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Abstract 

Metformin is currently the first-line drug treatment for type 2 diabetes. Besides its 

glucose-lowering effect, there is interest in actions of the drug of potential relevance to 

cardiovascular diseases and cancer. However, the underlying mechanisms of action 

remain elusive. Convincing data place energy metabolism at the center of metformin’s 

mechanism of action in diabetes and may also be of importance in cardiovascular 

diseases and cancer. Metformin-induced activation of the energy-sensor AMPK is well 

documented, but may not account for all actions of the drug. Here, we summarize 

current knowledge about the different AMPK-dependent and AMPK-independent 

mechanisms underlying metformin action.  
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Introduction 

Metformin has been an important drug for treatment of type 2 diabetes (T2D) for 

decades. It isthe most widely used oral anti-hyperglycemic agent, andis currently 

recommended as first line therapy for all newly diagnosedT2D patients(American 

Diabetes Association, 2014). Metformin(N, N-dimethylbiguanide) belongs to the 

biguanide class of anti-diabetic drugs (containing two linked guanidine rings) originally 

derived fromgalegine (isoamylene guanidine), a guanidine derivative found in the 

French lilac Galegaofficinalis.Among the threebiguanidesdeveloped for diabetes therapy, 

metformin has a superior safety profile and it is well tolerated. Two other biguanides, 

phenformin and buformin, were withdrawn in the early 1970’s due to risk of lactic 

acidosis and increased cardiac mortality. The incidence of lactic acidosis with metformin 

at therapeutic doses is rare (less than 3 cases per 100.000 patient-years) and not greater 

than with non-metformin therapies. Metformin has been used widely in the treatment of 

T2Dfor over 50 years and has been found to be safe and efficacious both as 

monotherapy and in combination with other oral anti-diabetic agents and insulin. It 

offers the major clinical advantage of not inducing hypoglycemia or weight gain and 

ameliorates hyperglycemia with remarkable cardiovascular safety. Besides its use in 

T2D, there is interest in the use of metformin for the treatment of polycystic ovary 

disease,diabetic nephropathy and gestational diabetes (Viollet et al., 2012). The drug 

also has the advantage of counteracting the cardiovascular complications associated 

with diabetesas reportedin a large cohort of individuals fromthe United Kingdom 

Prospective Diabetic Study (UKPDS)(1998).Another possible benefit for metformin use 

is the association with decreased cancer risk and improved cancer prognosis (Pollak, 

2012b; Viollet et al., 2012). Although metformin has been used in Europe for treatment 

of hyperglycemiasince 1957 (and inthe USA sinceFDA approval in 1994), the exact 
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molecular mechanisms of itstherapeutic action remain obscure. In this review, we 

summarize what is currently known about these molecular mechanismsin the context of 

classic use for T2D and also for possible novel areas of therapeutic application. 

 

Pharmacokinetics and pharmacogenomics 

Pharmacokinetics of metformin 

 The optimal oral metformin dose for many diabetic patients is ~2g/day. After a 

single oral dose, metformin is rapidly distributed tomany tissues following partial 

absorption by the small intestine, but the luminal concentration in the gastrointestinal 

tract remains high. The peak plasma concentration occurs in 3 h (increasing from 1.0 to 

1.6 µg/ml [about 6 to 10 µM]after a 0.5 g dose and to ~3 µg/ml [about18 µM]after a 1.5 

g dose) with a mean plasma half-life of about 20 hours (Tucker et al., 1981).When the 

human metformin dose of 20 mg/kg/day orally is translated to the mouse equivalent 

dose of 250 mg/kg/day, according to the normalization to body surface area, murine 

plasma levels of metformin of up to 1.7 µg/ml(about 10 µM) are achieved(Memmott et 

al., 2010). This is in the range achieved when conventional anti-diabetic doses are used 

in humans(Tucker et al., 1981). Biodistribution studies in mice using 14C-labelled 

metformin showed accumulation mainly in the gastrointestinal tract, kidney and 

liver(Wilcock and Bailey, 1994). It is important to notethat being supplied directly by 

blood coming from the portal vein, the liver may contain a concentration of orally 

administered metformin substantially higher than in the general circulation and other 

organs(Wilcock and Bailey, 1994). Metformin liver concentrations of greater than 180 

µmol/kgwet weight and 250 µmol/kgwet weight in normal and diabetic rodents, 

respectively, can be achieved after a single dose of 50 mg/kg (Wilcock and Bailey, 1994). 

 



  5 

Cellular uptake of metformin 

Metformin is an unusually hydrophilic drug that mostly exists in a positively 

charged protonated form under physiological conditions. These physicochemical 

properties make rapid and passive diffusion through cell membranes unlikely. Indeed, 

transport of metformin involves an active uptake process viasolute carrier organic 

transporters. The intestinal absorption of metformin is primarily mediated by the 

plasma membrane monoamine transporter (PMAT, SLC29A4 gene), which is localized on 

the luminal side of enterocytes. Organic cation transporter1 (Oct1, SLC22A1 gene) is 

expressed on the basolateral membrane of enterocytes and may be responsible for the 

transport of metformin into the interstitial fluid(Gong et al., 2012). The primary 

mediator of hepatic metformin uptake is OCT1 and possibly OCT3 (SLC22A3 gene), 

expressed at the basolateral membrane of hepatocytes (Gong et al., 2012). The clearance 

of metformin is dependent on renal elimination as metformin does not undergo relevant 

biotransformation in the liver or biliary excretion. In the kidney, metformin is taken up 

into renal epithelial cells by OCT2 (SLC22A2 gene), expressed on the basolateral 

membrane, and excreted into the urine via multidrug and toxin extrusion 1 and 2 

(MATE1 geneSLC47A1 andMATE2 SLC47A2 genes). 

 

Pharmacogenomics of metformin 

Considerable inter-individual heterogeneity in clinical efficacy and the 

pharmacokinetic disposition of metforminhas been reported in the treatment of diabetic 

patients. This may be explained by variability in genetic polymorphisms of cation 

transporters. It was first reported that individuals carrying polymorphisms of the OCT1 

gene SLC22A1 display an impaired effect of metformin in lowering blood glucose levels, 

consistent with the great reduction of hepatic metformin uptake observed in OCT1 -/- 
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mice(Shu et al., 2007).However, these results have not been confirmed in the long-term 

follow-up of a large observational cohort of patients treated with metformin(Zhou et al., 

2009). Conversely, variants in the MATE1 gene SLC47A1 enhance the effect of metformin 

on glycated hemoglobin (HbA1c) and glucose tolerance in T2D patients(Becker et al., 

2009). In MATE 1 -/- mice, urinary excretion of metformin is significantly 

decreased,suggesting that MATE1 is essential for renal clearance of the drug(Tsuda et 

al., 2009). Among new candidate genetic determinants of metformin response, single 

nucleotide polymorphisms have been identified in the AMPK subunit genes, PRKAA1, 

PRKAA2 and PRKAB2 and the LKB1 gene, STK11(Jablonski et al., 2010). In addition, a 

recent genome-wide association study showed association between a large locus on 

chromosome 11, encompassing several genes, and glycemic variability in response to 

metformin therapy(Zhou et al., 2011). This locus includes the ataxia telangiectasia 

mutated (ATM) geneand it was suggested as the most likely candidate given its 

association with insulin resistance and T2D. However, additional studies are needed to 

clearly delineate genetic influences on the clinical response to metformin. 

 

Metformin and mitochondrial oxidative phosphorylation 

It is generally accepted that actions of metformin (and other biguanides) on 

mitochondria underlie most of the pleiotropic effects of the drug. This emerging 

consensus originates from two seminal papers published in 2000 reporting that 

metformin decreases cellular respiration by a mild and specific inhibition of the 

respiratory-chain complex 1 (NADH:ubiquinoneoxidoreductase) without affecting any 

other steps of the mitochondrial machinery (El-Mir et al., 2000; Owen et al., 2000). 

However, reviewing early mechanistic studies, the first observation reporting effects of 

biguanide derivatives on mitochondrial oxidative phosphorylation (OXPHOS) comes 
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from the pioneering work of Hollunger in the 50’s that linked the increase in glycolysis 

induced by this class of molecules to the inhibition of cellular respiration (Hollunger, 

1955). Later, high concentrations of various biguanide derivatives were found to 

specifically reduce NADH but not succinate oxidation in submitochondrial particles, 

assigning the inhibitory effect of these compounds on OXPHOS to the complex 1 of the 

mitochondrial electron transport chain (ETC). Thus, the concept that members of the 

biguanide family, including phenformin and metformin, exert many of their actions 

though modulation of mitochondrial energetics is not a recent proposal. During the last 

decade, the specific inhibition of the mitochondrial respiratory-chain complex 1 by 

metformin was confirmed in many cellular models, including rat, mouse and human 

primary hepatocytes (El-Mir et al., 2000; Owen et al., 2000; Stephenne et al., 

2011)hepatoma and adrenocortical carcinoma immortalized cell lines (Guigas et al., 

2004; Hirsch et al., 2012; Kim et al., 2013), skeletal muscle homogenates (Brunmair et 

al., 2004), endothelial cells (Detaille et al., 2005), pancreatic beta cells (Hinke et al., 

2007), neurons (El-Mir et al., 2008), peripheral blood mononuclear cells and platelets 

(Piel et al., 2014)and more recently in cancer cells(Bridges et al., 2014; Janzer et al., 

2014; Scotland et al., 2013; Wheaton et al., 2014). It has been reported that thistransient 

inhibition of complex 1 induces a drop in cellular energy charge, a measure of the 

energetic state of the cell defined as ([ATP] + 0.5[ADP])/([ATP] + [ADP] + [AMP]) 

(Foretz et al., 2010; Stephenne et al., 2011). The resulting fall in cellular ATP 

concentration and an increase in both ADP/ATP andAMP/ATP ratiosactivates the AMP-

activated protein kinase (AMPK),acritical energy sensor of cellular energy 

homeostasiswhich integrates multiple signaling networks to coordinate a wide array of 

compensatory, protective, and energy-sparing responses(Viollet et al., 2012). 
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Although the exact mechanism(s) by which metformin inhibits complex 1 

remains unknown, some studies were unable to detect a direct effect on isolated 

mitochondria except at very high concentrations, suggesting that the mitochondrial 

action of the drug requires intact cells(El-Mir et al., 2000; Guigas et al., 2004). On the 

other hand, it was recently reported that metformin (and other biguanides) can directly 

inhibit function of purified respiratory-chain complex 1, as well as in isolated 

mitochondria and submitochondrial particles from bovine heart{Andrzejewski, 2014 

#286}(Bridges et al., 2014), in line with previous data reporting similar properties using 

very high concentrations (20-100 mM) of the drug (Dykens et al., 2008; Owen et al., 

2000). However, it remains to be demonstrated if these mechanisms operate in vivo. 

It was also shown that the inhibitory effect of metformin on complex 1 was not 

prevented by nitric oxide (NO) synthase inhibitors or reactive oxygen species (ROS) 

scavengers (El-Mir et al., 2000), and was independent of AMPK, at least in primary 

mouse hepatocytes (Stephenne et al., 2011). Among the possible underlying 

mechanisms, it was proposed that the positive charge of metformin might account for its 

accumulation within the matrix of energized mitochondria, driven by the membrane 

potential (Owen et al., 2000). In addition, its apolar hydrocarbon side-chain would also 

promote its binding to hydrophobic structures, such as the constitutive phospholipids of 

mitochondrial membranes. Importantly, the lipophilicity of metformin, which is mostly 

due to its dimethyl-substituted terminal amino group, is much less than those of 

phenformin, which is more evenly distributed along its biguanide backbone. These 

peculiar physicochemical characteristics explain why two structurally-related 

biguanides affect differently the mitochondrial machinery, metformin being a weak but 

specific inhibitor of complex 1 whereas phenformin exerting a more potent but less 

specific action on the mitochondrial ETC (Drahota et al., 2014). It is also worth 
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mentioning that the inhibition of complex 1 activity by metformin is rather mild when 

compared to the reference inhibitor rotenone (El-Mir et al., 2000).Furthermore, 

metformin was shown to significantly reduce mitochondrial ROS production by selective 

inhibition of the reverse electron flow through the respiratory-chain complex 1, whereas 

rotenone triggers ROS production by increasing forward electron flow (Batandier et al., 

2006). Taken together, this suggests that their respective site of action on one or several 

of the subunits constituting the respiratory-chain complex 1 differ. Although recent 

studies have led to significant improvements in the understanding of its structure-

function relationships(Bridges et al., 2014),many aspects of the regulation of 

mitochondrial complex 1, such as the so-called active/deactive transition, remains 

incompletely understood. Further investigations are therefore still required to clarify 

the mechanism(s) by which metformin modulates the respiratory-chain complex 1 in 

such a unique way. Interestingly, it has been reported that direct binding of metformin 

to mitochondrial copper ions might be crucial for the metabolic effects of the drug 

(Logie et al., 2012). These findings point out again the crucial involvement of 

mitochondria in the molecular mechanism of action of metformin. Of note, not all the 

effects of biguanides are mediated by mitochondria since the glucose metabolism of 

erythrocytes, which are devoid of this organelle, was shown to be significantly affected 

secondary to metformin-induced change in cell membrane fluidity induced by the drug 

(Muller et al., 1997). 

 

Metformin and treatment of type 2 diabetes 

Metformin exerts its glucose-lowering effect primarily by decreasing hepatic 

glucose production through suppression of gluconeogenesis and enhancing insulin 

suppression of endogenous glucose productionand to a lesser extent, by reducing 
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intestinal glucose absorption and possibly improving glucose uptake and utilization by 

peripheral tissues, such as skeletal muscle and adipose tissue (Natali and Ferrannini, 

2006). Of note, it has been reported that metformin does not improve peripheral insulin 

sensitivity (Natali and Ferrannini, 2006) and improvements in insulin sensitivity in 

muscle may be related to the use of higher doses of metformin than clinically 

relevant.Additionally, metformin may also improve glucose homeostasis by interacting 

with the incretin axis through the action of glucagon-like peptide 1 (GLP-1) (Maida et al., 

2011; Mulherin et al., 2011).A recent study has found evidence that metformin and 

phenformin antagonize the action of the counter-regulatory hormone glucagon to 

suppress hepatic glucose production(Miller et al., 2013). Furthermore, Fullerton and 

colleagues recently showed that metformin-induced improvements in insulin action 

operatethrough alterations in hepatic lipid homeostasisvia theinhibitory 

phosphorylation of acetyl CoA carboxylase (ACC) by AMPK(Fullerton et al., 2013). 

 

Inhibition of hepatic gluconeogenesis 

An important breakthrough in the understanding of the molecular mechanism 

underlying metformin action was the demonstration that metformin-induced AMPK 

activation is associated with the inhibition of glucose production in primary hepatocytes 

(Zhou et al., 2001).The role for AMPK in mediating the action of metformin was initially 

supported by the reduction in metformin’s effect on glucose production in primary 

hepatocytes treated with compound C (Zhou et al., 2001), an AMPK inhibitor whichis 

now recognized to be non-selective. Thereafter, it was reported that, ablation of liver 

kinase B1 (LKB1, the upstream kinase that phosphorylates and activates AMPK)in the 

liver prevented the anti-hyperglycemic effects of metformin in high-fat fedmice (Shaw et 

al., 2005), also supporting the involvement of the kinase in the inhibition of glucose 
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production by the drug. In this study, it was shownthat LKB1/AMPK signaling controls 

the phosphorylation and nuclear exclusion of the transcriptional coactivatorcAMP-

response element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2, 

also known as TORC2)(Shaw et al., 2005), a pivotal regulator of gluconeogenic gene 

transcription in response to fasting.In addition, AMPK activation by metformin has also 

been reported to be involved in the transcriptional regulation of hepatic gluconeogenic 

enzyme genes by different mechanisms: i) dissociation of the CREB-CBP (CREB-binding 

protein)-TORC2 transcription complex, through the phosphorylation of the 

transcriptional coactivator CBP via atypical protein kinase C /λ (He et al., 2009), ii) 

increased expression of the orphan nuclear receptor small heterodimer partner (Lee et 

al., 2010), and iii) induction of SIRT1-mediated CRTC2 deacetylation(Caton et al., 

2010).However, the impact of reduction ingluconeogenic gene expression in metformin 

action has been recently disputed. Forced increase in gluconeogenic enzymes expression 

did not counteract the metformin-induced reduction in glucose output (Foretz et al., 

2010), this being in line with the emerging concept that transcriptional expression of 

PEPCK and G6Pase only weakly influences hepatic glucose output in patients with T2D 

(Samuel et al., 2009).  

Over the last years, controversy has arisen concerning the involvement of AMPK in the 

therapeutic effects of metformin on hepatic glucose production. Indeed, although 

metformin activates AMPK, this may not explain all of the therapeutic effects of the drug. 

Recent work in liver and primary hepatocytes from knockout models for both 

AMPK1/2 catalytic subunits and the upstream activating kinase LKB1 reveal that 

neither AMPK nor LKB1 are essential for metformin inhibition of hepatic glucose 

production (Foretz et al., 2010).However, a new report challenges these results and now 

shows that low concentrations of metformin suppress glucose production via AMPK 
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activation independently of an increase in the AMP/ATP ratio(Cao et al., 2014). A central 

question raised by this work is how does metformin activate AMPK without affecting 

energy charge.As described above, there is a consensus that metformin activates AMPK 

indirectly, secondary to the inhibition of the mitochondrial respiratory-chain complex 1, 

leading to ATP depletion and increase in AMP levels (Hawley et al., 2010). In addition, it 

has been suggested that perturbation of intracellular ATP levels, but not AMPK 

activationper se or inhibition of gluconeogenic gene expression, constitutes the critical 

factor underlying the effects of metformin on hepatic glucose output(Foretz et al., 2010). 

Gluconeogenesis is an energetically costly anabolic process, requiring 6 ATP equivalents 

per molecule of glucose synthesized, and it seems likely that the metformin-induced 

increase in AMP exerts a major role in the flux control of hepatic gluconeogenesis by the 

drug. Indeed, AMP is a potent allosteric inhibitor of fructose 1,6-bisphosphatase, a key 

enzyme in gluconeogenesis. Additionally, high AMP levels inhibit adenylatecyclase, 

thereby reducing cyclic AMP (cAMP) formation in response to glucagon and thus, fasting 

glucose levels (Miller et al., 2013).Taken together, a growing body of data indicates that 

multiple AMPK-independent regulatory points exist for direct AMP- and ATP-mediated 

effects of metformin on gluconeogenesis (Figure 1). In addition, it was very recently 

reported that the reduction in hepatic gluconeogenesis by metformin might result from 

a direct inhibition of the mitochondrial glycerophosphate dehydrogenase (mGPD), 

identifying another putative mitochondrial target of the drug (Madiraju et al., 

2014).Inhibition of mGPDhalts the glycerophosphate shuttle, blockinggluconeogenesis 

from glycerol and raising cytosolic NADH that feeds back on lactate dehydrogenase and 

also impairsincorporation of lactate into glucose. 

 

Regulation of lipid metabolism 
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Another effect of metformin is to improve lipid metabolism by reducing hepatic 

steatosisas demonstrated in rodent liver(Lin et al., 2000; Woo et al., 2014)and also 

reported in a clinical study (Marchesini et al., 2001). It was also recently reported that 

metformin exerts a beneficial effect on circulating lipids by lowering plasma 

triglycerides, through a selective increase in VLDL-triglyceride uptake and fatty acid 

oxidation in brown adipose tissue(Geerling et al., 2014). The metformin-induced 

reduction in tissue lipid storage is consistent with an increase in both fatty acid 

oxidation and inhibition of lipogenesis, presumably mediated by AMPK activation 

(Geerling et al., 2014; Zang et al., 2004; Zhou et al., 2001). Further support for a role of 

AMPK in the mechanisms of metformin action on lipid metabolism was recently 

provided inknock-in mouse models in which ACC1 and ACC2 were rendered insensitive 

to AMPK phosphorylation (Fullerton et al., 2013). These mice are refractory to the lipid-

lowering and insulin-sensitizing effects of metformin, showing that metformin-induced 

reduction in blood glucose levels depends on its ability to lower cellular fatty acid levels 

through the AMPK-dependent phosphorylation of ACC. Thus, the inhibition of hepatic 

glucose production by metformin may be, at least in certain conditions, secondary to the 

effects of the drugon ACC. These observations offer a potential explanation for the lack 

of metformin action on blood glucose levels in liver-specific LKB1-knockout mice fed on 

a high-fat diet (Shaw et al., 2005). Indeed, impaired metformin-induced AMPK 

phosphorylation in the absence of LKB1 would prevent ACC phosphorylation and the 

ability of metformin to improve insulin sensitivity and lower blood glucose.Therefore, 

metformin can acutely suppress hepatic glucose output by acting on distinct metabolic 

pathways via AMPK-independent and AMPK-dependent mechanisms in the context of 

insulin resistance (Figure 1). 
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Metformin action in cardiovascular system 

Metformin andcardioprotection 

Cardiovascular diseases are undoubtedly associated with T2D and ischemic heart 

disease is the main cause of death in type 2 diabetic population(Grundy et al., 1999). The 

cardiovascular dysfunctions associated with T2D are macro- and micro-vascular 

abnormalities including atherosclerosis of large arteries and coronary atherosclerosis 

which contributes to not only diabetes-related mortality and morbidity, but also include 

diabetic cardiomyopathy, a specific heart muscle dysfunction that occurs independently 

of coronary artery disease (Bugger and Abel, 2014). Although metformin is a first-line 

glucose-lowering pharmacological agent, its use was historically contraindicated in 

patients with heart failure due to concerns regarding increased risk of lactic acidosis. 

However, numerous studies revealed that metformin-associated lactic acidosis is 

minimaland that metformin treatment clearly reduces mortality and morbidity of type 2 

diabetic patients with cardiovascular diseases such as stable coronary artery disease, 

acute coronary syndrome and myocardial infarction (Eurich et al., 2013; Masoudi et al., 

2005). Currently, clinical practice guidelines recommend using metformin as first-line 

therapy in diabetic patients with heart failure(American Diabetes Association, 2014). 

The UKPDS trial nicely demonstrated that metformin was more effective than 

sulphonylurea or insulin in patients allocated to intensive blood-glucose control (1998). 

In this study, metformin significantly reduced all-cause mortality and diabetes-related 

death by 36% and 42%, respectively with a significant reduction in myocardial 

infarction events, which persisted after a 10-year follow-up (Holman et al., 2008; 1998). 

Numerous recent studies have confirmed the UKPDS conclusions. In these studies, 

metformin use was associated with better short- and/or long-term prognosis than other 

antidiabetic treatments in diabetic patients with acute coronary syndrome(Hong et al., 
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2013) or chronic heart failure (Eurich et al., 2013). However, it has to be noted that the 

benefit obtained with metformin in comparison to the other glucose-lowering agents is 

generally quite modest. Importantly, the use of metformin in non-diabetic patients 

suffering from coronary heart disease was not associated with any beneficial 

effects(Lexis et al., 2014; Preiss et al., 2014). Several meta-analyses have been recently 

performed (Boussageon et al., 2012; Eurich et al., 2013; Lamanna et al., 2011). Their 

inclusion criteria (only population at low risk of mortality; including or not patients with 

heart failure; including or not non-diabetic patients) and their conclusions slightly differ. 

The first concludes that metformin monotherapy improves survival whereas 

concomitant utilization with sulphonylurea was associated with reduced survival 

(Lamanna et al., 2011). In the second, the effectiveness of metformin to avoid death or 

cardiovascular events is not established by existing studies for the second meta-analysis 

(Boussageon et al., 2012). Finally, the more recent meta-analysis indicates that 

metformin treatment is associated with reduced mortality compared with controls and 

is at least as safe as other glucose-lowering agents in diabetic patients with heart failure 

(Eurich et al., 2013). Future clinical trials are clearly necessary to definitively conclude 

about the safety and cardioprotective effects of metformin treatment. 

 

Metformin in hypertension and atherogenesis 

The mechanisms involved in the beneficial cardiovascular effects of metformin in 

diabetic patients are not fully understood. A plausible explanation is the systemic anti-

hyperglycemic effect of the drug,whereby lowered gluconeogenesis decreases glucose 

levels and secondarily reduces insulin levels. However, several other molecular 

mechanisms directly targeting the cardiovascular system have been suggested by animal 

studies to participate in the benefits of metformin (Figure 2). A large part of these 
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effects appears to be mediated by AMPK. The activation of AMPK by metformin-induced 

energy stressis relevant to the vascular system, which is known to be alteredin diabetes 

by endothelial dysfunction and atherogenesis. Atherogenesisis accompanied by an 

impairment of endothelium-dependent relaxation, increased reactive oxygen species 

(ROS) production and reduced nitric oxide (NO) bioavailability, mediating pro-

inflammatory and pro-thrombotic mechanisms including platelet aggregation and 

leukocyte adhesion to the wall. Several cellular and animal studies have evaluated the 

potential anti-atherogenic action of metformin and AMPK activation. Metformin has 

been shown to inhibit high glucose-dependent ROS overproduction in aortic endothelial 

cells and its consequent endothelial dysfunction (Detaille et al., 2005; Ouslimani et al., 

2005). The decrease in ROS production is mediated by a double mechanism involving a 

reduction in NADPH oxidase activity and an inhibition of the respiratory-chain complex 

1. Two more recent studies proposed that AMPK mediates this metformin-induced 

NADPH oxidase inactivation reducing cytoplasmic ROS production (Batchuluun et al., 

2014; Bhatt et al., 2013). In parallel, Kukidome and colleagues showed that AMPK 

activation reduces the hyperglycemia-mediated mitochondrial ROS overproduction via 

the induction of manganese superoxide dismutase and the promotion of peroxisome 

proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)-dependent 

mitochondrial biogenesis in human umbilical vein endothelial cells (Kukidome et al., 

2006). AMPK activation is also known to induce endothelial NO synthase (eNOS) 

activation and NO-dependent vasodilation. In line with this action, it has been recently 

shown that metformin restores endothelial function through the inhibition of 

endoplasmicreticulum (ER) stress and oxidative stress and via the increase in NO 

bioavailability in obese diabetic mice, these effects being mediated by the 

AMPK/peroxisome proliferator-activated receptor  pathway (Cheang et al., 2014). In 
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addition, metformin targets advanced glycationend-products (AGEs), which are 

significant contributors of complications linked to diabetes. Indeed, metformin, 

independently of its anti-hyperglycemic property, is able to reduce AGEs synthesis and 

the expression of their specific cell receptor called RAGE in endothelial cells (Ouslimani 

et al., 2007). Finally, metformin treatment of patient with T2D was associated with a 

decrease in the level of the soluble intercellular adhesion molecule-1 (ICAM-1) and the 

soluble vascular cell-adhesion molecule-1 (VCAM-1), both being directly correlated to 

increase in cardiovascular events in such population (De Jager et al., 2005). 

Interestingly, as for AGEs, this decrease in ICAM-1 and VCAM-1 level was independent of 

the anti-hyperglycemic action of the drug.  

 

Metformin in myocardial injury 

The protective action of metformin also occurs at the myocardium and 

cardiomyocyte levels. Several ex vivo experiments using perfused heart protocols 

revealed a protective action of metformin during an ischemic episode. In a working-

heart perfusion model where metformin is administered before a mild ischemic episode, 

the anti-diabetic drug improved rat cardiac functional post-ischemic recovery 

(Legtenberg et al., 2002). It has been also shown that metformin given at the time of 

reperfusion reduced myocardial infarct size in both non-diabetic and diabetic hearts 

(Bhamra et al., 2008; Paiva et al., 2009). In these two last studies, the protective action of 

metformin was associated with a PI3K-mediated inhibition of the mitochondrial 

permeability transition pore opening and with increased intracellular formation of 

adenosine. However, the same group also showed that chronic metformin treatment of 

diabetic rats augments their myocardial resistance to ischemia-reperfusion injury via a 

pathway involving AMPK activation and PGC-1(Whittington et al., 2013). Similar 
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results have been obtained using in vivo models of myocardial infarction. In mice 

subjected to permanent left coronary artery occlusion or to one hour left coronary 

artery occlusion followed by reperfusion, 4 weeks metformin treatment improved 

survival and preserved left ventricular dimensions and left ventricular ejection fraction 

(Gundewar et al., 2009). These effects were concomitant to AMPK and eNOS activation, 

to increase in PGC-1 expression and disappeared in mice lacking AMPK or eNOS. In a 

similar study, Yin and colleagues demonstrated that metformin treatment increases 

AMPK activity, improves cardiac function and reduces infarct size after a myocardial 

infarction in rats (Yin et al., 2011). This protective action of metformin was also 

established in a dog model of heart failure (Sasaki et al., 2009). The authors nicely 

showed that other AMPK activators, such as 5-aminoimidazole-4-carboxamide 1--D-

ribofuranoside (AICAr), have the same effect than metformin, suggesting a role of this 

protein kinase. In cardiomyocytes, metformin reduced apoptosis by increasing anti-

apoptotic proteins and attenuating the production of pro-apoptotic proteins (Yeh et al., 

2010). These effects correlate with AMPK activation and can be reproduced by 

AICAr(Yeh et al., 2010). Metformin and AMPK also influence autophagy, which is known 

to be dysregulated in diabetic cardiomyopathy and heart failure. Indeed, metformin is 

able to restore impaired autophagy via the dissociation of Bcl-2 from Beclin1 in diabetic 

wild-type mice but not in cardiac-specific AMPK-dominant-negative transgenic diabetic 

mice(He et al., 2013; Xie et al., 2011). 

 

Metformin in cardiac hypertrophy 

Left ventricular hypertrophy is common among patients with T2D, who 

commonly have chronic hypertension. AMPK is a known inhibitor of cardiac 

hypertrophy via the negative regulation of protein synthesis (via mTOR inhibition) and 
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of gene transcription including mitogen-activated protein kinase and calcineurin-

nuclear factor of activated T cells pathways (Horman et al., 2012). In agreement with the 

anti-hypertrophic action of AMPK, metformin inhibits cardiac hypertrophy in a rat 

model of pressure overload (transverse aortic constriction)(Zhang et al., 2011). Avery 

recent publication has reported that metformin protects against transverse aortic 

constriction-mediated cardiac hypertrophy independently of AMPK (Xu et al., 2014). 

 

Metformin in diabetic cardiomyopathy 

A healthy human heart produces around 5-6 kg of ATP each day to sustain its 

function, representing 20 times its own weight(Horman et al., 2012). This ATP is 

generated via the mitochondrial oxidation of fatty acids (for 70 %) and 

glucose/pyruvate (for 30 %). Fatty acids are preferred substrates because their 

oxidation inhibits glucose catabolism via the Randle cycle. However, in the postprandial 

state, insulin favors glucose utilization by promoting glucose uptake and glycolysis and 

inhibiting fatty acid oxidation. Currently, it is commonly accepted that this metabolic 

flexibility is essential for the maintenance of heart function. On the other hand, the 

metabolic inflexibility of diabetic hearts, which are insulin resistant and almost 

exclusively use fatty acids as source of energy, participates in the development of the 

diabetic cardiomyopathy (Bugger and Abel, 2014). Thus, therapies that promote glucose 

metabolism and normalize insulin sensitivity may reduce cardiac complications linked 

to diabetes. Metformin and AMPK are potential therapeutic candidates. Indeed, AMPK 

activation by metformin or other activators is able to stimulate cardiac glucose uptake 

and glycolysis independently of insulin, bypassing insulin resistance in insulin-resistant 

cardiomyocytes(Bertrand et al., 2006; Ginion et al., 2011). Even more interestingly, 

increase in AMPK activity by the same activators restored insulin sensitivity of insulin-
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resistant cardiomyocytes by a mechanism that still needs to be identified (Bertrand et 

al., 2006; Ginion et al., 2011). The concentration of metformin used in these acute (few 

hours) studies was however higher than those used in diabetic patients. We can 

postulate that lower concentrations of metformin could play similar role when utilized 

during longer time of exposure. In relation to the problematic of the effective dose of 

metformin in the heart, a new specific activator of AMPK (A-769662) has been recently 

shown to increase metformin sensitivity independently of the AMP/ATP ratio 

(Timmermans et al., 2014). Such compound might be useful clinically to increase 

metformin cardiac sensitivity. 

On the other hand, similarly to the situation found in endothelial cells (Detaille et 

al., 2005; Ouslimani et al., 2005), hyperglycemia induced NADPH oxidase-mediated ROS 

production and cell death in cardiomyocytes(Balteau et al., 2011). It is tempting to 

speculate that AMPK activation by metformin would be able to reduce this ROS 

production and to increase cardiomyocyte survival under hyperglycemic condition as 

demonstrated in the endothelium (Batchuluun et al., 2014; Bhatt et al., 2013). In 

agreement with this hypothesis, it has been recently shown that AMPK activation by A-

769662, the metformin analog phenformin or the new anti-diabetic drug glucagon-like 

peptide 1 limited glucotoxicity in adult cardiomyocytes(Balteau et al., 2014). The 

mechanism proposed in this study is the AMPK-dependent suppression of the 

hyperglycemia-mediated ROS production via the inhibition of the NADPH oxidase NOX2. 

 

Metformin in cardiac fibrosis 

Cardiac fibrosis is another element of diabetic cardiomyopathy and more 

generally heart failure. Interestingly, metformin is able to attenuate fibrosis in a canine 

model of heart failure,presumably via AMPK activation and its inhibitory action on 
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transforminggrowthfactor- (TGF-) expression (Sasaki et al., 2009). Similar results 

were obtained in mice subjected to left ventricular pressure overload by transverse 

aortic constriction even if, in this case, AMPK did not seem to be involved (Xiao et al., 

2010). In other studies, it has been established that metformin inhibits myofibroblast 

differentiation by suppressing ROS generation via the inhibition of the NADPH oxidase 

pathway (Bai et al., 2013), AMPK probably mediating this effect. Of note, a genetic link 

between AMPK and cardiac fibrosis has been recently demonstrated in a myocardial 

infarction mouse model(Noppe et al., 2014). 

 

Anti-neoplastic actions of metformin 

Pharmaco-epidemiology 

Pharmaco-epidemiologic evidence has played a major role in generating the 

hypothesis that metformin has utility in cancer prevention and/or treatment. A seminal 

report published in 2005 (Evans et al., 2005) presented evidence that diabetics treated 

with metformin had a substantially lower cancer burden than diabetics treated with 

other agents, and many other studies reached similar conclusions (Gandini et al., 2014). 

However, while results of certain studies are encouraging, there are contradictions in 

the available data and the hypothesis remains controversial (Tsilidis et al., 2014). 

Obviously, the populations under study were type 2 diabetic patients, and the 

conclusions may not be applicable to non-diabetic subjects, even if the conclusions were 

validated for diabetics. More importantly, all these studies are based on retrospective 

reviews of medical records, and are subject to a variety of potential biases(Suissa and 

Azoulay, 2014). On the other hand, some recent reports are consistent with the earlier 

pharmaco-epidemiologic data that provided evidence for reduced cancer burden among 

users of metformin. Examples include a study of multiple myeloma outcomes (Wu et al., 
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2014), one of prostate cancer risk based on the Danish cancer registry (Preston et al., 

2014), and one regarding prostate cancer prognosis (Margel et al., 2013). Thus, 

pharmaco-epidemiologic data have played an important role in generating the 

hypothesis that metformin may be useful in cancer prevention or treatment, but have 

not been consistent in supporting this concept. 

 

Indirect effects of metformin on cancer 

The proposed mechanisms of action of metformin relevant to oncology can be 

divided into two broad, non-mutually exclusive categories: effects on the host that 

indirectly influence the cancer, and direct effects on cancer cells (Pollak, 2012b) (Figure 

3). As noted earlier in this review, direct actions of metformin on the liver inhibit 

hepatic glucose production, resulting in systemic metabolic and endocrine effects that 

may influence cancer biology. The most obvious candidate change of oncologic relevance 

is the reduction of hyperinsulinemia, given prior evidence that high insulin levels can 

stimulate proliferation of a subset of common cancers(Pollak, 2012a). Importantly, 

however, the magnitude of metformin-induced decline in insulin levels is greater in type 

2 diabetics than in metabolically normal subjects and it is not clear if metformin-induced 

changes in plasma insulin levels, particularly in non-diabetics, are sufficient to perturb 

tumor biology. Nevertheless, there is evidence from a murine model that metformin 

administration is more effective with respect to tumor growth inhibition when diet-

induced obesity and hyperinsulinemia are present, and is associated with decreased 

activation of insulin receptors of cancer xenografts(Algire et al., 2011). Levels of 

variousadipokines relevant to cancer biology are also influenced by metformin in 

models, but further clinical data in this area are required. Also, a few studies have 

suggested immunological or anti-inflammatory actions of metformin (Moiseeva et al., 
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2013; Pearce et al., 2009) relevant to oncology, but there are to date no clinical data to 

support or refute these observations. Thus, the role of "indirect" actions of metformin 

remains an active research topic. 

 

Direct effects of metformin on cancer 

Dozens of in vivo and in vitro studies have shown direct anti-neoplastic activity of 

biguanides in model systems, but most of these have not provided mechanistic details 

nor considered dose-response issues relevant to clinical applications (Pollak, 2012b; 

Viollet et al., 2012). One of these (Huang et al., 2008) provided evidence that AMPK 

activation is important in the action of biguanides by showing that the direct AMPK 

activator A-769662 (which does not inhibit OXPHOS) has in vivo anti-neoplastic activity. 

Other observations suggest the relevance of inhibition of respiratory-chain complex 1 

within tumors underlies the therapeutic effect of metforminin vivo under conditions 

where dosing is adequate:a keyfinding was that tumor growth inhibition by metformin 

occurs under control conditions, but not when the tumor model is engineered to express 

the yeast metformin-resistant Saccharomyces cerevisiae NADH dehydrogenase NDI1 

protein (Birsoy et al., 2014; Wheaton et al., 2014). 

Alterations in cellular metabolism in a manner that is influenced by mutations in 

exposed cancer cells are important consequences of metformin-inducedreduction of 

oxidative phosphorylation(Buzzai et al., 2007). This suggests the possibility of rational 

drug combinations(Ben Sahra et al., 2010).Particularly interesting work has provided a 

metabolic rationale for combining biguanides with small molecule drugs that inhibit 

oncogenic kinases that drive glycolysis (Pollak, 2013b). These studies support the 

possibility that cancer cells have a requirement to increase OXPHOS, at least transiently, 

to compensate for the decreased glycolysis that arises as a consequence of oncogenic 
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kinase inhibition. In the presence of biguanides, this compensatory increase is 

attenuated, resulting in enhanced antineoplastic activity of the kinase inhibitor(Haq et 

al., 2013). Mutation of isocitrate dehydrogenase-1 (IDH-1) is an important topic in 

cancer metabolism, and there is preclinical evidence justifying study of the combination 

of a biguanide and inhibitors of mutated IDH-1 (Grassian et al., 2014). There is also 

evidence of a benefit of combining biguanides with conventional chemo- and radio- and 

hormonal therapies(Pollak, 2012b). 

An early finding supportinga direct action of metformin on cancer cells was the 

observation that the drug was growth inhibitory in vitro in a manner that was associated 

withAMPK activation and mTOR inhibition, as a consequence of metformin-induced 

energetic stress (Zakikhani et al., 2006). Further work in this direction showed that 

genetic ablation of the α1 catalytic subunit of AMPK accelerates Myc-induced 

lymphomagenesis, consistent with the observation that AMPK activation not only 

downregulatesmTOR, but also suppresses the excess aerobic glycolysis (Warburg effect) 

characteristic of most transformed cells (Faubert et al., 2013). This line of investigation 

suggests a tumor suppressor role for AMPK. 

However, it is now recognized that AMPK activation under conditions of 

energetic stress can improve cell survival(Jeon et al., 2012) by tuning cellular energy 

metabolism to reduce energy consumption, in keeping with the evolutionary role of 

AMPK in adjusting metabolism to cope with low nutrient supply. Thus, it remains to be 

determined if the anti-proliferative but pro-survival consequences of AMPK activation in 

cancer cells, either due to the inhibition of oxidative phosphorylation by metformin or 

the direct activation by specific pharmacological activators,will be of clinical benefit. 

Consideration of the consequences of biguanide-induced energetic stress in 

cancer cells defective in AMPK activation is of particular interest. Xenograft(Algire et al., 
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2011) and transgenic (Shackelford et al., 2013) models have shown that cancers with 

loss of function of LKB1are hypersensitive to biguanides. This observation is consistent 

with the notion that activation of AMPK, while associated with reduction in 

proliferation, actually mitigates energetic stress induced by metformin by reducing 

energy consumption, thereby favoring cell survival. Cancer cells functionally deficient in 

AMPK, in contrast, will be less likely to reduce energy consumption in face of biguanide-

induced reduction in ATP generation, and therefore more likely to experience a lethal 

energetic crisis. This scenario is attractive because it implies a favorable therapeutic 

index (a greater effect on the cancer than the normal host tissues), as AMPK-defective 

cancers would be more sensitive to biguanides than normal tissues that retain a 

functional AMPK signaling system. This situation may be relevant to a sizable proportion 

of human cancers: for example, more than a third of non-small cell lung cancers are 

reported to be LKB1-defective. Cancers with mutations in genes encoding respiratory-

chaincomplex 1 components have also been shown to be hypersensitive to 

biguanides(Birsoy et al., 2014). 

 Collectively, pre-clinical studies raise enthusiasm for clinical trials of metformin, 

in a manner that is less controversial than the pharmaco-epidemiologic rationale. 

However, it is clear that precise mechanisms have not been defined, and it is important 

to point out that in order for metformin to have a direct anti-neoplastic effect, an 

adequate drug concentration must be achieved in neoplastic tissue. This concentration 

will be determined not only by the plasma level, which is related to the administered 

dose and to pharmacokinetic variables, but also to cellular uptake in cancer cells which 

may vary with respect to expression of OCT1 and other relevant transporters. The 

serum levels of metformin achieved in diabetic patients and in many in vivo models (as 

reviewed above) are in the micromolar range, while growth inhibition in vitro is usually 
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observed at millimolar concentrations. Thus, an overarching research question is what 

metformin concentrations are achieved in neoplastic tissue of patients receiving 

conventional anti-diabetic doses of metformin. Even before consideration of tumor 

biology, there may well be heterogeneity between cancer patients with respect to direct 

actions of metformin that arise as a consequence of whole organism and cellular 

pharmacokinetic factors. Imprecision regarding achieved drug levels in target tissues in 

preclinical models that demonstrate antineoplastic activity makes extrapolation to the 

clinic hazardous: it remains uncertain if the laboratory data should be used to support 

clinical trials of conventional anti-diabetic doses of metformin or clinical trials of more 

aggressive and novel methods of biguanide administration designed to maximize tumor 

drug concentration.  

 

Clinicaladvances and outlook 

While many clinical trials are ongoing, few actual clinical outcome results have been 

reported to date. However, there have been many publications of pilot studies that refer 

to surrogate endpoints such as changes in tumor proliferation rate between serial tumor 

biopsies obtained from patients prior to and during metformin exposure. Many of these 

have shown encouraging decreases in proliferation in breast, prostate, and endometrial 

cancers(Pollak, 2012b; Viollet et al., 2012), but overall results have been difficult to 

interpret because the magnitude of declines is in many cases smaller than those 

associated with currently approved treatments, and because in some studies declines 

are confined to subsets of patients. It should be noted that the design of ongoing 

randomized clinical trials may not address some of the specific contexts suggested to be 

of high interest by pre-clinical work performed only after the trials were designed, such 

as strategic combinations of biguanides with tyrosine kinase inhibitors (Pollak, 
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2013b)or selective use of biguanides for tumors with respiratory-chaincomplex 

1mutations(Birsoy et al., 2014). 

Anecdotal clinical evidence of stimulation of glucose uptake by intestinal mucosa 

by metformin has been presented in the nuclear medicine literature (Gontier et al., 

2008). While from a radiologic perspective this was reported as a bothersome artifact, 

from a physiologic perspective, the data may represent pharmacodynamic evidence of 

biguanide-induced inhibition of OXPHOS in intestinal mucosa, leading to energetic stress 

and a compensatory increase in glycolysis, resulting in the observed increase in glucose 

uptake. This may take place preferentially in bowel as compared to other tissues 

because of the high luminal concentration of metformin following oral administration, 

emphasizing the importance of pharmacokinetic factors in determining tissues where 

direct biguanide actions are likely to occur. These data are correlated with greater 

reductions of proliferation rate by metformin in colon (Pollak, 2013a) than in most 

other tissues examined, and reduced aberrant crypt foci in patients (Hosono et al., 

2010), thus raising the possibility of specific applications for metformin in colorectal 

cancer prevention. 

 Ongoing research comprises two broad areas. One examines the hypothesis that 

metformin, when administered in the manner used for diabetes therapy, has utility for 

cancer prevention or treatment. There has been relatively little effort to address this 

possibility in a quantitative fashion in preclinical model systems because it is difficult to 

accurately simulate human pharmacokinetics following oral dosing in rodents, and 

because there has been enthusiasm among physicians to proceed directly to human 

studies (Pollak, 2014). Thus, there are more than 200 Oncology clinical trials involving 

metformin in progress. Another research area, which has not yet led to clinical trials, 

involves optimization of biguanide pharmacokinetics to maximize exposure of 
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neoplastic tissue. This work is based on one hand on the attractive laboratory data 

related to the ‘direct’ mechanism of action, and on the other hand on concern that 

conventional anti-diabetic dosing may be inadequate for the desired effects. Relative to 

metformin, phenformin or novel biguanides(Narise et al., 2014) may have reduced 

requirements for cell surface transporters to enter cancer cells or other desirable 

pharmacokinetic properties.This has been clearly evidenced in rat hepatoma cells H4IIE, 

where quinidine, a competitive OCT1 inhibitor, completely blocked AMPK activation by 

metformin, while AMPK activation byphenforminandgalegine was notaffected (Hawley 

et al., 2010). Metformin may have very different effects if given parentally rather than 

orally. However, while such approaches may have advantages, they also may be 

associated with unacceptable toxicity, so that conventional preclinical work leading to 

phase I safety and dose finding clinical trials would be required as a first step. 

 

Conclusionand therapeutic perspectives 

After more than 50 years of clinical experience, the utility of metformin in the control of 

hyperglycemia in T2D has been well established. The safety of metformindifferentiated 

it fromphenformin and buformin,which were withdrawn in most countries due to a 

higher risk incidence of lactic acidosis. The favorable risk/benefit profile of metformin 

hasmade it one of the most widely prescribed drugs in the world.Clinically, metformin 

exerts its anti-hyperglycemic effect mostly through the inhibition of hepatic 

gluconeogenesis. Its primary site of action is the mitochondria via its mild and specific 

inhibition of the respiratory-chain complex 1, thereby lowering energy charge and 

ultimately leading to a reduction in hepatic glucose output. Although the energy sensor 

AMPK is activated by a decrease in the cellular energy charge, it appears to be 

dispensable for the direct inhibitory effect of metformin on hepatic gluconeogenesis, but 
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still may indirectly inhibit by restoring hepatic insulin sensitivity. This is consistent with 

the role of AMPK in the lipid-lowering effects and improvements in insulin sensitivity by 

metformin in the liver. Recent advances revealed a new molecular target in the 

mitochondria with the direct inhibition of mGPD, resulting in altered cellular redox state 

and limitinglactate and glycerol contribution to hepatic gluconeogenesis. 

The evidence presented in this review suggests that metformin may have clinical 

value in the treatment of cardiovascular complications associated with T2D by exerting 

a variety of cellular actions in different tissues and cell types. Chronic metformin 

treatment of patients leads to a basal state of cardioprotection, thereby potentially 

limiting the occurrence of myocardial infarction, heart failure, diabetic cardiomyopathy 

and cardiac hypertrophy. Multiple molecular mechanisms were proposed including 

reduction of ER stress, oxidative stress, apoptosis, protein synthesis and insulin 

resistance in endothelial cells, cardiomyocytes and cardiac fibroblasts through AMPK-

dependent and AMPK-independent pathways.  

Some studies have raised the possibility that metformin may also be effective in 

providing protection against cancer.The concept of 'repurposing' metformin for cancer 

prevention or treatment is appealing (Pollak, 2014), as the drug is inexpensive and well 

tolerated relative to commonly used anti-neoplastic agents. The original and most 

optimistic hypothesis, that this drug at conventional anti-diabetic doses is useful for a 

wide variety of indications in oncology, was based in part on pharmaco-epidemiologic 

data that are now considered controversial. As most experimental evidence for anti-

neoplastic activity of metformin involves drug exposure levels considerably higher than 

those in serum of metformin-treated diabetics, the use of novel metformin dosing 

strategies, including intravenous rather than oral administration, as well as the use of 
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phenformin or novel biguanides designed to have pharmacokinetic characteristics 

optimized for oncologic indications may be worthwhile. 

Furthermore, pre-clinical studies have identified not only rational drug 

combinations involving biguanides that deserve evaluation but also specific tumor 

characteristics, such as mutations of STK11/LKB1, that may be associated with 

biguanide sensitivity. Therefore, even if the first generation of metformin trials for 

cancer treatment are disappointing, there will be interesting questions to address in 

subsequent studies. On the other hand, demonstration of clinical benefit of any of the 

ongoing trials would represent an important example of productive ‘repurposing’ 

research, and lead to efforts to build on that success. 

Among clinicians, metformin is regarded as a widely used and "mature" generic 

drug with a well-established and important role in treatment of T2D, for which there is a 

limited research agenda remaining. However, as reviewed here, from a mechanistic 

perspective, there are many important unanswered questions (Table 1), and a 

recognition that biguanides have unique therapeutic properties arising from their 

effects on cellular energy metabolism. It is possible that further understanding of the 

mechanistic aspects of biguanide pharmacology will result in advances in treatment not 

only of diabetes, but also in cardiovascular and neoplastic diseases. 
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Table 1: Examples of challenges in biguanide research 

Elucidate the precise mechanism(s) by which metformin interacts with and inhibits the 

mitochondrial respiratory-chain complex 1 

Clarify the effect of metformin on tissue-specific regulation of mitochondrial biogenesis and its 

subsequent impact on cellular energy homeostasis 

Clarify if metformin actually acts as an "insulin sensitizer" in vivo, or if the reduction of insulin 

level associated with use of the drug is completely accounted for by decrease in glucose 

secondary to decrease gluconeogenesis 

Define mechanisms that limit duration of efficacy of metformin in treatment of type 2 diabetes 

Clarify why cardiac benefits of metformin are greater in diabetics than non-diabetics 

Provide clinical evidence for or against clinical anti-neoplastic action of metformin in diabetic 

and non-diabetic cancer patients 

Define optimum dosing of biguanides for cancer treatment in diabetic and non-diabetic patients 

and establish if phenformin or novel biguanides offer advantages for cancer treatment 

Delineate the role of AMPK in metformin action in different tissues and different disease states 

Design and evaluate rational combinations of metformin with other pharmacological agents for 

various indications 

Understand the genetic influences on efficacy of metformin for various indications and move 

towards personalized medicine to optimize therapies 

Are recently described actions of metformin on the intestinal microbiome(Cabreiro et al., 2013) 

relevant to any of the clinical effects of the drug ? 
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Figure legends: 

Figure 1: Molecular mechanisms of metformin-induced inhibition of hepatic 

glucose output. 

Metformin is transported into hepatocytes mainly through OCT1 and partially inhibits 

mitochondrial respiratory-chain complex 1, resulting in reduced ATP levels and 

accumulation of AMP. Gluconeogenesis is reduced as a result of ATP deficit limiting 

glucose synthesis, increased AMP levels leading to reduced activity of the key 

gluconeogenic enzyme FBPase, inhibition of adenylatecyclase and cAMP-PKA signaling, 

and inhibition of mGPD contributing to altered redox state and reduced conversion of 

glycerol to glucose. Metformin-induced change in AMP/ATP ratio also activates AMPK, 

which suppresses lipid synthesis and exerts insulin sensitizing effects.Abbreviations: 

ACC, acetyl CoA carboxylase; AMPK, AMP-activated protein kinase; cAMP, cyclic AMP; 

complex 1, respiratory-chaincomplex 1; DHAP, dihydroxyacetone phosphate; FBPase, 

fructose-1,6-bisphosphatase; G3P, glycerol-3-phosphate; cGPD, cytosolic 

glycerophosphate dehydrogenase; mGPD, mitochondrial glycerophosphate 

dehydrogenase; OCT1, organic transporter 1; PKA, protein kinase A. 

 

Figure 2: Main putative molecular mechanisms involved in the cardioprotective 

effects of metformin. Animal and in vitro studies proposed a protective action of 

metformin against several cardiovascular diseases linked to T2D including myocardial 

infarction, hypertrophy and diabetic cardiomyopathy, which lead to cardiac dysfunction 

that could evolve to heart failure. The molecular mechanisms involved in this protection 

are multifaceted targeting endothelial, cardiomyocyte and fibroblast (dys)functions. 

More details are given in the text.Abbreviations: AGEs, advancedglycation end-products; 
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AMPK, AMP-activated protein kinase, eEF2K, eukaryotic elongation factor 2 kinase; 

eNOS, endothelialnitricoxidesynthase; ER, endoplasmicreticulum; ICAM-1, 

intercellularadhesion molecule-1; MAPK, mitogen-activated protein kinase; MnSOD; 

Manganese superoxide dismutase; mPTP, mitochondrial permeability transition pore; 

mTOR, mammalian target of rapamycin; NFAT, calcineurin-nuclear factor of activated T 

cells; NOX, NADPH oxidase; PGC-1α, peroxisomeproliferator-activatedreceptor-gamma 

coactivator-1alpha; ROS, reactiveoxygenspecies; TGF-β, transforminggrowth factor-β; 

VCAM-1, vascularcelladhesion molecule-1. 

 

Figure 3: Proposed mechanisms by which biguanides may influence cancer 

biology. These mechanisms may be indirect, where the drug does not interact with the 

cancer cells, but rather alters the endocrine-metabolic milieu of the host in a way that 

may influence cancers. Indirect effects include but are not confined to suppression 

ofgluconeogenesis and decreased systemic glucose and insulin levels. The insulin-

lowering effect of metformin is used as an example; other indirect mechanisms have 

been proposed. Direct interactions between biguanides and cancers are supported by 

recent experimental data and occur when drug exposure is adequate to induce energetic 

stress in cancer cells. There is uncertainty if conventional anti-diabetic doses of 

metformin are sufficient to accomplish this.  Genetic characteristics of a cancer likely 

influence not only the extent to which biguanides accumulate, but also its ability to deal 

with energetic stress, and thus the degree of therapeutic benefit. Abbreviations: GI, 

gastrointestinal; LKB1, liver kinase B1; OXPHOS, oxidative phosphorylation. 
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