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Complete Set of Invariants of a 4th Order Tensor:

The 12 Tasks of HARDI from Ternary Quartics

Théo Papadopoulo, Aurobrata Ghosh, and Rachid Deriche

Athena Project Team, Inria Sophia Antipolis - Méditerranée, France�

Abstract. Invariants play a crucial role in Diffusion MRI. In DTI (2nd

order tensors), invariant scalars (FA, MD) have been successfully used
in clinical applications. But DTI has limitations and HARDI models
(e.g. 4th order tensors) have been proposed instead. These, however, lack
invariant features and computing them systematically is challenging.

We present a simple and systematic method to compute a functionally
complete set of invariants of a non-negative 3D 4th order tensor with re-
spect to SO3. Intuitively, this transforms the tensor’s non-unique ternary
quartic (TQ) decomposition (from Hilbert’s theorem) to a unique canon-
ical representation independent of orientation – the invariants.

The method consists of two steps. In the first, we reduce the 18
degrees-of-freedom (DOF) of a TQ representation by 3-DOFs via an
orthogonal transformation. This transformation is designed to enhance
a rotation-invariant property of choice of the 3D 4th order tensor. In the
second, we further reduce 3-DOFs via a 3D rotation transformation of
coordinates to arrive at a canonical set of invariants to SO3 of the tensor.

The resulting invariants are, by construction, (i) functionally complete,
(ii) functionally irreducible (if desired), (iii) computationally efficient
and (iv) reversible (mappable to the TQ coefficients or shape); which is
the novelty of our contribution in comparison to prior work.

Results from synthetic and real data experiments validate the method
and indicate its importance.

Keywords: Invariants, SO3, 4
th order tensors, ternary quartics, orthog-

onal & rotation transforms, canonical representation.

1 Introduction

High angular resolution diffusion imaging (HARDI) has vastly improved our
analysis of the brain’s microstructure and the detection of crossing-fibers from
diffusion MRI (dMRI) where classical diffusion tensor imaging (DTI) is limited.
Nonetheless, to assess the integrity of the white-matter affected by development,
aging or neuro-degenerative pathologies, it is crucial to compute rotation invari-
ant scalars or biomarkers. Although numerous invariant scalars are known for
the 2nd order DTI tensor D, e.g. FA, MD, etc. [1] and have been successfully
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used in clinical applications, few invariant scalars are available for HARDI. Al-
though richer in description, higher order HARDI models lack comprehensive
invariant scalar descriptors to decipher that information. Therefore, computing
HARDI invariants is an important problem.

HARDI models are often estimated in the spherical harmonic (SH) or the bi-
jective higher order tensor (HOT) bases. (HOTs are homogeneous polynomials
and their SH transform provides a bijective map to SHs). Thus, studying invari-
ant features of the SH or HOT bases has wide applications. Early proposals of
HARDI biomarkers based on these bases can be found in [2, 3]. Though these
are popular, they only recover a few of the possible invariant scalar biomarkers.

In the case of the 4th order tensor (HOT4), equivalently SHs, more systematic
approaches are presented in [4–6] but only six of the twelve invariants are found.
[4] also presents D-eigenvalues which are the extrema of the HOT4. Further, [6]
introduces the integrity basis and the idea of polynomial completeness.

From this, a more general idea presents itself – functional completeness:
“find a set of invariants such that all other invariants are functions of the invari-
ants of the set.” Naturally, this leads to the idea of functional irreducibility:
“what is the smallest such set?” How to find the minimal set of invariants re-
quired to completely describe the shape of a HOT4? The importance of this ques-
tion can be illustrated on the DTI tensor. A functionally complete & irreducible
invariant set of D is its eigenvalue-set {λ1, λ2, λ3}. However, if only {λ1, λ2} are
found and any number of invariant functions of {λ1, λ2} (even greater than 3),
it is impossible to describe the shape of D without λ3. And there exist infinitely
many such invariant functions!

Further noteworthy results for HOT4 are proposed in [7], where the cardinality
of the irreducible set is shown to be 12. The paper presents polynomial invariants
and tries to establish polynomial completeness. However, this is only partially
successful and the polynomial formulae are intractable and cannot be inverted
to recompute the HOT4 coefficients, hence the approach is irreversible. [8]
is based on rank-4 SHs and proposes a set of 25 invariants (and ad-hoc func-
tions of these). However, no proof of functional completeness, irreducibility or
reversibility is attempted (since only 12 invariants are required).

In this paper, we consider non-negative HOT4s and their Ternary Quartic
(TQ) parameterization from Hilbert’s theorem [9, 10] since the physical con-
straint of positivity arises commonly in dMRI, e.g. the diffusion kurtosis tensor
(DKT) [11], the apparent diffusion coefficient tensor (ADC), or the Cartesian
tensor fiber orientation distribution (CT-FOD).

We propose a simple and systematic method to compute a functionally com-
plete set of invariants to SO3 of a non-negative HOT4 by mapping its non-unique
TQ decomposition to a unique canonical representation independent of orien-
tation. From this we extract the invariants. This involves a two step reduction
process via an orthogonal and a rotation transform. The resulting invariants are,
by construction, (i) functionally complete, (ii) functionally irreducible (if
desired), (iii) efficient to compute and (iv) reversible. Reversibility ensures
that the shape of the TQ can be inferred from the invariants and all prior/other
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invariants can be expressed in terms of these new ones. We validate the method
on synthetic and real data tests to highlight its importance.

2 Materials and Methods

Background. Positivity is a common constraint in dMRI. The right way to
parameterize a non-negative 3D 4th order tensor A, is a sum-of-squares as shown
by Hilbert’s theorem on non-negative TQ’s [9, 10]:

F4(x) =
∑

i+j+k=4

Ai,j,kx
iyjzk = (vTw1)

2 + (vTw2)
2 + (vTw3)

2 = vTWWTv,

where xT = [x, y, z], vT = [x2, y2, z2,
√
2xy,

√
2xz,

√
2yz], wi (i = 1..3) are 6×1

vectors of the coefficients of the three quadratic forms and W = [w1|w2|w3] is
a 6×3 matrix. The TQ parameterization has 18=6×3 independent coefficients,
although A has only 15. These 3 degrees-of-freedom (DOFs) imply that W
and WS for any 3×3 orthogonal matrix S (3-DOFs) result in the same F4. To
resolve this ambiguity, [9] proposed a QR/Iwasawa decomposition of A, the top
3×3 block of W, which fixes S such that A becomes triangular – effectively
zeroing out 3 coefficients. Here, we introduce a slightly different notation:

F4(x) =
∑(

xTCix
)2

= ||c||2, i = 1..3, (1)

where Ci are 3×3 symmetric matrix representations of vectors wi and cT =
[xTC1x, x

TC2x,x
TC3x]. In this notation F4(x) = cT c = ĉT ĉ, where ĉ = Sc.

Theory. TQ’s have 18-DOFs, while HOT4s have 15-DOFs. The excess 3-DOFs
can be eliminated by fixing an orthogonal transformation S. Additionally a ro-
tation invariance criterion would further eliminate 3-DOFs via a rotation trans-
formation R, of coordinates, resulting in the known 12-DOFs.

The basic idea is, therefore, a two step reduction process to twice remove
3-DOFs – first an orthogonal transform S and second a rotation transform
R – resulting in a canonical representation of a TQ invariant to rotations:
C18-DOF � S3-DOF︸ ︷︷ ︸

Step-1

=⇒ C′
15-DOF � R3-DOF︸ ︷︷ ︸

Step-2

=⇒ C′′
12-DOF �−→ 15 invariants

(complete set) ��� 12 invariants (complete & irreducible set if desired).

Orthogonal Transform (S). Contrary to [9], we do not choose S to zero out 3
coefficients, since that is not invariant to SO3 and the zeros would be lost after
the second rotation transform step. Instead, we design S to enhance a property
of choice that is rotation-invariant. First we provide an overview of the approach
before describing the rotation-invariant properties.

The application of S on c results in the transformationsC′
i =

∑
j SijCj , i, j =

1..3. Hence, each C′
i(σi) is a function of the ith row vector σi = [Si1, Si2, Si3]

of S. If S is required to enhance a chosen property P of {C′
i}3i=1 and if P

is a quadratic function, then P can be written as: P({C′
i(σi)}) = 1

2σKσT ,
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where K is the Hessian of the quadratic function P . To enhance P it suffices
to find its extrema or to diagonalize K = UΛUT . K being symmetric, U is an
orthogonal matrix whose columns either maximize or minimize P depending on
the order of the corresponding eigenvalues in Λ. Hence, if S is chosen to be UT ,
S would enhance P when computing {C′

i} from {Ci}. In summary, to enhance
a quadratic property via an orthogonal transform S, we simply need to choose
S as the eigenvector matrix UT from the eigen-decomposition of K.

Let us now examine rotation invariant properties of {C′
i}. Since, {C′

i} are
all 3×3 symmetric matrices, their rotation-invariant properties are simply the
coefficients of their characteristic polynomials: M1(C

′
i(σi)) = trace(C′

i(σi)),
M2(C

′
i(σi)) =

∑
k1,k2

μk1μk2 , where μk are the eigenvalues of C′
i(σi), and

M3(C
′
i(σi)) = det(C′

i(σi)). M1 is a linear function of σi, M2 is a quadratic
function, whileM3 a cubic function. Hence M

2
1 &M2 are two quadratic function-

properties (i.e. P) that are also rotation-invariant.
Let us name H1 and H2 the two Hessian matrices of M2

1 and M2 respec-
tively. To compute the corresponding orthogonal transforms S that enhance
these properties we need to calculate H1 and H2. H1 is simply H1 = 2TTT ,
where TT = [trace(C′

1), trace(C
′
2), trace(C

′
3)]. The form of H2 is more in-

volved but is simple to derive on a computer-algebra-system and can be provided
on request.

Interestingly, any combination of M1 and M2 that is a quadratic function is
also a rotation invariant property. Linear combinations of M2

1 and M2 are simple
to compute as linear combinations of H1 and H2. In particular, we consider the
following invariant properties:

– Trace of C′
i:

P1(σ) = trace(C′
i)

2 = M1(C
′
i)

2 = 1
2σH1σ

T = 1
2σK1σ

T .
– Variance of the eigenvalues of C′

i:
P2(σ) = M1(C

′
i)

2 − 3M2(C
′
i) =

1
2σ (H1 − 3H2)σ

T = 1
2σK2σ

T .
– Frobenius norm of C′

i:
P3(σ) = M1(C

′
i)

2 − 2M2(C
′
i) =

1
2σ (H1 − 2H2)σ

T = 1
2σK3σ

T .

Thus, it is possible to enhance any of these properties while designing an orthog-
onal transform S in the first reduction step. However, this is a generic design and
many other properties could be considered. P2 in particular is the same as the
numerator of FA for DTI. However, in this case {C′

i} may have negative eigen-
values since their squares are considered in the TQ representation. Here, we only
present results of K2 though we have experimented with all three properties.

It is important to note that in choosing S to enhance a rotation-invariant
property, contrary to [9], the application of S to the TQ will not result in 3
coefficients becoming null. It will reduce 3-DOFs of the TQ but will still result
in 18 non-null coefficients, where 3 are now dependent.

Rotation Transform (R). The second reduction step involves further eliminat-
ing 3-DOFs via a rotation transformation of the coordinates to map the modified
TQ coefficients {C′

i} to a representation that is independent of orientation. We
choose this rotation transform R from the eigen-decomposition of C′

1 = RΣRT .
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C′
1 is diagonalized and the other twoC′

i’s are transformed asC′′
i = RTC′

iR. The
two transformations, S and R combined, map the original TQ parameterization
to a canonical representation that is invariant to all 3D rotations.

This results in 15 non-null coefficients (C′′
1 = Σ : 3,C′′

2&3 : 2 × 6) with 12-
DOFs, implying that three are dependent. This, however, ensures functional
completeness and, by construction, the invariants are also reversible and still
maintain the TQ structure.

The process for extracting the irreducible set of 12 invariants involves con-
sidering the off-diagonal terms of the matrix K. This yields a linear system in
the coefficients of C′′

i , which can be solved to express 3 coefficients as an expres-
sion of the others. However, the choice of which 3 coefficients to eliminate is not
unique. This ambiguity implies that the space of TQs is covered by several maps
and that there are many ways to extract the irreducible set of 12 invariants from
the 15 non-null (invariant) coefficients. Therefore, although for theoretical pur-
poses it is possible to extract the irreducible set of 12 invariants, in practice it is
more convenient to work directly with the 15 invariant coefficients with slightly
redundant information but guaranteed functional completeness.

Unicity of Sign. The two steps involving S andR proceed via eigen-decomposi-
tions of K and C′

1, implying that the eigenvectors in U and R are unique only
up to a sign. This introduces an ambiguity since a large set of maps can be
used to transform the TQ coefficients to the canonical representation. These
arbitrary sign changes can become difficult to handle in the presence of noise or
when values are close to zero. We devised the following procedure to minimize
this ambiguity. The sign of the columns of U are flipped to ensure that the
largest absolute eigenvalue of the corresponding C′

i is positive. The sign of the
columns of R are flipped to ensure that the largest absolute entry in the column
is positive. However, since R is a rotation matrix, if the above operation results
in det(R) < 0, the sign of R is flipped to guarantee a proper rotation.

So far in this section, we presented the coefficients of the quadratic forms
(TQ coefficients) modified by the orthogonal and rotation transforms as the
invariants. However, any functions of these invariant coefficients are also valid
invariants. In practice, on real data, we found that working with “super-features”
such as M1,M2,M3 of the final canonical coefficients to be more robust to rota-
tion tests. Note that these still satisfy functional completeness but reversibility
becomes harder to establish. Nonetheless, it is important to explore suitable
“super-feature” functions, especially from a physical/physiological perspective.

3 Experiments and Results

We conducted tests on synthetic and real data to verify the invariance of the
canonical invariants to rotation. In the synthetic data experiments, we used the
multi-tensor model to generate voxels with various crossing configurations (1, 2
& 3). These were then arbitrarily rotated in space before estimating the HOT4s
and the invariants. We conducted a similar real data experiment from an in vivo
acquisition where we rotated the set of gradient directions arbitrarily before
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Fig. 1. Real data (qualitative): Rotation invariance test and comparison with princi-
pal invariants (PIs). (a) Coronal slice indicating chosen voxels. (b) 1st row: the sample
voxels, followed by samples with random rotations. (c-e): 3 PIs. (f-h) 3 new/canonical
invariants. PIs (c-e) resemble each other or capture similar information. The new in-
variants (f-h) have a richer spectrum and as expected capture more information.

estimating the HOT4s and the invariants. In both cases, the results were very
similar. Hence, we present only the real data results here.

The real data was acquired with a whole-body 3 Tesla Magnetom TRIO
scanner (Siemens Medical Solution). It was equipped with an 8-channel head
array coil. The twice-refocused spin-echo EPI sequence (TR = 12s, TE = 100
ms, 128×128 image matrix, FOV = 22.0 = 22.0 cm2) consisted of 60 diffusion-
encoding gradient directions with a b-value of 1000s/mm2 [12].

In the experiment, we chose 21 voxels from a coronal slice with some voxels
in the Corpus Callosum (CC) and others in a region where radial projections
of the CC intersect the superior longitudinal fasciculus (SLF) and the cortico-
spinal tract (CST), Fig. 1a. This allowed us to consider voxels with 1, 2 & 3
fiber crossings. For each of these voxels, we randomly rotated the acquisition
gradients 50 times to generate 50 test cases. From these, we estimated the non-
negative HOT4s or TQs, Fig. 1b, and computed the principal invariants [6]
and the new/canonical invariants. Some of these are in Figs. 1c-h. Finally, we
computed the difference between each pair of 50 test cases for all the voxels to
compute the average relative error for both the principal & new invariants. This
quantitative result is presented in Fig. 2.

In Figs. 1c-h we notice that the principal invariants (mid-row) capture al-
most the same information, while the new invariants (bot-row) have a richer
spectrum. The new invariants look more noisy but this is only due to the visual
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Fig. 2. Real data (quantitative): Rotation invariance test and comparison with prin-
cipal invariants (PIs). Average relative errors between the new/canonical invariants
compared to PIs (see Fig. 1). Blue-bars: new/canonical invariants (only a few are
shown). Red-bars: principal invariants. All invariants (new & PIs) are stable under
rotation and commit less than 2% error even in the worst case.

representation. From Fig. 2 it is clear that all the (new & principal) invariants
are stable under rotation and commit less than 2% error on an average even in
the worst case. Thus, our tests reveal that the new invariants are stable and as
expected capture more invariant/shape information than principal invariants.

Fig. 3. A sample of the new/canonical invariants. Six are displayed on a coronal slice.
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4 Conclusion

We have proposed a simple and systematic method for computing a function-
ally complete set of invariants of a non-negative HOT4. The method has two
steps. First, we designed an orthogonal transform to enhance rotation-invariant
properties of the tensor while eliminating 3-DOFs from its TQ representation.
Second, we chose a rotation transform to map the TQ coefficients to a canonical
representation invariant to orientation. From this, we extracted the invariants.

These canonical invariants are, by construction, (i) functionally complete,
(ii) functionally irreducible (if desired) – although in practice we deal with
a slightly redundant super-set, (iii) efficient to compute and (iv) reversible
– allowing us to map the TQ’s shape completely. Reversibility ensures that all
other/prior invariants can be described as functions of these canonical invariants.

We conducted tests on synthetic and real data and validated the invariants.
The results revealed that the new invariants were stable under rotation and
captured a rich spectrum of information. In the future, we plan to explore phys-
iological interpretations and to conduct a more elaborate clinical validation.
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2. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Generalized scalar measures for diffusion
MRI using trace, variance and entropy. Mag. Res. in Med. 53(4), 866–876 (2005)

3. Tuch, D.: Q-ball imaging. Mag. Res. in Med. 52(6), 1358–1372 (2004)
4. Qi, L., Han, D., Wu, E.: Principal invariants and inherent parameters of diffusion

kurtosis tensors. J. of Math.l Anal. and Ap. 349(1), 165–180 (2009)
5. Fuster, A., van de Sande, J., Astola, L., Poupon, C., Velterop, J., Romeny,

B.M.t.H.: Fourth-order Tensor Invariants in High Angular Resolution Diffusion
Imaging. In: Zhang, G., Adluru, N (eds.) CDMRI Workshop, MICCAI. LNCS, vol.
6891. Springer (2011)

6. Ghosh, A., Papadopoulo, T., Deriche, R.: Biomarkers for HARDI: 2nd & 4th order
tensor invariants. ISBI, Barcelona (May 2012)

7. Ghosh, A., Papadopoulo, T., Deriche, R.: Generalized invariants of a 4th order ten-
sor: Building blocks for new biomarkers in dMRI. In: Panagiotaki, E., ODonnell, L.,
Schultz, T., Zhang, G.H. (eds.) CDMRI Workshop, MICCAI, pp. 165–173 (2012)
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