 2ξs

∂x2
s

ωsw

k
. (19)

Here, ωsw is the angular frequency of the ξs-wave. Substitution of Eqs. (18) and (19)
into Eq. (17) leads to the following equation

∂ 2ξs

∂ t2 =
∂ 2ξs

∂x2
s

ωsw

k
Wds. (20)

By interpreting the drift velocity Wds as the phase velocity vph = ωsw/k, we obtain

∂ 2ξs

∂ t2 =
∂ 2ξs

∂x2
s

vph
2. (21)

This is the well-known elastic wave equation.
In this case, in addition, the longitudinal resistance force takes the following form.

js
µ

=Wdρ = vphε
∂vs

∂xs
= vphε

∂

∂xs

∂ξs

∂ t

= vphε
∂

∂xs
(−iωsw)ξs = vphε(−iωsw)(ik)ξs = εωsw

2
ξs. (22)

As expected, it is proportional to the displacement ξs.
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Plastic Case

The plastic case can be argued as current j/µ being analogous to conduction current.
In this case, ρ drifts without changing its shape (like a broken spring as mentioned
above). Using Eq. (9) and noting that vp = ∂ξp/∂ t, we can put Eqs. (16) and(17) in the
following form

∂ 2ξp

∂x2
s

= εµ
∂ 2ξp

∂ t2 + µσρ
∂ξp

∂ t
, (23)

ε
∂ξs

∂ t
=−σρξs. (24)

The general solutions to these equations have the following form

ξp = ξp0ei(k̃xs−ωpwt), (25)

ξs = ξs0e−
σρ

ε
t , (26)

where the wave number k̃ = k + iκ is complex, and

k = ωpw

√
εµ

2

√
1+

(
σρ

εωpw

)2

+1

1/2

, (27)

κ = ωpw

√
εµ

2

√
1+

(
σρ

εωpw

)2

−1

1/2

. (28)

Eqs. (26) and (27) indicate that in the plastic case the longitudinal wave is not excited
and the transverse wave decays [7]. Note that the greater the charge ρ , the faster the
decay. This is consistent with the intuition that the higher the strain concentration, the
closer to fracture.

SUPPORTING EXPERIMENTAL OBSERVATIONS

In this section, we present experimental results that support the preceding arguments.
Figure 6 shows optical interferometric patterns observed in a tensile experiment on

a structural steel (SS400) specimen (a) along with the stress-strain characteristics (b)
[8]. The interferometric fringes observed as dark stripes in this figure are contours of
horizontal displacement of integral multiples of 0.45 µm. (In other words, the distance
between neighboring stripes is 0.45 µm). In each image, there is a bright band whose
intensity profile looks apparently different from the other part of the image (the band is
circled on the leftmost image). These band patterns appear bright because a large number
of fringes are concentrated within the width of the band. This has been confirmed in
another similar experiment in which a second camera was used with a higher frame rate
and greater magnification. Also shown to the right of the stress-strain characteristics
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FIGURE 6. Optical interferometric pattern representing deformation charge drifting along the specimen
(a). The corresponding stress-strain characteristics (b). Another pattern representing a charge observed in
a different experiment (c)

in Figure 6(c) is a similar band pattern that shows the fine structure of concentrated
fringes more explicitly. The fringes observed in this image also represent horizontal
displacement. Notice that while the fringes above and below this band pattern are
almost horizontal indicating that ∂ξx/∂x = 0, the fine fringes observed within the band
pattern indicate ∂ξx/∂x 6= 0. Here x is the horizontal coordinate and ξx is the horizontal
component of displacement. Apparently, the fine structure in the band represents a
deformation charge defined by Eq. (5). The numbers 77 – 336 shown under Figure 6(a)
are elapse times in s from a reference time prior to the yield point. The appearances of the
band pattern in the first and last images are indicated in the stress-strain characteristics
(labeled “77” and “336”). It is seen that the band pattern starts to appear near the lower
end of the specimen and drifts at a constant velocity to the other end in the entire yield
plateau of the stress-strain characteristics. This is perfectly consistent with the above-
argued picture of the deformation charge representing the plastic regime.

In another experiment, it has been confirmed that the appearance of the interferometric
bright band pattern coincides with acoustic emission (both in the timing and location on
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the specimen) [9]. This supports the above argument that drift of deformation charge is
accompanied by some sort of “breaking a spring” like phenomenon.

Finally, Figure 7 presents another tensile experiment in which the temperature of the
specimen (20 mm wide, 100 mm long, and 0.2 mm thick brass plate) is measured at the
same time as the loading characteristics. This specimen has a notch at the center along
the length of 100 mm. It is clearly seen that the temperature slightly decreases in the

 

 

FIGURE 7. Temperature change (a) and loading characteristics (b) observed in a tensile experiment on
a brass thin plate

region where the loading characteristics is linear, and remarkably rises when the load
decreases having reached its highest value. The initial temperature decrease is due to the
phenomenon known as the thermoelastic effect. The temperature rise accompanied by
the load decrease is consistent with the above mentioned argument of energy dissipation.
Notice that the temperatures measured near the notch and grip are more or less the same
in the decrease, but the former is considerably higher than the latter in the rising phase,
indicating that the heat source is where the deformation is highest.

SUMMARY

We have discussed the physical meaning of various formulae and expressions derived
from the physical-mesomechanical field equations. It has been argued that the defor-
mation charge has a crucial role in determining whether the deformation dynamics can
be characterized as elastic or plastic. From the gauge theoretical viewpoint, this charge
originates from the charge of symmetry. From a mechanical viewpoint, it can be un-
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derstood as normal strain; when the strain is associated with the material’s longitudinal
resistive force proportional to the local displacement, the deformation is elastic; when
it is associated with resistive force proportional to the local velocity, the deformation is
plastic. The unrecoverable nature of plastic deformation has been explained as a flow of
deformation charge, where the work done by the external force is stored in the elastic
field but dissipated through the motion of the charge. Some experimental results that
support these arguments have been presented.
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