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Abstract. In many applications and in many fields, algorithms can con-
siderably be speed up if the underlying arithmetical computations are
considered carefully. In this article, we present a theoretical analysis of
affine transformations in dimension 3. More precisely, we investigate the
arithmetical paving induced by the transformation to design fast algo-
rithms.
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1 Introduction

In many computer vision and image processing applications, we are facing new
constraints due to the image sizes both in dimension with 3-D and 3-D+t med-
ical acquisition devices, and in resolution with VHR (Very High Resolution)
satellite images. This article deals with high performance image transformations
using quasi-affine transforms (QATs for short), which can be viewed as a discrete
version of general affine transformations. QAT can approximate rotations and
scalings, and in some specific cases, QAT may also be one-to-one and onto map-
pings from Zn to Zn, leading to exact computations. In dimension 2, the QAT
appeared in several articles [1,2,3,4,5]. In higher dimension, theoretical results
have been demonstrated [6,7,8]. More precisely, authors have demonstrated the
arithmetical and periodic structures embedded in n−dimensional QAT, leading
to generic transformation algorithms. To implement these generic algorithms,
several elements have to be fixed when considering a specific dimension. In this
paper, we detail the computation of the minimal periods in dimension 3 leading
to efficient transformation algorithms. Due to the space limitation, the proofs are
available in the technical report [7]). In Section 2, we first present some defini-
tions and results on n−D QAT. Section 3 focuses on the parameter computation
in 3-D. Finally, Section 4 evaluate all the algorithms compared to a classical
backward-mapping technique [9].



2 Preliminaries

In this section, we present definitions and results obtained for QAT in higher
dimension. These results have been independently proved by [6] and [7,8]. In the
following, we consider notations introduced in [7,8]. Let n denote the dimension
of the considered space, Vi the ith coordinate of vector V , and Mi,j the (i, j)th

coefficient of matrix M . We use the notation gcd(a, b, . . .) for the greatest com-
mon divisor of an arbitrary number of arguments, and lcm(a, b, . . .) for their
least common multiple. Let

[
a
b

]
denote the quotient of the euclidean division of

a by b, that is the integer q ∈ Z such that a = bq + r satisfying 0 ≤ r < |b|
regardless of the sign of b4. We also consider the straightforward generalization
of these operators to n−dimensional vectors (e.g.

[
V
b

]
is a vector where each

component is the quotient of the division by b).

Definition 1. A quasi-affine transformation is a triple (ω,M,V ) ∈ Z×Mn(Z)×
Zn (we assume that det(M) 6= 0). The associated application is :

Zn −→ Zn

X 7−→
[
MX + V

ω

]
Definition 2. The inverse of a QAT (ω,M, V ) is the QAT:

(det(M), ω com(M)t,− com(M)tV ) , (1)

where M t denotes the transposed matrix and com(M) the co-factor matrix of M
(Remind that M com(M)t = com(M)tM = det(M)In.).

The associated affine application of the inverse of a QAT is therefore the
inverse of the affine application associated to the QAT. However, due to the
nested floor function, the composition f · f−1 is not the identity function in the
general case. Let us recall the well-known Bezout Identity:

∀(a, b) ∈ Z2,∃(u, v) ∈ Z2/au+ bv = gcd(a, b) .

In Section 3, we have to consider a generalized form of the Bezout identity in
dimension 3:

Proposition 1 ([7]). ∀(a, b, c) ∈ Z3,∃(u, v, w) ∈ Z3/au+bv+cw = gcd(a, b, c) .

We present now several results and definitions that have been presented for
n−dimensional QAT. All these results are given in [7,8] but we present here the
main theorems, which will be used in the rest of the paper. First, the key feature
of n−D QAT is that it contains a periodic paving structure.

Definition 3 (Tile). Let f be a QAT. For Y ∈ Zn, we denote:

PY = {X ∈ Zn/f(X) = Y } , (2)

PY is called order 1 tile of index Y of f .

4
{

a
b

}
denotes the corresponding remainder

{
a
b

}
= a− b

[
a
b

]
.
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Fig. 1. Example of tiles and remainders

Definition 4. PY is said arithmetically equivalent to PZ (denoted PY ≡ PZ) if:

∀X ∈ PY ,∃X ′ ∈ PZ/
{
MX + V

ω

}
=

{
MX ′ + V

ω

}
. (3)

Definition 5. PY and PZ are said geometrically equivalent if:

∃v ∈ Zn/PY = TvPZ , (4)

where Tv denotes the translation of vector v.

The following theorem exhibits a relation between the notions of arithmetically
and geometrically equivalent tiles.

Theorem 1 ([7,8]). If PY ≡ PZ , then PY and PZ are geometrically equivalent.
Since PY ≡ PZ , there exists X ∈ PY and X ′ ∈ PZ such that:{

MX + V

ω

}
=

{
MX ′ + V

ω

}
.

Then v = X −X ′ is the translation vector:

PY = TvPZ .

In Figure 1 we show some tiles of the QAT defined by (6,

(
3 1
−1 3

)
,

(
0
0

)
) (a

point of Z2 is represented by a unit square whose bottom-left corner corresponds
to the represented point). For each point X in a tile we provide its corresponding
remainder

{
MX+V

ω

}
. Tiles P(2,1) and P(0,0) are arithmetically equivalent, there-

fore they are also geometrically equivalent. It should also be noted that tiles
P(1,0) and P(1,1) are geometrically equivalent but they are not arithmetically
equivalent .



Definition 6 (Periodicity notations, [7,8]). For all 0 ≤ i < n, We define
the set Ai as follows:

Ai = {α ∈ N∗/∃(βj)0≤j<i ∈ Zi,∀(y0, . . . , yn−1) ∈ Zn,
Py0,...,yi+α,...,yn−1 ≡ Py0+β0,...,yi−1+βi−1,yi,...,yn−1}

Furthermore, let us consider αi = min(Ai). We define {βij}0≤j<i ∈ Zi and
Ui ∈ Zn such that

∀(y0, . . . , yn−1) ∈ Zn, Py0,...,yi+αi,...,yn−1
= TUiPy0+βi0,...,yi−1+βii−1,yi,...,yn−1

.

The key theorem for the QAT periodic structure can now be presented:

Theorem 2 (Periodicity, [7,8]). The set of QAT tiles is n−periodic, in other
words

∀0 ≤ i < n,Ai 6= ∅

Let us suppose that quantities αi, β
i
j and Ui are given. The following theorem

allows us to obtain PY as the translation of a canonical tile PY 0 .

Theorem 3 ([7,8]). ∀(y0, . . . , yn−1) ∈ Zn, we have Py0,...,yn−1
= TWPy00 ,...,y0n−1

with

W =

n−1∑
i=0

wiUi and ∀n > i ≥ 0,


wi =

[
yi+

∑n−1
j=i+1 wjβ

j
i

αi

]
y0i =

{
yi+

∑n−1
j=i+1 wjβ

j
i

αi

} .

In [7,8], we have proved that canonical tiles PY 0 are associated to grid points
of a special tile called super-tile.

Definition 7 (Super-tile, [7,8]). A super-tile of a QAT is the set P such that

P =
⋃

0≤Y 0<(α0,...,αn−1)

PY 0

Theorem 4 ([7,8]). P is the tile P(0,...,0) of the QAT defined by:ω lcm0≤i<n(αi),

θ0 · · · 0
...

. . .
...

0 · · · θn−1

M,

θ0 · · · 0
...

. . .
...

0 · · · θn−1

V

 ,

with ∀0 ≤ i < n− 1, θi =
lcm0≤j<n−1(αj)

αi
.

Figure 2 illustrates tiles of the QAT (84,

(
12 −11
18 36

)
,

(
0
0

)
) in Z2 with 15

arithmetically distinct tiles (the tiles with same color are arithmetically equiv-
alent). In this example, for all i, j ∈ N, P(i+5,j) ≡ P(i,j) and P(i+2,j−3) ≡ P(i,j).
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Fig. 2. Periodicity of thes tiles of a 2D QAT .

The set
{
P(i,j)|i = 0, 1, 2, 3, 4, j = 0, 1, 2

}
contains exactly once all distinct tiles

so it is a super-tile of the QAT.

In [7,8], we have demonstrated that if we consider the Hermite Normal Form
of the QAT matrix M , then efficient tile construction can be designed. In the
following, let MH = T denote the Hermite Normal Form (with det(H) = ±1 and
T upper triangular). Note that this form always exists for nonsingular integer
square matrix.

Theorem 5 (Tile Construction, [7,8]). ∀Y ∈ Zn, let MH = T be the Her-
mite Normal Form of the QAT matrix M ,

PY = {HX / ∀n > i ≥ 0, Ai(Xi+1, . . . , Xn−1) ≤ Xi < Bi(Xi+1, . . . , Xn−1)}

With Ai(Xi+1, . . . , Xn−1) = −

[
−ωYi +

∑n−1
j=i+1 Ti,jXj + Vi

Ti,i

]
,

Bi(Xi+1, . . . , Xn−1) = −

[
−ω(Yi + 1) +

∑n−1
j=i+1 Ti,jXj + Vi

Ti,i

]
.

In Algorithm 1, we give the generic algorithm applying a contracting QAT
f to an image A (see Fig. 3). The principle is that we give to each pixel Y of
image B the average color of the tile PY in image A. If f is a dilating QAT, we
obtain a similar algorithm in which we replace f with f−1, and then we give the
color of each pixel Y of image A to each pixel of PY in image B (see Fig. 3 for
an illustration in 2-D). In both algorithms, some elements cannot be computed
in arbitrary dimension n. Indeed, even if there exist algorithms to compute the
Hermite Normal Form of an arbitrary square integer matrix [10], there is no
generic algorithm to obtain the minimal periodicities {αi} (see discussion in
Sect. 5). In the next section, we focus on the minimal periodicity computation
in dimension 3.



Algorithm 1: Generic QAT algorithm for a contracting QAT
Input: a contracting QAT f := (ω,M,V ), an image A : Zn → Z
Output: a transformed image B : Zn → Z
Compute the Hermite Normal Form of the matrix M ;
Determine the minimal periodicities {αi} and vectors {Ui};
Use Theorems 4 and 5 to compute the canonical tiles in the super-tile P;
foreach Y ∈ B do

Find Y 0 and W such that PY = TWPY 0 ;
foreach Z ∈ PY 0 do

c← A(TWZ); // we read the color in the initial image
sum← sum+ c;

B(Y )← sum/|PY 0 |; // we set the color

(a) (b)

Fig. 3. Illustration in dimension 2 of the QAT algorithm when f is contracting
(a) and dilating (b). In both cases, we use the canonical tiles contained in the
super-tile to speed-up the transformation.

3 QAT in Dimension 3

In dimension 3, we consider the following framework: we first define the Her-
mite Normal Form, the minimal periods and then we detail the transformation
algorithm.

3.1 Hermite Normal Form and Tile Construction

Let us consider a QAT (ω,M, V ) with M =

a0 b0 c0d0 e0 f0
g0 h0 i0

 and V =

j0k0
l0

.

In [7], we present explicit formulas to compute the Hermite Normal Form in

3-D. In the following, we define H = H1H2H3H4 and MH = T =

a b c0 d e
0 0 f

.

Thanks to Hermite decomposition, we have a > 0, d > 0 and f > 0. To construct
the tile of index (i, j, k) and thanks to Theorem 5, we have:

A2 = −
[
−ωk + l0

f

]
, B2 = −

[
−ω(k + 1) + l0

f

]



A1(z) = −
[
−ωj + k0 + ez

d

]
, B1(z) = −

[
−ω(j + 1) + k0 + ez

d

]
A0(y, z) = −

[
−ωi+ j0 + by + cz

a

]
, B0(y, z) = −

[
−ω(i+ 1) + j0 + by + cz

a

]

Algorithm 2: Tile construction in 3-D

A2 ← −
[
−ωk+l0

f

]
;

B2 ← −
[
−ω(k+1)+l0

f

]
;

for z ← A2 to B2 - 1 do

A1 ← −
[
−ωj+k0+ez

d

]
;

B1 ← −
[
−ω(j+1)+k0+ez

d

]
;

for y ← A1 to B1 - 1 do

A0 ← −
[
−ωi+j0+by+cz

a

]
;

B0 ← −
[
−ω(i+1)+j0+by+cz

a

]
;

for x← A0 to B0 - 1 do

H

xy
z

 ∈ Pi,j,k ;

3.2 Minimal Periodicity and Super-tile Construction

In dimension 3, we need to compute the periodicity along each dimension. Let

us first denote a′h = a
gcd(a,ω) , ω

′
h = ω

gcd(a,ω) , Y =

ω′h0
0


Theorem 6 (Horizontal Periodicity). Let αh = a′h and U = HY . Then
αh > 0, Pi+αh,j,k ≡ Pi,j,k and ∀(i, j, k) ∈ Z3, Pi+αh,j,k = TUPi,j,k .

Proof. The proof is detailed in [7].

Theorem 7. The period αh is a minimal horizontal period, i.e. αh = α0.

Proof. The proof is given in [7].

Concerning the vertical period, let:

d′v =
d

gcd(d, ω)
, ω′v =

ω

gcd(d, ω)
, a′v =

a

gcd(a, bω′v, ω)
, φ =

bω′v
gcd(a, bω′v, ω)

, ω′′v =
ω

gcd(a, bω′v, ω)
,

α′v = gcd(a′v, ω
′′
v ), u1 and v1 are such that : a′vu1 + ω′′v v1 = gcd(a′v, ω

′′
v )(= α′v),

β0 = −φv1, Y =

−φu1ω′vα
′
v

0





Theorem 8 (Vertical Periodicity). Let αv = d′vα
′
v, U = HY . Then αv >

0, Pi,j+αv,k ≡ Pi+β0,j,k and ∀(i, j, k) ∈ Z3, Pi,j+αv,k = TUPi+β0,j,k .

Proof. The proof is given in [7].

Theorem 9. The period αv is a minimal vertical period, i.e. αv = α1.

Proof. The proof is detailled in [7].

For the last period, let us consider:

f ′d =
f

gcd(ω, f)
, ω′d =

ω

gcd(ω, f)
, d′d =

d

gcd(d, eω′d, ω)
, φ =

eω′d
gcd(d, eω′d, ω)

, ω′′d =
ω

gcd(d, eω′d, ω)
,

u1 and v1 are such that : d′du1 + ω′′dv1 = gcd(d′d, ω
′′
d ), ψ = cω′d gcd(d′d, ω

′′
d )− bφu1,

a′d =
a

gcd(a, ψ, ω,
ω′′d b

gcd(d′d,ω
′′
d )

)
, ψ′ =

ψ

gcd(a, ψ, ω,
ω′′d b

gcd(d′d,ω
′′
d )

)
,

ω′′′d =
ω

gcd(a, ψ, ω,
ω′′d b

gcd(d′d,ω
′′
d )

)
, χ =

ω′′d b
gcd(d′d,ω

′′
d )

gcd(a, ψ, ω,
ω′′d b

gcd(d′d,ω
′′
d )

)
,

α′′d = gcd(a′d, χ, ω
′′′
d ), α′d = α′′d gcd(d′d, ω

′′
d ),

u2, v2 and w2 are such that : a′du2 + χv2 + ω′′′d w2 = gcd(a′d, χ, ω
′′′
d )(= α′′d),

k = −ψ′v2, β0 = −ψ′w2, β1 = −φv1α′′d − k
d′d

gcd(d′d, ω
′′
d )
, Y =

 −ψ′u2
−φu1α′′d + k

ω′′d
gcd(d′d,ω

′′
d )

α′dω
′
d


Theorem 10 (Depth Periodicity). Let αd = α′df

′
d, U = HY . Then

αd > 0 Pi,j,k+αd ≡ Pi+β0,j+β1,k and ∀(i, j, k) ∈ Z3, Pi,j,k+αd = TUPi+β0,j+β1,k

Proof. The proof is detailed in [7].

Theorem 11. The period αd is a minimal depth period, i.e. αd = α2.

Proof. The proof is detailed in [7].

Based on these periods, we can construct the super-tile and all the initial period
tiles. To design a transformation algorithm, for each point X ∈ P, we need to
determine the tile index Y to which X belongs to. Since X ∈ PY ⇔

[
MX+V

ω

]
=

Y , Algorithm 3 details the initial period tile construction with scanning points
in P. The computational cost of Alg. 3 exactly corresponds to the number of
tiles in the initial period.

Proposition 2. The number of tiles of the initial period is ω′dω
′′
dω
′′′
d .

In the Proposition statement, we do not give the closed formula. However,
ω′dω

′′
dω
′′′
d is equal to ω3 divided by a product of three gcd().



Algorithm 3: Super-tile and initial period tiles construction in 3-D.

A′2 ← −
[
l0
f

]
;

for z ← A′2 to A′2 +
ωα2
f - 1 do

A′1 ← −
[
k0+ez
d

]
;

for y ← A′1 to A′1 +
ωα1
d - 1 do

A′0 ← −
[
j0+by+cz

a

]
;

for x← A′0 to A′0 +
ωα0
a - 1 do

Y ←


T


x
y
z

+V

ω

 ;

H

xy
z

 ∈ PY ;

Proof. The proof is detailed in [7].

Using Theorems 4 and 5, we have

θ0 =
lcm(α0, α1, α2)

α0
, θ1 =

lcm(α0, α1, α2)

α1
, θ1 =

lcm(α0, α1, α2)

α2
,

and

P =

H
xy
z

 /A′2 ≤ z < B′2, A
′
1(z) ≤ y < B′1(z) and A′0(y, z) ≤ x < B′0(y, z)

 ,

with A′2 = −
[
l0
f

]
, A′1(z) = −

[
k0+ez
d

]
, A′0(y, z) = −

[
j0+by+cz

a

]
, B′2 = A′2 + ωα2

f ,

B′1(z) = A′1(z) + ωα1

d , and B′0(y, z) = A′0(y, z) + ωα0

a (see [7] for details).

Figure 4 shows the 16 distinct tiles of the QAT (11,

6 −2 3
2 −2 −3
4 4 −4

 ,

0
0
0

) in

Z3 and its correponding super-tile.

3.3 QAT Algorithm in 3-D

To obtain the overall QAT algorithm, we need to find both the initial period tile
index and the translation vector associated to a given tile Pi,j,k. Hence, thanks
to Theorem 3, we have

∀(i, j, k) ∈ Z3, Pi,j,k = TWPi0,j0,k0 with W = w0U0 + w1U1 + w2U2

and 0 ≤ k0 =

{
k

α2

}
< α2, w2 =

[
k

α2

]
, 0 ≤ j0 =

{
j + w2β

2
1

α1

}
< α1, w1 =

[
j + w2β

2
1

α1

]
,

0 ≤ i0 =

{
i+ w1β

1
0 + w2β

2
0

α0

}
< α0, w0 =

[
i+ w1β

1
0 + w2β

2
0

α0

]
.



Fig. 4. All distinct tiles of a QAT in Z3 and its super-tile.

4 Experiments

The algorithms were implemented in both 2D and 3D, with different refinements
in order to be able to compare the implementations. For details on the 2-D algo-
rithms, refer to [7]. The backward mapping (B. M. for short) implementation let

Algorithm 4: QAT Algorithm in 3-D.
Input: A QAT (ω,M, V ) and an image g : [0, t0]× [0, t1]× [0, t2]→ Z
Output: an image h : [min0,max0]× [min1,max1]× [min2,max2]→ Z
Compute mini and maxi quantities from ti;
if f dilating then

f ← f−1 ;
Compute the Hermite Normal Form of the matrix M ;
Compute the minimal periodicities {α0, α1, α2} and vectors {U0,U1,U2};
Use Algorithm 3 to compute the canonical tiles in the super-tile P;
for i← 0 to t0 − 1 do

for j ← 0 to t1 − 1 do
for k ← 0 to t2 − 1 do

Compute W, i0, j0, k0 ;
h(TWPi0,j0,k0 )← g(i, j, k) ;

else
Compute the Hermite Normal Form of the matrix M ;
Compute the minimal periodicities {α0, α1, α2} and vectors {U0,U1,U2};
Use Algorithm 3 to compute the canonical tiles in the super-tile P;
for i← min0 to max0 − 1 do

for j ← min1 to max1 − 1 do
for k ← min2 to max2 − 1 do

Compute W, i0, j0, k0 ;
h(i, j, k)← g(TWPi0,j0,k0 ) ;



2-D - instructions (time in sec.)

B.M. simple Periodicity noMultiply

contracting 1 607 774 (0.036) 64 536 315 (0.06) 29 578 702 (0.036) 27 679 044 (0.036)

isometry 63 058 160 (0.112) 57 619 374 (0.064) 39 682 795 (0.056) 35 875 892 (0.044)

dilating 391 622 017 (0.404) 185 956 768 (0.12) 87 490 567 (0.084) 83 472 387 (0.078)

3-D - instructions (time in sec.)

B.M. simple Periodicity

contracting 15 864 982 (0.02) 47 303 861 (0.052) 12 865 125 (0.012)

isometry 750 102 224 (0.416) 51 121 827 (0.068) 15 234 007 (0.016)

dilating 170 072 035 547 (79.637) 2 479 676 409 (1.384) 7 760 893 011 (0.632)

2-D (PSNR in dB) 3-D (PSNR in dB)

B.M. Periodicity B.M. Periodicity

contracting 24.764 23.4823 17.8026 17.0304

isometry 27.7619 25.8052 19.4115 15.9481

dilating 31.2331 30.8375 20.4435 16.7862

Table 1. Comparative evaluation in 2-D and 3-D. The last table presents the
PSNR evaluation of the composition f · f−1.

us compare the tile periodicity method with the widely used backward mapping

method [9]. The simple implementation does not use tiles periodicity and uses
algorithm 2 for each tile. The periodicity implementation uses the periodic-
ity and the algorithm 4. The noMultiply implementation additionally uses a
method presented in [4] which uses a handling of remains instead of computing
a matrix product in 3. The experiments are performed on an Intel c© Centrino c©
Duo T2080 (2 x 1.73 GHz) in monothread and we give on one hand the time of
computation and on the other hand the number of elementary instructions. The
QATs used are the following : In 2-D:

(
ω,

(
3 −4
4 3

)
,

(
0
0

))
where ω =


10 for the contracting application

5 for the isometry

2 for the dilating application

In 3-D:ω,
 9 −20 −12

12 15 −16
20 0 15

 ,

0
0
0

where ω =


100 for the contracting application

25 for the isometry

4 for the dilating application

The pictures are of size : 200 x 171 in 2-D and 10 x 10 x 10 in 3-D (simple cube).
Figure 5 illustrates the results in dimension 2. As expected, when compar-

ing B.M. and Periodicity, results are similar for both contracting and isom-
etry QATs. Differences appear when dilating QAT is considered. Indeed, since
a unique color is associated to a tile in the Periodicity algorithm, the trans-
formed image contains sharp edges (Fig 5-(l)) On the other hand, the interpo-
lation process in the B.M. algorithm makes the image blurred. To compare the



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l) (m)

Fig. 5. Results in dimension 2: (a − d) Contracting QAT (B.M. (a − b) and
Periodicity (c−d)); (e−h) Isometry (B.M. and Periodicity); (i− l) Dilating
(B.M. and Periodicity). (m) illustrates the tile structure of the dilating QAT
on the same square as in (l).

time efficiency (Table 1), we have considered two quantities: the total number of
elementary operations of the main loop5 and the overall computational time in
seconds. Table 1 and Figure 6 present the results in dimension 3. For the sake of
clarity, we have only considered an input binary image but the transformation
algorithms can be applied to 3-D color images. We have also performed a peak
signal-to-noise ratio (PSNR for short, given in decibel dB) computation between
the input image in 2-D and 3-D, and the result of the composition f.f−1. This
test has been designed to evaluate the propagation of the error through the
transformations with a signal processing tool. As presented in Table 1, the dis-
tortion induced by the proposed method is always smaller than the one induced
by the backward mapping technique. Note that to have relevant measurements,
we have used a density 3-D volume for the 3-D test (see Fig. 6-(h)).

5 obtained with the valgrind profiling tool.



(a) (b) (c) (d)

(e) (f) (g)

(h)

Fig. 6. Results in dimension 3: (a − b) Contracting (B.M. and Periodicity),
(c−d) Isometry and (e−f) Dilating (B.M. and Periodicity). (g) illustrates the
tile structure of the dilating QAT. (h) is the 32 × 32 × 32 density volume used
in the f.f−1 composition test (from the TC18 data-set http://www.tc18.org).

5 Conclusion and Future Works

In this paper, we have first re-demonstrated an existing result in dimension 2
with our formalism and provide a generalization in dimension 3 of fast image
transformations with QAT. Compared to a classical image transformation tech-
nique, we have also illustrated the strength of such arithmetical methods to
speed up transformations in higher dimensions. As detailed above and based
on the generic n − D transformation algorithm proposed in [6,7,8], we had to

http://www.tc18.org


perform specific computation to obtain the minimal periods in dimension 2 and
3. A very challenging future work is to define a framework to compute these
minimal periods when a specific dimension is considered. In order to achieve
this goal and instead of having explicit formulas, we plan to investigate an algo-
rithmic solution based on the n−D canonical tile counting algorithm proposed
in [6]. Furthermore, in dimension 2 and 3, comparisons to other transformation
algorithms, such as Fourier based technique, are also of interest.
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