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UNIQUENESS AND RIGIDITY IN NONLINEAR

ELLIPTIC EQUATIONS, INTERPOLATION

INEQUALITIES, AND SPECTRAL ESTIMATES

by Jean DOLBEAULT and Micha l KOWALCZYK (*)

Abstract. This paper is devoted to the Lin-Ni conjecture for a
semi-linear elliptic equation with a super-linear, sub-critical nonlin-
earity and homogeneous Neumann boundary conditions. We estab-
lish a new rigidity result, that is, we prove that the unique posi-
tive solution is a constant if the parameter of the problem is be-
low an explicit bound that we relate with an optimal constant for a
Gagliardo-Nirenberg-Sobolev interpolation inequality and also with
an optimal Keller-Lieb-Thirring inequality. Our results are valid in a
sub-linear regime as well. The rigidity bound is obtained by nonlinear
flow methods inspired by recent results on compact manifolds, which
unify nonlinear elliptic techniques and the carré du champ method in
semi-group theory. Our method requires the convexity of the domain.
It relies on integral quantities, takes into account spectral estimates
and provides improved functional inequalities.

Unicité et rigidité pour des équations elliptiques non linéaires,

inégalités d’interpolation et estimations spectrales

Résumé. Cet article est consacré à la conjecture de Lin-Ni pour une équation
semi-linéaire elliptique avec non-linéarité super-linéaire, sous-critique et des
conditions de Neumann homogènes. Nous établissons un résultat de rigidité,
c’est-à-dire nous prouvons que la seule solution positive est constante si le
paramètre du problème est en-dessous d’une borne explicite, reliée à la con-
stante optimale d’une inégalité d’interpolation de Gagliardo-Nirenberg-Sobo-
lev et aussi à une inégalité de Keller-Lieb-Thirring optimale. Nos résultats
sont également valides dans un régime sous-linéaire. La borne de rigidité est
obtenue par des méthodes de flots non-linéaires inspirées de résultats récents
sur les variétés compactes, qui unifient des techniques d’équations elliptiques
non-linéaires et la méthode du carré du champ en théorie des semi-groupes.
Notre méthode requiert la convexité du domaine. Elle repose sur des quantités
intégrales, prend en compte des estimations spectrales et fournit des inégalités
améliorées.
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1. Introduction and main results

Let us assume that Ω is a bounded domain in R
d with smooth boundary.

To avoid normalization issues, we shall assume throughout this paper that

|Ω| = 1 .

The unit outgoing normal vector at the boundary is denoted by n and

∂nu = ∇u · n. We shall denote by 2∗ = 2 d
d−2 the critical exponent if d > 3

and let 2∗ = ∞ if d = 1 or 2. Assume first that p is in the range 1 < p <

2∗ − 1 = (d + 2)/(d − 2) if d > 3, 1 < p < ∞ if d = 1 or 2, and let us

consider the three following problems.

(P1) For which values of λ > 0 does the equation

− ∆u+ λu = up in Ω , ∂nu = 0 on ∂Ω (1.1)

has a unique positive solution ?

(P2) For any λ > 0, let us define

µ(λ) := inf
u∈H1(Ω)\{0}

‖∇u‖2L2(Ω) + λ ‖u‖2L2(Ω)

‖u‖2Lp+1(Ω)

.

For which values of λ > 0 do we have µ(λ) = λ ?

(P3) Assume that φ is nonnegative function in Lq(Ω) with q = p+1
p−1

and denote by λ1(Ω,−φ) the lowest eigenvalue of the Schrödinger

operator −∆− φ. Let us consider the optimal inequality

λ1(Ω,−φ) > − ν
(

‖φ‖Lq(Ω)

)

∀φ ∈ Lq
+(Ω)

For which values of µ do we know that ν(µ) = µ ?

The three problems are related. Uniqueness in (P1) means that u = λ1/(p−1)

while equality cases µ(λ) = λ in (P2) and ν(µ) = µ and (P3) are achieved

by constant functions and constant potentials respectively. We define a

threshold value µi with i = 1, 2, 3 such that the answer to (Pi) is yes if

µ < µi and no if µ > µi.

Our method is not limited to the case p > 1. If p is in the range 0 < p < 1,

the three problems can be reformulated as follows.

(P1) For which values of λ > 0 does the equation

− ∆u+ up = λu in Ω , ∂nu = 0 on ∂Ω (1.2)

has a unique nonnegative solution ?
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(P2) For any µ > 0, let us define

λ(µ) := inf
u∈H1(Ω)\{0}

‖∇u‖2L2(Ω) + µ ‖u‖2Lp+1(Ω)

‖u‖2L2(Ω)

.

For which values of µ > 0 do we have λ(µ) = µ ?

(P3) Assume that φ is nonnegative function in Lq(Ω) with q = 1+p
1−p and

still denote by λ1(Ω, φ) the lowest eigenvalue of the Schrödinger

operator −∆+ φ. Let us consider the optimal inequality

λ1(Ω, φ) > ν(‖φ−1‖Lq(Ω)) ∀φ ∈ Lq
+(Ω)

For which values of µ do we know that ν(µ) = µ ?

The problems of the range 0 < p < 1 and 1 < p < 2∗ can be unified. Let

us define

ε(p) =
p− 1

|p− 1|
and observe that ‖u‖Lp+1(Ω) 6 ‖u‖L2(Ω) if p < 1, ‖u‖L2(Ω) 6 ‖u‖Lp+1(Ω)

if p > 1, so that ε(p)
(

‖u‖Lp+1(Ω) − ‖u‖L2(Ω)

)

is nonnegative. Our three

problems can be reformulated as follows.

(P1) Let us consider the equation

− ε(p)∆u+ λu− up = 0 in Ω , ∂nu = 0 on ∂Ω (1.3)

and define

µ1 := inf{λ > 0 : (1.3) has a non constant positive solution} .

We shall say that rigidity holds in (1.3) if u = λ1/(p−1) is its unique

positive solution.

(P2) For any µ > 0, take λ(µ) as the best (i.e. the smallest if ε(p) > 0

and the largest if ε(p) < 0) constant in the inequality

‖∇u‖2L2(Ω) > ε(p)
[

µ ‖u‖2Lp+1(Ω) − λ(µ) ‖u‖2L2(Ω)

]

∀u ∈ H1(Ω) . (1.4)

Here we denote by µ 7→ λ(µ) the inverse function of λ 7→ µ(λ). Let

µ2 := inf{λ > 0 : µ(λ) 6= λ in (1.4)} .

(P3) Let us consider the optimal Keller-Lieb-Thirring inequality

ν(µ) = − ε(p) inf
φ∈Aµ

λ1(Ω,− ε(p)φ) (1.5)

where the admissible set for the potential φ is defined by

Aµ :=
{

φ ∈ Lq
+(Ω) : ‖φε(p)‖Lq(Ω) = µ

}
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and q = (p+ 1)/|p− 1|. Let
µ3 := inf{µ > 0 : ν(µ) 6= µ in (1.5)} .

Finally let us define Λ⋆ as the best constant in the interpolation inequality

‖∇u‖2L2(Ω) >
Λ⋆

p− 1

[

‖u‖2Lp+1(Ω) − ‖u‖2L2(Ω)

]

∀u ∈ H1(Ω) . (1.6)

Let us observe that Λ⋆ may depend on p.

Theorem 1. — Assume that d > 2, p ∈ (0, 1) ∪ (1, 2∗ − 1) and Ω is a

bounded domain in R
d with smooth boundary such that |Ω| = 1. With the

above notations, we have

0 < µ1 6 µ2 = µ3 =
Λ⋆

|p− 1|
and, with λ(µ) and ν(µ) defined as in (1.4) and (1.5), the following prop-

erties hold:

(P1) Rigidity holds in (1.3) for any λ ∈ (0, µ1).

(P2) The function µ 7→ λ(µ) is monotone increasing, concave if p ∈
(0, 1), convex if p ∈ (1, 2∗ − 1) and λ(µ) = µ if and only if µ 6 µ2.

(P3) For any µ > 0, ν(µ) = λ(µ).

This result is inspired from a series of recent papers on interpolation in-

equalities, rigidity results and Keller-Lieb-Thirring estimates on compact

manifolds. Concerning Keller-Lieb-Thirring inequalities, we refer to [17,

18, 21], and to the initial paper [31] by J.B. Keller whose results were

later rediscovered by E.H. Lieb and W. Thirring in [35]. For interpolation

inequalities on compact manifolds, we refer to [20, 16, 22] and references

therein. In our case, the absence of curvature and the presence of a bound-

ary induce a number of changes compared to these papers, that we shall

study next. Beyond the properties of Theorem 1 which are not very difficult

to prove, our main goal is to get explicit estimates of µi and Λ⋆.

Let us define

λ2 := λ2(Ω, 0)

which is the second (and first positive) eigenvalue of −∆ on Ω, with homo-

geneous Neumann boundary conditions. Recall that the lowest eigenvalue

of −∆ is λ1 = 0 and that the corresponding eigenspace is spanned by

the constants. For this reason λ2 is often called the spectral gap and the

Poincaré inequality sometimes appears in the literature as the spectral gap

inequality. Finally let us introduce the number

θ⋆(p, d) =
(d− 1)2 p

d (d+ 2) + p
. (1.7)
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Theorem 2. — Assume that d > 1 and Ω is a bounded domain in R
d

with smooth boundary such that |Ω| = 1. With the above notations, we get

the following estimates:

1− θ⋆(p, d)

|p− 1| λ2 6 µ1 6 µ2 = µ3 =
Λ⋆

|p− 1| 6
λ2

|p− 1|

for any p ∈ (0, 1) ∪ (1, 2∗−1). The lower estimate holds only under the

additional assumptions that Ω is convex and d > 2.

Before giving a brief overview of the literature related to our results, let

us emphasize two points. We first notice that limp→(d+2)/(d−2) θ⋆(p, d) = 1

if d > 3 so that the lower estimate goes to 0 as the exponent p approaches

the critical exponent. This is consistent with the previously known results

on rigidity, that are based on Morrey’s scheme and deteriorate as p ap-

proaches (d+2)/(d− 2). In the critical case, multiplicity may hold for any

value of λ, so that one cannot expect that rigidity could hold without an

additional assumption. The second remark is the fact that the convexity

of Ω is essential for known results in the critical case and one should not

be surprised to see this condition also in the sub-critical range. This as-

sumption is however not required in the result of C.-S. Lin, W.-M. Ni, and

I. Takagi in [36]. Compared to their paper, what we gain here when p > 1

is a fully explicit estimate which relies on a simple computation. The case

p < 1 has apparently not been studied yet.

It is remarkable that the case p = 1 is the endpoint of the two admissible

intervals in p. We may notice that

θ⋆(1, d) =
(d− 1)2

(d+ 1)2

is in the interval (0, 1) for any d > 2. The case p = 1 is a limit case, which

corresponds to the logarithmic Sobolev inequality

‖∇u‖2L2(Ω) −
Λ⋆

2

∫

Ω

|u|2 log

(

|u|2
‖u‖2L2(Ω)

)

dx > 0 ∀u ∈ H1(Ω) (1.8)

where Λ⋆ denotes the optimal constant, and by passing to the limit as

p→ 1 in (1.6), we have the following result.

Corollary 3. — If d > 2 and Ω is a bounded domain in R
d with

smooth boundary such that |Ω| = 1, then

4 d

(d+ 1)2
λ2 6 Λ⋆ 6 λ2 .
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It is also possible to define a family of logarithmic Sobolev inequalities

depending on λ, or to get a parametrized Keller-Lieb-Thirring inequality

and find that λ = Λ⋆ corresponds to a threshold value between a linear

dependence of the optimal constant in λ and a regime in which this de-

pendence is given by a strictly convex function of λ. The interested reader

is invited to refer to [17, Corollaries 13 and 14] for similar results on the

sphere.

The existence of a non-trivial solution to (1.1) bifurcating from the con-

stant ones for λ = λ2/(p−1) has been established for instance in [37] when

p > 1. This paper also contains the conjecture, known in the literature as

the Lin-Ni conjecture and formulated in [37], that there are no nontrivial

solutions for λ > 0 small enough and that there are non-trivial solutions

for λ large enough, even in the super-critical case p > 2∗ − 1. More details

can be found in [36]. Partial results were obtained before in [41], when the

exponent is in the range 1 < p < d/(d − 2). These papers were originally

motivated by the connection with the model of Keller and Segel in chemo-

taxis and the Gierer-Meinhardt system in pattern formation: see [40] for

more explanations.

For completeness, let us briefly review what is known in the critical case

p = 2∗−1. When d = 3, it was proved by M. Zhu in [50] that rigidity holds

true for λ > 0 small enough when one considers the positive solutions to

the nonlinear elliptic equation

∆u− λu+ f(u) = 0

on a smooth bounded domain of R3 with homogeneous Neumann bound-

ary conditions, if f(u) is equal to u5 up to a perturbation of lower order.

Another proof was given by J. Wei and X. Xu in [48] and slightly extended

later in [30]. The Lin-Ni conjecture is wrong for p = 2∗ − 1 in higher di-

mensions: see [47], and also earlier references therein. Some of the results

have been extended to the d-Laplacian in dimension d in [49].

Compared to the case of homogeneous Dirichlet boundary conditions or

in the whole space, much less is known concerning bifurcations, qualita-

tive aspects of the branches of solutions and multiplicity in the case of

homogeneous Neumann boundary conditions. We may for instance refer

to [45, 43, 38, 44, 39] for some results in this direction, but only in rather

simple cases (balls, intervals or rectangles).

Concerning the Lin-Ni conjecture, it is known from [36, Theorem 3, (ii)]

that u ≡ λ1/(p−1) if λ is small enough (also see [41] for an earlier partial

result), and that there is a non-trivial solution if λ is large enough. As
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already said above, the method is based on the Moser iteration technique,

in order to get a uniform estimate on the solution, and then on a direct

estimate based on the Poincaré inequality. In the proof of Theorem 2 we

shall adopt a completely different strategy, which is inspired by the rigidity

results for nonlinear elliptic PDEs as in [27, 7] on the one hand, and by the

carré du champ method of D. Bakry and M. Emery on the other hand, that

can be traced back to [3]. More precisely, we shall rely on improved versions

of these methods as in [2, 34], which involve the eigenvalues of the Lapla-

cian, results on interpolation inequalities on compact manifolds obtained

by J. Demange in [11], and a recent improvement with a computation based

on traceless Hessians in [20].

From a larger perspective, our approach in Theorem 2 is based on results

for compact Riemannian manifolds that can be found in various papers: the

most important ones are the rigidity results of L. Véron et al. in [7, 33], the

computations inspired by the carré du champ method of [2, 11], and the

nonlinear flow approach of [20] (also see [16, 15, 19]). Using these estimates

in the range 1 < p < 2∗ − 1 and the Bakry-Emery method as in [25] in the

case p ∈ (0, 1), our goal is to prove that rigidity holds in a certain range of λ

without relying on uniform estimates (and the Moser iteration technique)

and discuss the estimates of the threshold values. The spectral estimates

of Theorem 1 are directly inspired by [17, 18].

This paper is organized as follows. Preliminary results have been collected

in Section 2. The proof of Theorem 1 is given in Section 3. In Section 4,

we use the heat flow to establish a first lower bound similar to the one of

Theorem 2. Using a nonlinear flow a better bound is obtained in Section 5,

which completes the proof of Theorem 2. The last section is devoted to

various considerations on flows and, in particular, to improvements based

on the nonlinear flow method.

Notations

If A = (Aij)16i,j6d and B = (Bij)16i,j6d are two matrices, let A :B =
∑d

i,j=1 Aij Bij and |A|2 = A :A. If a and b take values in R
d, we adopt the

definitions:

a · b =
d
∑

i=1

ai bi , ∇ · a =

d
∑

i=1

∂ai
∂xi

,

a⊗ b = (ai bj)16i,j6d , ∇⊗ a =

(

∂aj
∂xi

)

16i,j6d

.
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2. Preliminary results

Let us recall that Ω ⊂ R
d, d > 2 is a bounded domain with smooth

boundary (or an open interval if d = 1) and let λ2 be the first non-zero

eigenvalue of the Laplace operator on Ω, supplemented with homogeneous

Neumann boundary conditions. We shall denote by n a unit outgoing nor-

mal vector of ∂Ω and will denote by u2 ∈ H1(Ω) a non-trivial eigenfunction

associated with the lowest positive eigenvalue λ2, so that

−∆u2 = λ2 u2 in Ω , ∂nu2 = 0 on ∂Ω . (2.1)

As a trivial observation we may observe that u2 is in H2(Ω).

Lemma 4. — With the above notations, for any u ∈ H2(Ω) such that

∂nu = 0 on ∂Ω, we have
(
∫

Ω

|∇u|2 dx
)2

6

∫

Ω

|∆u|2 dx
∫

Ω

|u|2 dx .

As a consequence, we also have

λ2

∫

Ω

|∇u|2 dx 6

∫

Ω

|∆u|2 dx , (2.2)

and equality holds for any eigenfunction associated with λ2.

Proof. — By expanding the square and integrating by parts the cross

term, we notice that

0 6

∫

Ω

∣

∣

∣

∣

1√
µ
∆u+ λ2

√
µu

∣

∣

∣

∣

2

dx

=
1

µ
‖∆u‖2L2(Ω) − 2λ2 ‖∇u‖2L2(Ω) + λ22 µ ‖u‖2L2(Ω) ,

where µ is an arbitrary positive real parameter. After optimizing on µ > 0,

we arrive at

0 6 2λ2

(

‖∆u‖L2(Ω) ‖u‖L2(Ω) − ‖∇u‖2L2(Ω)

)

.

To check the equality case with u = u2, it is enough to multiply (2.1) by u2
and by −∆u2, and then integrate by parts. By definition of λ2, we know

that
∫

Ω

|∇u|2 dx > λ2

∫

Ω

|u|2 dx if

∫

Ω

u dx = 0

with equality again if u = u2. This concludes the proof. Notice indeed that

the condition
∫

Ω
u dx = 0 can always be imposed without loss of generality,

by adding the appropriate constant to u. �
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A key result for this paper is based on the computation of (∆u)2 in

terms of the Hessian matrix of u, which involves integrations by parts and

boundary terms. The following result can be found in [26, Lemma 5.1]

or [28].

Lemma 5. — If Ω is a smooth convex domain in R
d and if u ∈ C3(Ω)

is such that ∂nu = 0 on ∂Ω, then

−
d
∑

i,j=1

∫

∂Ω

∂2iju ∂iunj dHd−1 > 0 .

As a consequence, if u ∈ H2(Ω) is such that ∂nu = 0, then we have that
∫

Ω

|∆u|2 dx >

∫

Ω

|Hess u|2 dx .

In Lemma 5, the convexity is an essential ingredient, and this is where

the convexity assumption comes from in all results of this paper.

Consider on H1(Ω) the functional

JΛ[u] := ‖∇u‖2L2(Ω) −
Λ

p− 1

[

‖u‖2Lp+1(Ω) − ‖u‖2L2(Ω)

]

(2.3)

if p 6= 1, and

JΛ[u] := ‖∇u‖2L2(Ω) −
Λ

2

∫

Ω

|u|2 log

(

|u|2
‖u‖2L2(Ω)

)

dx

if p = 1.

Lemma 6. — There exists a function u ∈ H1(Ω) such that ∂nu = 0 and

JΛ[u] < 0 if Λ > λ2.

Proof. — A simple computations shows that

JΛ[1 + ǫ w] ∼ ǫ2
[

‖∇w‖2L2(Ω) − Λ ‖w‖2L2(Ω)

]

as ǫ → 0. By choosing w = u2 to be an eigenfunction associated with λ2,

we get that

JΛ[1 + ǫ w] ∼ ǫ2 (λ2 − Λ) ‖w‖2L2(Ω)

is negative for ǫ > 0 small enough if Λ > λ2. �

Lemma 6 provides the upper bound in Theorem 2. Indeed this proves

that

Λ⋆ 6 λ2 .

This method has been widely exploited and a similar argument can be

found for instance in [41].
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3. Proof of Theorem 1

Assume that p > 1 and let us recall that

µ(λ) := inf
u∈H1(Ω)\{0}

Qλ[u] with Qλ[u] :=
‖∇u‖2L2(Ω) + λ ‖u‖2L2(Ω)

‖u‖2Lp+1(Ω)

.

We denote by κp,d the optimal constant in the following Gagliardo-Niren-

berg inequality on R
d:

‖∇v‖2L2(Rd) + ‖v‖2L2(Rd) > κp,d ‖v‖2Lp+1(Rd) ∀ v ∈ H1(Rd) .

Lemma 7. — If p ∈ (1, 2∗ − 1), the function λ 7→ µ(λ) is monotone

increasing, concave, such that µ(λ) 6 λ for any λ > 0, and µ(λ) = λ if and

only if 0 < λ 6 µ2 = Λ⋆/(p− 1). Moreover, we have

µ(λ) ∼ 2
1−p
1+p κp,d λ

1− d
2

p−1
p+1 as λ→ +∞ .

Proof. — For any given u ∈ H1(Ω) \ {0}, λ 7→ Qλ[u] is affine, increasing.

By taking an infimum, we know that, as a function of λ, µ is concave, non-

decreasing. Using u ≡ 1 as a test function, we know that µ(λ) 6 λ for any

λ > 0. By standard variational methods, we know that there is an optimal

function u ∈ H1(Ω) \ {0}, so that

‖∇u‖2L2(Ω) + λ ‖u‖2L2(Ω) = µ(λ) ‖u‖2Lp+1(Ω) .

On the other hand, we know from (1.6) that

‖∇u‖2L2(Ω) +
Λ⋆

p− 1
‖u‖2L2(Ω) >

Λ⋆

p− 1
‖u‖2Lp+1(Ω) .

Hence we have the inequality
(

1− λ

Λ⋆
(p− 1)

)

‖∇u‖2L2(Ω) 6 (µ(λ) − λ) ‖u‖2Lp+1(Ω) .

If λ 6 Λ⋆/(p − 1), the l.h.s. is nonnegative while the r.h.s. is nonpositive

because µ(λ) 6 λ, so that we conclude at once that µ(λ) = λ and u

is constant. As a consequence, µ2 > Λ⋆/(p − 1). On the other hand, by

definition of Λ⋆, we know that µ2 6 Λ⋆/(p− 1).

The regime as λ → ∞ is easily studied by a rescaling. If uλ denotes an

optimal function such that Qλ[uλ] = µ(λ), then vλ(x) := uλ(x/
√
λ) is an

optimal function for

‖∇v‖2L2(Ωλ)
+ ‖v‖2L2(Ωλ)

>
µ(λ)

λ1−
d
2

p−1
p+1

‖v‖2Lp+1(Ωλ)
∀ v ∈ H1(Ωλ)

where Ωλ := {x ∈ R
d : λ−1/2 x ∈ Ω}. Using truncations of the optimal

functions for the Gagliardo-Nirenberg inequality on R
d
+ = {(x1, x2, ...xd) ∈
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R
d : xd > 0} and an analysis of the convergence of an extension of vλ in

H1(Rd) as λ→ ∞ based on standard concentration-compactness methods,

up to the extraction of subsequences and translations, we get that the limit

function v is optimal for the inequality

‖∇v‖2L2(Rd
+) + ‖v‖2L2(Rd

+) > 2
1−p
1+p κp,d ‖v‖2Lp+1(Rd

+) ∀ v ∈ H1(Rd
+) .

See [17, Lemma 5] for more details in a similar case.

By definition, λ 7→ µ(λ) is monotone non-decreasing. As a consequence

of the behavior at infinity and of the concavity property, this monotonicity

is strict. Hence µ is a monotone increasing function of λ. �

Assume that p < 1 and let us recall that

λ(µ) := inf
u∈H1(Ω)\{0}

Qµ[u] with Qµ[u] :=
‖∇u‖2L2(Ω) + µ ‖u‖2Lp+1(Ω)

‖u‖2L2(Ω)

.

We denote by κ+p,d the optimal constant in the following Gagliardo-Niren-

berg inequality on R
d
+:

‖∇v‖2L2(Rd
+) + ‖v‖2Lp+1(Rd

+) > κ+p,d ‖v‖2L2(Rd
+) ∀ v ∈ H1(Rd

+) .

Lemma 8. — If p ∈ (0, 1), the function µ 7→ λ(µ) is monotone increas-

ing, concave, such that λ(µ) 6 µ for any µ > 0, and λ(µ) = µ if and only

if 0 < µ 6 µ2 = Λ⋆/(1− p). Moreover, we have

λ(µ) ∼ κ+p,d µ

(

1+ d
2

1−p
p+1

)

−1

as µ→ +∞ .

Proof. — The proof follows the same strategy as in the proof of Lemma 7.

See [17, Lemma 11] for more details in a similar case. �

Recall that we denote by µ 7→ λ(µ) the inverse function of λ 7→ µ(λ) and

get in both cases, p > 1 and p < 1, the fact that

µ(λ) = O
(

λ1−
d
2

p−1
p+1

)

as λ→ +∞ .

Lemma 9. — Under the assumptions of Theorem 2, we have ν(µ) =

λ(µ) for any µ > 0 and, as a consequence, µ2 = µ3.

Proof. — Assume first that p > 1. The proof is based on two ways of

estimating the quantity

A = ‖∇u‖2L2(Ω) + λ ‖u‖2L2(Ω) −
∫

Ω

φ |u|2 dx .

On the one hand we may use Hölder’s inequality to estimate
∫

Ω

φ |u|2 dx 6 ‖φ‖Lq(Ω) ‖u‖2Lp+1(Ω)
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with q = p+1
p−1 and get

A > ‖∇u‖2L2(Ω) + λ ‖u‖2L2(Ω) − µ ‖u‖2Lp+1(Ω)

with µ = ‖φ‖Lq(Ω). Using u ≡ 1 as a test function, we observe that the

lowest eigenvalue λ1(Ω,−φ) of the Schrödinger operator −∆−φ is nonpos-

itive. With u = u1 an eigenfunction associated with λ1(Ω,−φ), we know

that

A = (λ− |λ1(Ω,−φ)|) ‖u‖2L2(Ω) > ‖∇u‖2L2(Ω) + λ ‖u‖2L2(Ω) − µ ‖u‖2Lp+1(Ω)

is nonnegative if λ = λ(µ), thus proving that λ(µ) − |λ1(Ω,−φ)| > 0 and

hence

λ(µ) > ν(µ) .

On the other hand, with φ = µup−1/‖u‖p−1
Lp+1(Ω), we observe that

0 = A = ‖∇u‖2L2(Ω) + λ ‖u‖2L2(Ω) − µ ‖u‖2Lp+1(Ω)

> (λ− |λ1(Ω,−φ)|) ‖u‖2L2(Ω) > (λ− ν(µ)) ‖u‖2L2(Ω)

if we take µ = µ(λ) and u the corresponding optimal function. This proves

that

λ(µ) 6 ν(µ) ,

which concludes the proof when p > 1.

A similar computation can be done if p < 1, based on the Hölder in-

equality

∫

Ω

up+1 dx 6

∫

Ω

up+1 φ
p+1
2 φ−

p+1
2 dx 6

(
∫

Ω

|u|2 φdx
)

p+1
2

‖φ−1‖
p+1
2

Lq(Ω)

with q = 1+p
1−p , that is

∫

Ω

|u|2 φdx > µ ‖u‖2Lp+1(Ω)

with µ−1 = ‖φ−1‖Lq(Ω). With

A = ‖∇u‖2L2(Ω) − λ ‖u‖2L2(Ω) +

∫

Ω

φ |u|2 dx ,

the computation is parallel to the one of the case p > 1. Also see [17] for

similar estimates. �

Lemma 10. — Under the assumptions of Theorem 2, we have µ1 6 µ2.
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Proof. — Let u be an optimal function for (1.4). It can be taken non-

negative without restriction and solves the Euler-Lagrange equation

− ε(p)∆u+ λu− µ
up

‖u‖p−1
Lp+1(Ω)

= 0 in Ω , ∂nu = 0 on ∂Ω , (3.1)

where λ = λ(µ) or equivalently µ = µ(λ). By homogeneity, we can fix

‖u‖Lp+1(Ω) as we wish and may choose ‖u‖p−1
Lp+1(Ω) = µ, hence concluding

that u is constant if µ 6 µ1 and, as a consequence, λ(µ) = µ, thus proving

that µ 6 µ2. The conclusion follows. �

4. Estimates based on the heat equation

We use the Bakry-Emery method to prove some results that are slightly

weaker than the assertion of Theorem 2 but the method is of its own inde-

pendent interest. Except for the precise value of the constant, the following

result can be found in [25] (also see earlier references therein).

Lemma 11. — Let d > 1. Assume that Ω is a bounded convex domain

such that |Ω| = 1. For any p ∈ (0, 1), for any u ∈ H1(Ω) such that ∂nu = 0

on ∂Ω, we have

‖∇u‖2L2(Ω) > λ2

[

‖u‖2L2(Ω) − ‖u‖2Lp+1(Ω)

]

.

In this section and in the next section, we are going to use the carré du

champ method of D. Bakry and M. Emery in two different ways. Our goal

is to prove that the functional JΛ defined by (2.3) is nonnegative for some

specific value of Λ > 0.

• In the parabolic perspective, we will consider a flow t 7→ u(t, ·) and prove

that
d

dt
JΛ[u(t, ·)] 6 − β2 R[u(t, ·)]

for some non-zero parameter β and some nonnegative functional R. Since

the flow drives the solutions towards constant functions, for which JΛ takes

the value 0, we henceforth deduce that

JΛ[u(t, ·)] > lim
s→+∞

JΛ[u(s, ·)] = 0 ∀ t > 0 .

As a consequence, JΛ[u0] > 0 holds true for any initial datum u(t = 0, ·) =
u0 ∈ H1(Ω), which establishes the inequality. This approach has the ad-

vantage to provide for free a remainder term, since we know that

JΛ[u0] > β2

∫ +∞

0

R[u(t, ·)] dt .
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The main disadvantage of the parabolic point of view is that it relies on the

existence of a global and smooth enough solution. At least, this is compen-

sated by the fact that one can take the initial datum as smooth as desired,

prove the inequality and argue by density in H1(Ω). Such issues are some-

what standard and have been commented, for instance, in [46].

• Alternatively, one can adopt an elliptic perspective. Since, as we shall see,

R[u] = 0 holds if and only if u is constant on Ω, it is enough to consider an

optimal function for JΛ, which is known to exist by standard compactness

methods for any exponent p in the subcritical range, or even a positive

critical point. The case of the critical exponent is more subtle, but can also

be dealt with using techniques of the calculus of variations. An extremal

function u solves an Euler-Lagrange equation, which can be tested by a

perturbation corresponding to the direction given by the flow. From a for-

mal viewpoint, this amounts to take the solution to the flow problem with

initial datum u0 and to compute d
dtJΛ[u(t, ·)] at t = 0. However, no exis-

tence theory for the evolution equation is required and one can rely on the

additional regularity properties that the function u ∈ H1(Ω) inherits as a

solution to the Euler-Lagrange equation. The elliptic regularity theory à la

de Giorgi-Nash-Moser is also somewhat standard but requires some care.

The interested reader is invited to refer, for instance, to [23] for further

details on the application of this strategy, or to [24] for a more heuristic

introduction to the method.

In practice, we will use the two pictures without further notice. Detailed

justifications and adaptations are left to the reader. Algebraically, in terms

of integration by parts or tensor manipulations, the two methods are equiv-

alent, and we shall focus on the these computations, which explain why the

method works but also underlines its limitations.

Proof of Lemma 11. — We give a proof based on the entropy – entropy

production method. It is enough to prove the result for nonnegative func-

tions u since the inequality for |u| implies the inequality for u. By density,

we may assume that u is smooth. According to [25], if v is a nonnegative

solution of the heat equation

∂v

∂t
= ∆v

on Ω with homogeneous Neumann boundary conditions, then v = up+1 is

such that

d

dt

∫

Ω

vr −M r

r − 1
dx = −4

r

∫

Ω

|∇u|2 dx
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with M :=
∫

Ω
v dx and r = 2/(p + 1). With this change of variables, u

solves
∂u

∂t
= ∆u+

2− r

r

|∇u|2
u

and we find that

− 1

2

d

dt

∫

Ω

|∇u|2 dx

=

∫

Ω

|∆u|2 dx + p

∫

Ω

|∇u|4
u2

dx− 2 p

∫

Ω

Hess u :
∇u⊗∇u

u
dx , (4.1)

that is,

− 1

2

d

dt

∫

Ω

|∇u|2 dx = 2
r − 1

r

∫

Ω

|∆u|2 dx+ p

∫

Ω

(

|∆u|2 − |Hess u|2
)

dx

+ p

∫

Ω

∣

∣

∣
Hessu− 1

u
∇u ⊗∇u

∣

∣

∣

2

dx ,

and finally, using Lemma 5,

d

dt

∫

Ω

|∇u|2 dx 6 − 4
r − 1

r

∫

Ω

|∆u|2 dx 6 − 4
r − 1

r
λ2

∫

Ω

|∇u|2 dx

where the last inequality follows from Lemma 4, Ineq. (2.2), thus proving

the result for any p = (2 − r)/r ∈ (0, 1). Indeed, with previous notations,

we have shown that
∫

Ω |∇u|2 dx is exponentially decaying. Hence
∫

Ω

vr −M r

r − 1
dx =

1

r − 1

(

‖u‖2L2(Ω) − ‖u‖2Lp+1(Ω)

)

also converges to 0 as t→ ∞ and

d

dt

[

‖∇u‖2L2(Ω) − µ

∫

Ω

vr −M r

r − 1
dx

]

6

(

− 4
r − 1

r
λ2 +

4

r
µ

)
∫

Ω

|∇u|2 dx

is nonpositive if µ 6 (r − 1)λ2. Altogether, we have shown that

‖∇u‖2L2(Ω) − λ2

(

‖u‖2L2(Ω) − ‖u‖2Lp+1(Ω)

)

is nonincreasing with limit 0, which concludes the proof. �

If d > 2, better result can be obtained by considering the traceless quan-

tities as in [20]. Let us introduce

M[u] :=
∇u ⊗∇u

u
− 1

d

|∇u|2
u

Id , (4.2)

Lu := Hessu− 1

d
∆u Id , (4.3)
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and define p♯ := d (d+2)
(d−1)2 so that

ϑ(p, d) := p
(d− 1)2

d (d+ 2)

satisfies ϑ(p, d) < 1 for any p ∈ (0, p♯). Notice that p♯ + 1 = 2 d2+1
(d−1)2 is the

threshold value that has been found in [4] (also see [15, 16]).

Lemma 12. — Let d > 2. Assume that Ω is a bounded convex domain

such that |Ω| = 1. For any p ∈ (0, p♯), for any u ∈ H1(Ω) such that ∂nu = 0

on ∂Ω, we have

‖∇u‖2L2(Ω) >
1

2

(

1− ϑ(p, d)
)

λ2
‖u‖2Lp+1(Ω) − ‖u‖2L2(Ω)

p− 1

if p 6= 1 and, in the limit case p = 1,

‖∇u‖2L2(Ω) >
1

4

(

1− ϑ(1, d)
)

λ2

∫

Ω

|u|2 log

(

|u|2
‖u‖2L2(Ω)

)

dx .

The range of p covered in Lemma 12 is larger than the range covered in

Lemma 11, but the constant is also better if p ∈
(

d (d+2)/(d2+6 p−1), 1
)

because, in that case, (1 − ϑ(p, d))/(p− 1) > 2.

Proof. — We use the same conventions as in the proof of Lemma 11. Let

us first observe that

|M[u]|2 =

(

1− 1

d

) |∇u|4
u2

,

|Lu|2 = |Hessu|2 − 1

d
(∆u)2 .

Since Hess u = Lu+ 1
d ∆u Id, we have that

Hessu :
∇u⊗∇u

u
= Lu :

∇u ⊗∇u
u

+
1

d
∆u

|∇u|2
u

= Lu :M[u]+
1

d
∆u

|∇u|2
u

because Lu is traceless. An integration by parts shows that

∫

Ω

∆u
|∇u|2
u

dx =

∫

Ω

|∇u|4
u2

dx− 2

∫

Ω

Hessu :
∇u ⊗∇u

u
dx

=
d

d− 1

∫

Ω

|M[u]|2 dx− 2

∫

Ω

Hessu :
∇u⊗∇u

u
dx

so that we get

d+ 2

d

∫

Ω

Hessu :
∇u⊗∇u

u
dx =

∫

Ω

Lu :M[u] dx+
1

d− 1

∫

Ω

|M[u]|2 dx ,
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hence
∫

Ω

Hess u :
∇u⊗∇u

u
dx =

d

d+ 2

∫

Ω

Lu :M[u] dx

+
d

(d− 1) (d+ 2)

∫

Ω

|M[u]|2 dx .

Now let us come back to the proof of Lemma 11. From (4.1), we read that

− 1

2

d

dt

∫

Ω

|∇u|2 dx

=

∫

Ω

|∆u|2 dx+ p

∫

Ω

|∇u|4
u2

dx− 2 p

∫

Ω

Hessu :
∇u⊗∇u

u
dx

=

∫

Ω

|∆u|2 dx+
p d

d− 1

∫

Ω

|M[u]|2 dx

− 2 p

(

d

d+ 2

∫

Ω

Lu :M[u] dx+
d

(d− 1) (d+ 2)

∫

Ω

|M[u]|2 dx
)

=

∫

Ω

|∆u|2 dx− p
d− 1

d+ 2

∫

Ω

|Lu|2 dx

+
p d2

(d− 1) (d+ 2)

∫

Ω

∣

∣

∣

∣

M[u]− d− 1

d
Lu

∣

∣

∣

∣

2

dx .

We know from Lemma 5 that
∫

Ω

(∆u)2 dx >

∫

Ω

|Hess u|2 dx =

∫

Ω

|Lu|2 dx+
1

d

∫

Ω

(∆u)2 dx ,

i.e.,
∫

Ω

(∆u)2 dx >
d

d− 1

∫

Ω

|Lu|2 dx .

Altogether, this proves that, for any θ ∈ (0, 1),

− 1

2

d

dt

∫

Ω

|∇u|2 dx > (1− θ)

∫

Ω

|∆u|2 dx+

(

θ d

d− 1
− p

d− 1

d+ 2

)
∫

Ω

|Lu|2 dx

and finally, with θ = ϑ(p, d) and using (2.2),

d

dt

[

‖∇u‖2L2(Ω) − µ

∫

Ω

vr −M r

r − 1
dx

]

6

(

− (1− θ)λ2 +
4

r
µ

)
∫

Ω

|∇u|2 dx

is nonpositive if

µ 6
r

4

(

1− ϑ(p, d)
)

λ2 =
1− ϑ(p, d)

2 (p+ 1)
λ2 .

Since r − 1 = (1 − p)/(1 + p), this concludes the proof if p 6= 1. The case

p = 1 is obtained by passing to the limit as p→ 1. �
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5. Estimates based on nonlinear diffusion equations

Lemma 13. — Assume that d > 2 and Ω is a bounded convex domain

in R
d with smooth boundary such that |Ω| = 1. Then we have

1− θ⋆(p, d)

|p− 1| λ2 6 µ1 .

Proof. — This bound is inspired from [2, 33, 34, 20]. Let us give the

main steps of the proof. Here we do it at the level of the nonlinear elliptic

PDE. Flows will be introduced afterwards, with the intent of providing

improvements.

Let us consider the solution u to (1.3) and define a function v such that

vβ = u for some exponent β to be chosen later. Then v solves

− ε(p)

(

∆v + (β − 1)
|∇v|2
v

)

+ λ v − vκ = 0 in Ω (5.1)

with homogeneous Neumann boundary conditions

∂nv = 0 on ∂Ω . (5.2)

Here

κ = β (p− 1) + 1 . (5.3)

If we multiply the equation by
(

∆v + κ |∇v|2/v
)

and integrate by parts,

then the nonlinear term disappears and we are left with the identity

∫

Ω

(∆v)2 dx+ (κ+ β − 1)

∫

Ω

∆v
|∇v|2
v

dx+ κ (β − 1)

∫

Ω

|∇v|4
v2

dx

− λ |p− 1|
∫

Ω

|∇v|2 dx = 0 .

Using (4.2)-(4.3), let us define

Q[v] := L v − (d− 1) (p− 1)

θ (d+ 3− p)
M[v] .

The case of a compact manifold has been dealt with in [20]. The main

difference is that there is no Ricci curvature in case of a domain in R
d,

but one has to take into account the boundary terms. As in the proof of

Lemma 12, the main idea is to rearrange the various terms as a sum of

squares of traceless quantities. The computations for v are very similar to

those done in Section 4, so we shall skip the details. The reader is invited
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to check that

θ

(
∫

Ω

(∆v)2 dx−
∫

Ω

|Hess v|2 dx
)

+
θ d

d− 1

∫

Ω

|Q[v]|2 dx

+ (1− θ)

∫

Ω

(∆v)2 dx − λ |p− 1|
∫

Ω

|∇v|2 dx = 0

if θ = θ⋆(p, d) = (d−1)2 p
d (d+2)+p and β = d+2

d+2−p . In the previous identity, the

first term is nonnegative by Lemma 5, the second term is the integral of a

square and is therefore nonnegative, and the sum of the last ones is positive

according to Lemma 4 if (1− θ)
∫

Ω(∆v)
2 dx− λ |p− 1|

∫

Ω |∇v|2 > 0, unless

∇v = 0 a.e. Notice that the convexity of Ω is required to apply Lemma 5.

We may notice that p = d+2 has to be excluded in order to define β, and

this may occur if d = 2. However, by working directly on u, it is possible

to cover this case as well. This is indeed purely technical, because of the

change of variables u = vβ . Alternatively, it is enough to observe that the

inequality holds for any p 6= d + 2 and argue by continuity with respect

to p. �

Proof of Theorem 2. — Since the exponent p is in the sub-critical range,

it is classical that the functional JΛ has a minimizer u. Up to a normal-

ization v = u1/β solves (5.1). If Λ = λ |p − 1| < Λ⋆, then u is constant

by Lemma 13, and we are therefore in the case λ = µ(λ) of Theorem 1 if

λ 6
1−θ⋆(p,d)

|p−1| λ2. Combined with the results of Theorem 1 and Lemma 6,

this completes the proof of Theorem 2.

�

For later purpose (see Section 6.3), let us consider the proof based on

the flow. With λ = Λ/|p − 1|, we may consider the functional u 7→ JΛ[u]

defined by (2.3) with u = vβ and evolve it according to

∂v

∂t
= v2−2 β

(

∆v + κ
|∇v|2
v

)

. (5.4)

We also assume that (5.2) hold for any t > 0. This flow has the nice property

that
d

dt

∫

Ω

up+1 dx =
d

dt

∫

Ω

vβ (p+1) dx = 0

if κ is given by (5.3), and a simple computation shows that

− 1

β2

d

dt
JΛ[v

β ] =

∫

Ω

(∆v)2 dx+ (κ+ β − 1)

∫

Ω

∆v
|∇v|2
v

dx

+ κ (β − 1)

∫

Ω

|∇v|4
v2

dx− λ |p− 1|
∫

Ω

|∇v|2 dx = 0 .
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The same choices of β and θ as in the proof of Lemma 13 allow us to

conclude, but it is interesting to discuss the possible values of β and θ which

guarantee that d
dtJΛ[v

β ] 6 0 unless v is a constant. As in [20], elementary

computations show that

− 1

β2

d

dt
JΛ[v

β ]

= θ

(
∫

Ω

(∆v)2 dx −
∫

Ω

|Hess v|2 dx
)

+
θ d

d− 1

∫

Ω

|Q[v]|2 dx

+R

∫

Ω

|∇v|4
v2

dx+ (1 − θ)

∫

Ω

(∆v)2 dx− λ |p− 1|
∫

Ω

|∇v|2 dx

where Q[u] is now defined by

Q[u] := Lu− 1

θ

d− 1

d+ 2
(κ+ β − 1)

[∇u⊗∇u
u

− 1

d

|∇u|2
u

Id

]

and

R := −1

θ

(

d− 1

d+ 2

)2

(κ+ β − 1)2 + κ (β − 1) + (κ+ β − 1)
d

d+ 2
.

After replacing κ by its value according to (5.3), we obtain that the equation

0 = R =

[

(

d− 1

d+ 2

)2
p2

θ
− p+ 1

]

β2 − 2

(

1− p

d+ 1

)

β + 1

has two roots β±(θ, p, d) if θ ∈
(

θ⋆(p, d), 1
)

and R > 0 if β ∈ (β−, β+). As

in the linear case (proof of Lemma 12), we also know from Lemma 5 that
∫

Ω

(∆v)2 dx−
∫

Ω

|Hess v|2 dx > 0

and this is precisely where we take into account boundary terms and use

the assumption that Ω is convex. Summarizing, we arrive at the following

result.

Proposition 14. — With the above notations, if Ω is a bounded con-

vex domain such that |Ω| = 1, for any θ ∈
(

θ⋆(p, d), 1
)

and any β ∈
(

β−(θ, p, d), β+(θ, p, d)
)

, we have

d

dt
JΛ[v

β ] 6 −Rβ2

∫

Ω

|∇v|4
v2

dx

if v is a solution to (5.4).

When θ = θ⋆(p, d), the reader is invited to check that β− = β+ = β.

The computations in the proof of Lemma 13 can now be reinterpreted in

the framework of the flow defined by (5.4). Up to the change of unknown
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function u = vβ , any solution to (1.3) is stationary with respect to (5.4) and

then all our computations amount to write that d
dtJΛ[v

β ] = 0 is possible

only if v is a constant.

6. Further considerations

Let us conclude this paper by a series of remarks. Section 6.1 is devoted

to the question of the non-optimality in the lower bound of Theorem 2.

Spectral methods are introduced in Section 6.2 and provide us with an

alternative method to establish (1.6) with p ∈ (0, 1) when the constants

in the extremal cases p = 0 (Poincaré inequality) and p = 1 (logarithmic

Sobolev inequality) are known. The last estimates of Section 6.3 are based

on refinements of the nonlinear flow method and extend the case of the

manifolds with positive curvature studied in [16] to the setting of a bounded

convex domain with homogeneous Neumann boundary conditions.

6.1. The threshold case

The following result complements those of Theorem 2.

Proposition 15. — With θ⋆(p, d) defined by (1.7) and Λ⋆ given as the

best constant in (1.6), if Ω is a bounded convex domain such that |Ω| = 1,

we have that
[

1− θ⋆(p, d)
]

λ2 < Λ⋆ 6 λ2 .

Proof. — The proof goes along the same lines as [20, Theorem 4]. We

argue by contradiction and assume first that
[

1− θ⋆(p, d)
]

λ2 = Λ∗

and that there is a nontrivial solution to (1.3) for λ |p− 1| = Λ = Λ⋆. Then

JΛ[v
β ] is constant with respect to t if λ = Λ⋆ |p − 1| and v is a solution

of (5.4) with initial datum v0 such that u = vβ0 is optimal for the functional

inequality (1.6). Since the limit of v(t, ·) as t → ∞ is a positive constant

that can be approximated by the average of v(t, ·), then
0 = JΛ[v(t, ·)] ∼ ‖∇w‖2L2(Ω) − λ ‖w‖2L2(Ω) > θ⋆(p, d)λ2 ‖w‖2L2(Ω)

with w = v −
∫

Ω
v(t, ·) dx 6= 0, a contradiction.

Alternatively we can use the elliptic point of view and consider non-

trivial optimal functions uλ with λ > Λ⋆. As λ → Λ⋆, uλ has to converge

to a constant and we again reach a contradiction. �
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6.2. An interpolation between Poincaré and logarithmic

Sobolev inequalities

It is well known that inequalities (1.6) with p ∈ (0, 1) can be seen as a

family of inequalities which interpolate between Poincaré and logarithmic

Sobolev inequalities. See for instance [32]. Next, using the method intro-

duced by W. Beckner in [6] in case of a Gaussian measure and later used

for instance in [1, 15], we are in position to get an estimate of the best

constant in (1.6) for any p ∈ (0, 1) in terms of the best constant at the

endpoints p = 0 and p = 1. To emphasize the dependence in the optimal

constant in p, we shall denote it by Λ⋆(p) and consistantly use Λ⋆(1) as

the optimal constant in the logarithmic Sobolev inequality (1.8). We recall

that the optimal constants in (1.6) are such that

Λ⋆(p) 6 Λ⋆(0) = λ2

for any p ∈ (0, 2∗−1), including in the case p = 1 of the logarithmic Sobolev

inequality. This can be checked easily as in the proof of Lemma 6 by using

u = 1 + ǫ u2 as a test function, where u2 is an eigenfunction associated

with λ2, and by taking the limit as ǫ→ 0.

Proposition 16. — Assume that p ∈ (0, 1) and d > 1. Then we have

the estimate

Λ⋆(p) >
1− p

1− pα
λ2 with α =

λ2
Λ⋆(1)

.

Proof. — Let us briefly sketch the proof which is based on two main

steps.

1st step: Nelson’s hypercontractivity result.Based on the strategy of L. Gross

in [29], we first establish an optimal hypercontractivity result using (1.8).

On Ω, let us consider the heat equation

∂f

∂t
= ∆f

with initial datum f(t = 0, ·) = u, Neumann homogeneous boundary condi-

tions and let F (t) := ‖f(t, ·)‖LQ(t)(Ω). The key computation goes as follows.

F ′

F
=

d

dt
logF (t) =

d

dt

[

1

Q(t)
log

(
∫

Ω

|f(t, ·)|Q(t) dx

)]

=
Q′

Q2 FQ

[
∫

Ω

v2 log

(

v2
∫

Ω
v2 dx

)

dx+ 4
Q− 1

Q′

∫

Ω

|∇v|2 dx
]
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with v := |f |Q(t)/2. Assuming that 4 Q−1
Q′

= 2
Λ⋆(1)

, we find that

log

(

Q(t)− 1

p

)

= 2Λ⋆(1) t

if we require that Q(0) = p + 1. Let t∗ > 0 be such that Q(t∗) = 2. As a

consequence of the above computation, we observe that F is non increasing

by the logarithmic Sobolev inequality (1.8) and get that

‖f(t∗, ·)‖L2(Ω) 6 ‖u‖Lp(Ω) if
1

p
= e2Λ⋆(1) t∗ . (6.1)

2nd step: Spectral decomposition. Let u =
∑

k>1 uk be a decomposition of

the initial datum on the eigenspaces of −∆ with Neumann boundary con-

ditions and denote by λk the ordered sequence of the eigenvalues: −∆uk =

λk uk. Let ak = ‖uk‖2L2(Ω). As a straightforward consequence of this de-

composition, we know that ‖u‖2L2(Ω) =
∑

k>1 ak, ‖∇u‖2L2(Ω) =
∑

k>1 λk ak,

‖f(t∗, ·)‖2L2(Ω) =
∑

k>1

ak e
−2λk t∗ .

Using (6.1), it follows that

‖u‖2L2(Ω) − ‖u‖2Lp(Ω)

1− p
6

‖u‖2L2(Ω) − ‖f(t∗, ·)‖L2(Ω)

1− p

where the right hand side can be rewritten as

1

1− p

∑

k>2

λk ak
1− e−2λk t∗

λk
6

1− e−2λ2 t∗

(1− p)λ2

∑

k>2

λk ak

=
1− e−2λ2 t∗

(1 − p)λ2
‖∇u‖2L2(Ω) .

�

Notice that the estimate of Proposition 16 allows us to recover the opti-

mal values λ2 and Λ⋆(1) when passing to the limit in 1−p
1−pα λ2 as p→ 0 and

p→ 1 respectively. Hence any improvement on the estimate of Λ⋆(1) auto-

matically produces an improvement upon the lower estimate in Theorem 2

at least in a neighborhood of p = 1−.

6.3. Improvements based on the nonlinear flow

Let us define the exponent

δ :=
p+ 1 + β (p− 3)

2 β (p− 1)
.
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Improvements of (1.6) can be obtained as in [10, 16], using the following

interpolation lemma.

Lemma 17. — Assume that β > 1, and β 6 2
3−p if p < 3. For any

u = vβ ∈ H1(Ω) such that ‖u‖Lp+1(Ω) = 1, we have

∫

Ω

|∇v|4
v2

dx >
1

β2

∫

Ω |∇u|2 dx
∫

Ω |∇v|2 dx
(∫

Ω u
2 dx

)δ
.

Proof. — With 1
2 + β−1

2β + 1
2β = 1, Hölder’s inequality shows that

∫

Ω

|∇v|2 dx =

∫

Ω

|∇v|2
v

1 v dx

6

(
∫

Ω

|∇v|4
v2

dx

)
1
2
(
∫

Ω

1 dx

)

β−1
2β
(
∫

Ω

v2 β dx

)
1

2 β

,

from which we deduce that
(
∫

Ω

|∇v|4
v2

dx

)
1
2

>

∫

Ω
|∇v|2 dx

(∫

Ω
u2 dx

)
1

2 β

(6.2)

because |Ω| = 1. With 1
2+

β−1
β (p−1)+

β (p−3)+2
2 β (p−1) = 1, Hölder’s inequality shows

that

1

β2

∫

Ω

|∇(vβ)|2 dx

=

∫

Ω

v2 (β−1) |∇v|2 dx =

∫

Ω

|∇v|2
v

v
(p+1) (β−1)

p−1 · v
β (p−3)+2

p−1 dx

6

(
∫

Ω

|∇v|4
v2

dx

)
1
2
(
∫

Ω

vβ (p+1) dx

)

β−1
β (p−1)

(
∫

Ω

v2β dx

)

β (p−3)+2
2β (p−1)

,

from which we deduce that
(
∫

Ω

|∇v|4
v2

dx

)

1
2

>
1

β2

∫

Ω
|∇u|2 dx

(∫

Ω
u2 dx

)

β (p−3)+2
2β (p−1)

.

This inequality combined with (6.2) completes the proof. �

For any β > 1, we define

ϕ(s) :=

∫ s

0

exp
[

κ
(

(1 − (p− 1) z)
1−δ − (1 − (p− 1) s)

1−δ
)]

dz

where κ = R
β (β−1) (p+1) and R appears in Proposition 14, and let

Φ(s) :=
(

1 + (p− 1) s
)

ϕ

(

s

1 + (p− 1) s

)

.
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Theorem 18. — Assume that Ω is a bounded convex domain such that

|Ω| = 1 and that one of the following conditions is satisfied:

(i) d = 2 and p ∈ (0, 1) ∪ (1, 8 + 4
√
3),

(ii) d > 3 and p ∈ (0, 1) ∪ (1, 2∗ − 1).

With the notations of Proposition 14, for any u ∈ H1(Ω) be such that

‖u‖L2(Ω) = 1, we have the inequality

1− θ

p− 1
λ2 Φ

(

‖u‖2Lp(Ω) − 1

p− 1

)

6 ‖∇u‖2L2(Ω)

for any θ ∈
(

θ⋆(p, d), 1
)

and β > 1 such that β−(θ, p, d) < β < β+(θ, p, d).

Proof. — Let us define Λ = 1−θ
p−1 λ2

e =
1

p− 1

[

‖u‖2Lp+1(Ω) − ‖u‖2L2(Ω)

]

, i := ‖∇u‖2L2(Ω)

so that

JΛ[u] = i− Λ e .

Using Proposition 14 and Lemma 17, we obtain the differential inequality

i
′ − Λ e

′ − R

2 β2

i e
′

(1 − (p− 1) e)
δ
6 0

which can be rewritten as

d

dt

(

iψ′(e)− Λψ(e)
)

6 0

if ϕ and ψ are related by

ϕ(e) :=
ψ(e)

ψ′(e)
.

It is then elementary to check that ϕ satisfies the ODE

ϕ′ = 1− ϕ
ψ′′(e)

ψ′(e)
= 1 + ϕ

R

2 β2
(1 − (p− 1) e)−δ

and ϕ(0) = 0. �

The reader interested in the precise ranges of the exponent β and the

values of θ is invited to refer to [16] for more details.
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6.4. Some concluding remarks and open questions

Beyond the fact that we deal with a bounded domain with Neumann

boundary conditions instead of a compact manifold with positive curvature,

the lower estimate in Theorem 2 differs from the existing literature in

several aspects. First of all we emphasize the fact that the convexity is

needed for our method (Lemma 5) but is certainly not necessary. The

whole range of exponents corresponding to 2 < p + 1 < 2∗ is covered

as in [2, 7, 34, 33] and the flow interpretation gives a nice framework,

which is already present in the results of J. Demange in [11] and has been

emphasized in [20, 16]. Even better, the range 1 < p+1 < 2 is also covered,

which is new in the context of bounded domains. As the problem is set on

the Euclidean space, we have neither a curvature assumption nor pointwise

CD(ρ,N) conditions. What matters is the Poincaré constant, which was

already taken into account in the papers of J.R. Licois and L. Véron in [33,

34] and D. Bakry and M. Ledoux in [2] in the case of compact manifolds.

However, we deal only with integral quantities and integrations by parts,

as was emphasized in [20], still in the compact manifolds case. Last but

not least, the nonlinear flow approach is also based on the methods of [15,

20] for compact manifolds, but the results of Section 6.3 on the improved

inequalities as the ones obtained in [16] go beyond the results that have

been achieved so far by standard techniques of nonlinear elliptic equations.

By studying radial solutions to (1.3), further results can be obtained

using ODE techniques. For instance, if p ∈ (0, 1) and λ > 0 is large enough,

according to the compact support principle, there are non-constant, radial

solutions with compact support in a ball strictly contained in Ω. This, in

particular, provides us with an upper bound on Λ⋆. See [5, 8, 9, 42].

In dimension d = 1, the computations are almost explicit. Scalings can

be used so that the problem is equivalent to the case λ = 1 on an interval

with varying length. See for instance [45, 43] for results in this direction.

Problems (P2) and (P3) are equivalent. An optimal function for (P2)

solves (3.1), and any solution of (3.1) is optimal as can be checked by

multiplying the equation by u and integrating on Ω. The threshold for

rigidity in (3.1) is therefore λ = µ2. However, this problem is of different

nature than the rigidity problem in (P1). Because all terms in (3.1) are 1-

homogenous, the normalization of u in Lp+1(Ω) is free and one can of course

take ‖u‖p−1
Lp+1(Ω) = µ so that u solves (1.3). Rigidity in (P1) implies rigidity

in (P2). The reverse implication is not true and, up to the multiplication

by a constant, all solutions of (3.1) solve (1.3), while the opposite is not
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true. In that sense, the set of solutions to (3.1) is larger, which explains

why we only prove that µ1 6 µ2.

As a conclusion, let us mention a few open questions. First of all a nat-

ural question would be to try to prove that µ1 = µ2 in the statement of

Theorem 2: under which assumptions can this be done ? In the framework

of compact manifolds, this is true in the case of the sphere, but it turns out

that the lower estimate on µ1 given by the nonlinear flow method is then

equal to Λ⋆/|p− 1|, which is definitely a very peculiar case.

Are there cases for which µ1 < µ2 ? For more complex interpolation

inequalities on a cylinder, it has been established in [12] that this happens

and the interested reader is invited to refer to [13, 14] for more details of

qualitative nature. If Ω is a ball numerical computations when d = 2 and

p = 2 also show that µ1 < µ2 as long as the study is done within the radial

setting, but the branch of solutions corresponding to µ(λ) < λ is generated

by non-radial functions. If µ1 = µ2, then µ1 is also a threshold value for

the existence of non-constant solutions: for any µ > µ1 such solutions

indeed exist. Is this also what happens if µ1 < µ2, or are there values of

µ ∈ (µ1, µ2) such that all positive, or at least nonnegative, solutions are in

fact constants ?

Branches of solutions and bifurcations have been the subject of numerous

papers and we did not review the existing literature, but at least one can

mention an interesting problem. We know that optimal potentials in (P3)

are related with optimal functions in (P2). Is it possible to take advantage

of the spectral information in Problem (P3) to get information on branches

of solutions associated with (P1) ?

c© 2016 by the authors. This paper may be reproduced, in its entirety, for

non-commercial purposes.
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