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Quasi-Affine Transformation in Higher Dimension

In many applications and in many fields, algorithms can considerably be speed up if the underlying arithmetical computations are considered carefully. In this article, we present a theoretical analysis of discrete affine transformations in higher dimension. More precisely, we investigate the arithmetical paving structure induced by the transformation to design fast algorithms.

Introduction

In many computer vision and image processing applications, we are facing new constraints due to the image sizes both in dimension with 3-D and 3-D+t medical acquisition devices, and in resolution with VHR (Very High Resolution) satellite images. This article deals with high performance image transformation using quasi-affine transforms (QATs for short), which can be viewed as a discrete version of general affine transformations. QAT can approximate rotations and scalings, and in some specific cases, QAT may also be one-to-one and onto mappings from Z n to Z n , leading to exact computations. A similar approach has been proposed in [START_REF] Shizawa | Discrete invertible affine transformations[END_REF] with the notion of Generalized Affine Transform. The author demonstrated that any isometric transform (equivolume affine transform) in dimension n can be decomposed into (n 2 -1) fundamental skew transformations which parameters can be optimized to obtain a reversible transformation. Note that the bound has been improved to (3n -3) in [START_REF] Condat | Reversible, fast, and highquality grid conversions[END_REF]. This approach is a generalization of the decomposition of rotations in dimension 2 into three shears (see for example [START_REF] Andres | The quasi-shear rotation[END_REF]). In this paper, we focus on QATs since they provide a wider class of transformation (contracting and dilating transformations are allowed). Furthermore, we investigate direct transformation algorithms without the need of intermediate computations.

In dimension 2, the QAT appeared in several articles [START_REF] Nehlig | Affine Texture Mapping and Antialiasing Using Integer Arithmetic[END_REF][START_REF] Jacob | Transformation of digital images by discrete affine applications[END_REF][START_REF] Nehlig | Applications quasi affines: pavages par images réciproques[END_REF][START_REF] Jacob | Applications quasi-affines[END_REF][START_REF] Col | Applications quasi-affines et pavages du plan discret[END_REF]. To summarize the main results, the authors have proved several arithmetical results on QAT in 2-D leading to efficient transformation algorithms. More precisely, thanks to periodic properties of pavings induced by the reciprocal map, the image transformation can be obtained using a set of precomputed canonical pavings. In this paper, we focus on a theoretical analysis of n-dimensional QAT.

The idea is to investigate fundamental results in order to be able to design efficient transformation algorithms in dimension 2 or 3 as detailed in [START_REF] Blot | Quasi-affine transform in higher dimension[END_REF]. More precisely, we demonstrate the arithmetical and periodic structures embedded in n-dimensional QAT. Due to the space limitation, we only details the proofs of the main theorems (other proofs are available in the technical report [START_REF] Blot | Quasi-affine transform in higher dimension[END_REF]).

During the reviewing process of the paper, the article [START_REF] Col | Quasi-linear transformations and discrete tilings[END_REF] was brought to our attention. Even if the framework differs, some results presented here can also be found in [START_REF] Col | Quasi-linear transformations and discrete tilings[END_REF]. However, the closed formulas for the paving periodicity presented in Section 3.2 make our contribution complementary.

In Section 2, we first detail preliminary notations and properties. Then, Section 3 contains the main theoretical results leading to a generic n-D transformation algorithm sketched in Section 4.

Preliminaries

Notations

Before we introduce arithmetical properties of QAT in higher dimension, we first detail the notations considered in this paper. Let n denote the dimension of the considered space, V i denote the i th coordinate of vector V , and M i,j denote the (i, j) th coefficient of matrix M . We use the notation gcd(a, b, . . .) for the greatest common divisor of an arbitrary number of arguments, and lcm(a, b, . . .) for their least common multiple.

Let a b denote the quotient of the euclidean division of a by b, that is the integer q ∈ Z such that a = bq + r satisfying 0 ≤ r < |b| regardless of the sign of b 1 . We consider the following generalization to n-dimensional vectors:

V b =     V0 b . . . Vn-1 b     and V b =     V0 b . . . Vn-1 b     .
(1)

Quasi-Affine Transformation Definitions

Defined in dimension 2 in [START_REF] Nehlig | Affine Texture Mapping and Antialiasing Using Integer Arithmetic[END_REF][START_REF] Jacob | Transformation of digital images by discrete affine applications[END_REF][START_REF] Nehlig | Applications quasi affines: pavages par images réciproques[END_REF][START_REF] Jacob | Applications quasi-affines[END_REF][START_REF] Col | Applications quasi-affines et pavages du plan discret[END_REF], we consider a straightforward generalization to Z n spaces.

Definition 1 (QAT). A quasi-affine transformation is a triple (ω, M, V ) ∈ Z × M n (Z) × Z n (we assume that det(M ) = 0). The associated application is: And the associated affine application is:

Z n -→ Z n X -→ M X + V ω .
R n -→ R n X -→ M X + V ω .
In other words, a QAT is the composition of the associated affine application and the integer part floor function. Definition 2. A QAT is said to be contracting if ω n > |det(M )|, otherwise it is said to be dilating.

In other words, a QAT is contracting if and only if the associated affine application is contracting. Note that if ω n = |det(M )|, the QAT is dilating, even if the associated affine application is an isometry. Definition 3. The inverse of a QAT (ω, M, V ) is the QAT:

(det(M ), ω com(M ) t , -com(M ) t V ) , (2) 
where t denotes the transposed matrix and com(M ) the co-factor matrix of M2 .

The associated affine application of the inverse of a QAT is therefore the inverse of the affine application associated to the QAT. However, due to the nested floor function, the composition f • f -1 is not the identity function in the general case.

QAT Properties in Higher Dimensions

Pavings of a QAT

Without loss of generality, we suppose that the QAT is contracting. A key feature of a QAT in dimension 2 is the paving induced by the reciprocal map of a discrete point. In the following, we adapt the definitions in higher dimensions and prove that a QAT in Z n also carries a periodic paving. Definition 4 (Paving). Let f be a QAT. For Y ∈ Z n , we denote:

P Y = {X ∈ Z n | f (X) = Y } = f -1 (Y ) , (3) 
P Y is called order 1 paving of index Y of f .
P Y can be interpreted as a subset of Z n (maybe empty) that corresponds to the reciprocal map of Y by f . We easily show that the set of pavings of a QAT forms a paving of the considered space (see Fig. 1). In dimension 2, this definition exactly coincides with previous ones [START_REF] Nehlig | Affine Texture Mapping and Antialiasing Using Integer Arithmetic[END_REF][START_REF] Nehlig | Applications quasi affines: pavages par images réciproques[END_REF][START_REF] Jacob | Applications quasi-affines[END_REF][START_REF] Col | Applications quasi-affines et pavages du plan discret[END_REF][START_REF] Jacob | Transformation of digital images by discrete affine applications[END_REF]. 

∀X ∈ P Y , ∃X ′ ∈ P Z , M X + V ω = M X ′ + V ω . (4) 
Again, this definition is equivalent (as shown below) to those given in the literature.

Theorem 1. The equivalence relationship is symmetric, i.e.:

P Y ≡ P Z ⇔ P Z ≡ P Y . (5) 
Proof. The proof is given [START_REF] Blot | Quasi-affine transform in higher dimension[END_REF].

Figure 1 illustrates arithmetically equivalent pavings: the pavings of index (0, 1) and (5, 1) are arithmetically equivalent (see Table 1). Definition 6. P Y and P Z are said geometrically equivalent if:

∃v ∈ Z n , P Y = T v P Z , (6) 
where T v denotes the translation of vector v.

In Figure 1, the pavings of indexes (0, 1) and (1, 0) are geometrically equivalent. In image processing purposes, when we want to transform a n-dimensional image by a QAT, geometrically equivalent pavings will allow us to design fast transformation algorithms. 

M X + V ω = M X ′ + V ω .
Then v = X -X ′ is the translation vector:

P Y = T v P Z .
In dimension 2, this theorem is also proved in [START_REF] Jacob | Applications quasi-affines[END_REF].

Proof. The proof is given in [START_REF] Blot | Quasi-affine transform in higher dimension[END_REF].

In a computational point of view, if a paving P Y has been already computed, and if we know that P Y ≡ P Z , then P Z can be obtained by translation of P Y . In Figure 1, the pavings of index (0, 1) and (5, 1) are arithmetically equivalent (see Table 1), therefore they are geometrically equivalent (as we can check on the figure). Note that the inverse implication is false: in Figure 1, the pavings of index (0, 1) and (1, 0) are geometrically equivalent but they are not arithmetically equivalent (see Table 1).

Paving Periodicity

Definition 7. ∀0 ≤ i < n, We define the set A i as follows:

A i = {α ∈ N * | ∃(β j ) 0≤j<i ∈ Z i ,
∀(y 0 , . . . , y n-1 ) ∈ Z n , P y0,...,yi+α,...,yn-1 ≡ P y0+β0,...,yi-1+βi-1,yi,...,yn-1 } Theorem 3 (Perdiodicity). The set of QAT pavings is n-periodic, in other words

∀0 ≤ i < n, A i = ∅
Proof. The proof is given in Sect. A.1.

If we consider α = |det(M )| as in Sect. A.1, we have demonstrated the periodic structure of QAT pavings since P Y ≡ P Y +αei for each i. We investigate now the quantities α i which are minimal for each dimension i, Definition 8. ∀0 ≤ i < n, let us consider α i = min(A i ). We define {β i j } 0≤j<i ∈ Z i and U i ∈ Z n such that ∀(y 0 , . . . , y n-1 ) ∈ Z n , P y0,...,yi+αi,...,yn-1 = T Ui P y0+β i 0 ,...,yi-1+β i i-1 ,yi,...,yn-1 . Thanks to Theorem 2 and using notations of Def. 8, let X ∈ P y0,...,yi+αi,...,yn-1

and X ′ ∈ P y0+β i 0 ,...,yi-1+β i i-1 ,yi,...,yn-1 , such that M X+V ω = M X ′ +V ω . Then, we have U i = X -X ′ .
The quantities α i , β i j and U i can be computed in dimension 2 and 3 (see [START_REF] Blot | Quasi-affine transform in higher dimension[END_REF]) by using greatest common divisors and Euclide's algorithm. The computation of α 2 in 3D already involves a consequent number of intermediate variables, that is why these computations seem to be hard to generalize in arbitrary dimension. Therefore, we will suppose here that quantities α i , β i j and U i are given. To paraphrase above results, α i and its associated U i and {β i j } allows us to reduce the i th component of Y while preserving the geometrically equivalence relationship. If we repeat this reduction process to each component from n -1 down-to 0, we construct a point Y 0 such that P Y and P Y 0 are geometrically equivalent. The following theorem formalizes this principle and defines the initial period paving P Y 0 . Theorem 4. ∀(y 0 , . . . , y n-1 ) ∈ Z n , we have P y0,...,yn-1 = T W P y 0 0 ,...,y 0 n-1 with

W = n-1 i=0 w i U i and ∀n > i ≥ 0,        w i = yi+ n-1 j=i+1 wj β j i αi y 0 i = yi+ n-1 j=i+1 wj β j i αi .
Proof. The proof is given in Sect. A.2.

Therefore, if we already computed the pavings P y 0 0 ,...,y 0 n-1 for 0 ≤ y 0 i < α i , we can obtain any paving by translation of one of these pavings.

Super-paving of a QAT

We now describe how to compute these initial period pavings based on the notion of super-paving (see Fig. 2). Definition 9. A super-paving of a QAT is the set P such that P = 0≤Y 0 <(α0,...,αn-1)

P Y 0
In other words, the super-paving is the union of all pavings of the initial period. In dimension 2, this definition coincides with definitions given in [START_REF] Jacob | Applications quasi-affines[END_REF][START_REF] Nehlig | Applications quasi affines: pavages par images réciproques[END_REF][START_REF] Col | Applications quasi-affines et pavages du plan discret[END_REF].

Theorem 5. P is the paving P (0,...,0) of the QAT defined by:

  ω lcm 0≤i<n (α i ),    θ 0 • • • 0 . . . . . . . . . 0 • • • θ n-1    M,    θ 0 • • • 0 . . . . . . . . . 0 • • • θ n-1    V    , ( 7 
)
with ∀0 ≤ i < n,

θ i = lcm 0≤j<n (α j ) α i .
Proof. The proof is given in [START_REF] Blot | Quasi-affine transform in higher dimension[END_REF].

Fig. 2. Super-paving decomposition of the QAT defined in Fig. 1. Arrows illustrate a basis of the periodic structure, numbers on white background are the y i , and numbers on black background are the w i .

Hence, we can associate a canonical paving to each point of the super-paving. More precisely, the super-paving allows us to compute the equivalence classes for the arithmetical equivalence relationship between two pavings.

Paving Construction

In this section, we focus on an arithmetic paving construction algorithm. Hence, using the results of the previous section, such a construction algorithm will be used to compute canonical pavings in the super-paving.

Definition 10. The matrix T is the Hermite Normal Form of the QAT matrix M if:

-T is upper triangular, with coefficients {T ij } such that T ii > 0; -∃H ∈ GL n (Z), M H = T .
If M is nonsingular integer matrix, the Hermite Normal Form exists. Note also that if

H ∈ M n (Z), then H ∈ GL n (Z) ⇔ |det(H)| = 1.
For example, given 12 -11 18 36 , we have: 12 -11 18 36 2 1 -1 0 = 35 12 0 18 .

Using the Hermite Normal Form, we can design a fast paving computation algorithm formalized in the following theorem: Theorem 6. ∀Y ∈ Z n , let M H = T be the Hermite Normal Form of the QAT matrix M , then

P Y = {HX | ∀n > i ≥ 0, A i (X i+1 , . . . , X n-1 ) ≤ X i < B i (X i+1 , . . . , X n-1 )} (8) With A i (X i+1 , . . . , X n-1 ) = - -ωY i + n-1 j=i+1 T i,j X j + V i T i,i , B i (X i+1 , . . . , X n-1 ) = - -ω(Y i + 1) + n-1 j=i+1 T i,j X j + V i T i,i .
In [START_REF] Jacob | Applications quasi-affines[END_REF][START_REF] Col | Applications quasi-affines et pavages du plan discret[END_REF], a similar result can be obtained in dimension 2. However, the Hermite Normal Form formalization allows us to prove the result in higher dimension. To prove Theorem 6, let us first consider the following technical lemma:

Lemma 1. Let a, b, q, x ∈ Z with q > 0, then a ≤ qx < b ⇔ - -a q ≤ x < - -b q .
Proof. The proof is detailed in [START_REF] Blot | Quasi-affine transform in higher dimension[END_REF].

We can now prove the Theorem 6 (cf Sect. A.3). The implementation of the construction algorithm is straightforward: we just have to consider n nested loop such that the loop with level i goes from A i to B i quantities. See [START_REF] Blot | Quasi-affine transform in higher dimension[END_REF] for details in dimension 2 and 3. In Algorithm 1, we give the generic algorithm applying a contracting QAT f to an image A (see Fig. 3). The principle is that we give to each pixel Y of image B the average color of the paving P Y in image A. If f is a dilating QAT, we obtain the very similar Algorithm 2 which principle is that firstly we replace f with f -1 , and then we give the color of each pixel Y of image A to each pixel of P Y in image B. In both algorithms, some elements cannot be computed in arbitrary dimension n. Indeed, even if there exist algorithms to compute the Hermite Normal Form of an arbitrary square integer matrix [START_REF] Storjohann | Asymptotically fast computation of hermite normal forms of integer matrices[END_REF], there is no generic algorithm to obtain the minimal periodicities {α i }.

In [START_REF] Blot | Quasi-affine transform in higher dimension[END_REF], we detail the computation of the minimal periodicities in dimension 2 and 3. We also demonstrate with a complete experimental analysis that algo- 

Conclusion and Future Works

In this paper, we have demonstrated that in higher dimension, Quasi-Affine Transformations contain arithmetical properties leading to the fact that the induced pavings are n-periodic. Furthermore, thanks to the Hermite Normal Form of the QAT matrix, we have presented efficient algorithms to construct a given paving and to compute a set of canonical pavings. From all these theoretical results, fast transformation algorithms have been designed in [START_REF] Blot | Quasi-affine transform in higher dimension[END_REF]. However, several future works exist. First, as detailed in Sections 3.1 and 3.3, the superpaving of a QAT contains a set of arithmetically distinct pavings. However, two arithmetical distinct pavings may be geometrically equivalent. Hence, a subset of the super-paving may be enough to design a fast algorithm. In dimension 2, in [START_REF] Nehlig | Affine Texture Mapping and Antialiasing Using Integer Arithmetic[END_REF][START_REF] Nehlig | Applications quasi affines: pavages par images réciproques[END_REF][START_REF] Jacob | Applications quasi-affines[END_REF][START_REF] Col | Applications quasi-affines et pavages du plan discret[END_REF], the authors have investigated another structure, so-called generative strip, which removes some arithmetical distinct pavings whose geometry are identical. Even if the generalization in higher dimension of this object is not trivial, it may be interesting to investigate theoretical techniques to reduce the canonical paving set. Finally, a generic algorithm to compute the minimal periodicities is challenging.

Fig. 1 .

 1 Fig. 1. Pavings of the QAT 84, 12 -11 18 36 , 150 -500 with their indexes (in 2D, these are the couples: Y = (x, y)).

Algorithm 1 :

 1 Generic QAT algorithm for a contracting QAT Input: a contracting QAT f := (ω, M, V ), an image A : Z n → Z Output: a transformed image B : Z n → Z Compute the Hermite Normal Form of the matrix M ; Determine the minimal periodicities {αi} and vectors {U i}; Use Theorems 5 and 6 to compute the canonical pavings in the super-paving P; foreach Y ∈ B do Find Y 0 and W such that PY = TW P Y 0 by using Theorem 4; sum ← 0; foreach Z ∈ P Y 0 do c ← A(TW Z); // we read the color in the initial image sum ← sum + c; B(Y ) ← sum/|P Y 0 |; // we set the color 4 A Generic QAT Algorithm

Algorithm 2 :

 2 Generic QAT algorithm for a dilating QAT Input: a dilating QAT f := (ω, M, V ), an image A : Z n → Z Output: a transformed image B : Z n → Z Replace f with f -1 ; Compute the Hermite Normal Form of the matrix M ; Determine the minimal periodicities {αi} and vectors {U i}; Use Theorems 5 and 6 to compute the canonical pavings in the super-paving P; foreach Y ∈ A do Find Y 0 and W such that PY = TW P Y 0 by using Theorem 4; c ← A(Y ); // we read the color in the initial image foreach Z ∈ P Y 0 do B(TW Z) ← c; // we set the color

Fig. 3 .

 3 Fig. 3. Illustration in dimension 2 of the QAT algorithm when f is contracting (a) and dilating (b). In both cases, we use the canonical pavings contained in the super-paving to speed-up the transformation.

Table 1 .

 1 Pavings

				P0,1		P5,1	P1,0
				X	M X+V ω	X	M X+V ω	X	M X+V ω
				3	21	27	21	6	17
				15	10	3	10	11	4
				5	56	29	56	8	52
				14	10	2	10	10	4
				4	33	28	33	7	29
				15	28	3	28	11	22
				6	68	30	68	9	64
				14	28	2	28	10	22
				3	10	27	10	6	6
				16	46	4	46	12	40
				5	45	29	45	8	41
				15	46	3	46	11	40
				7	80	31	80	10	76
				14	46	2	46	10	40
				4	22	28	22	7	18
				16	64	4	64	12	58
				6	57	30	57	9	53
				15	64	3	64	11	58
				5	34	29	34	8	30
				16	82	4	82	12	76
				7	69	31	69	10	65
				15	82	3	82	11	76
					of index (0, 1), (5, 1) and (1, 0) of the QAT
	84,	12 -11 18 36	,	150 -500		
	Theorem 2. If P			

Y ≡ P Z , then P Y and P Z are geometrically equivalent. Since P Y ≡ P Z , there exists X ∈ P Y and X ′ ∈ P Z such that:

Remind that M com(M ) t = com(M ) t M = det(M )In.

A Appendix: Proofs

A.1 Theorem 3 Proof. Given 0 ≤ i < n, let us suppose that ∀0 ≤ j < i, β j = 0 and α = |det(M )|. Let Y ∈ Z n , X ∈ P Y , and

with e i being the i-th vector of the canonical basis of R n . We prove that

and thus X ′ ∈ P Y +αei . Finally, P Y +αei ≡ P Y which proves that α ∈ A i .

A.2 Theorem 4

Proof. Let us denote T (j) the proposition

.

We consider the following induction: given n > p ≥ 0, we suppose T (p + 1) and prove T (p). As a consequence of Def. 8, 

With

Since T (p + 1) is true, and since y p + n-1 j=p+1 w j β j p = y 0 p + α p w p , we have P y0,...,yn-1 = T n-1 i=p+1 wiUi P y0+ n-1 i=p+1 wiβ i 0 ,...,yp-1+ n-1 i=p+1 wiβ i p-1 ,y 0 p +αpwp,y 0 p+1 ,...,y 0 n-1 [START_REF] Col | Quasi-linear transformations and discrete tilings[END_REF] We can identify the left side of Eq. ( 9) to the right part of the right side of [START_REF] Col | Quasi-linear transformations and discrete tilings[END_REF], summing up the translation vectors leads to T (p). Since T (n) : P y0,...,yn-1 = T 0 P y0,...,yn-1 is trivial, we prove T (0) and thus the theorem.

T i,j X j -V i .

Thanks to Lemma 1, Z ∈ P Y is equivalent to ∀0 ≤ i < n, A i (X i+1 , . . . , X n-1 ) ≤ X i < B i (X i+1 , . . . , X n-1 ) .