A New Approach on the Photoelectric Effect

Fran de Aquino

To cite this version:

Fran de Aquino. A New Approach on the Photoelectric Effect. 2014. hal-01092490

HAL Id: hal-01092490 https://hal.science/hal-01092490

Preprint submitted on 8 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A New Approach on the Photoelectric Effect

Fran De Aquino

Professor Emeritus of Physics, Maranhao State University, UEMA. Titular Researcher (R) of National Institute for Space Research, INPE
Copyright © 2014 by Fran De Aquino. All Rights Reserved.

Abstract

When photons hit a material surface they exert a pressure on it. It was shown that this pressure has a negative component (opposite to the direction of propagation of the photons) due to the existence of the negative linear momentum transported by the photons. Here we show that, in the photoelectric effect, the electrons are ejected by the action of this negative component of the momentum transported by the light photons. It is still shown that, also the gravitational interaction results from the action of this negative component of the momentum transported by specific photons.

Key words: Photoelectric effect, Photoelectrons, Radiation Pressure, Gravitational Interaction.

1. Introduction

Besides energy the photons transport linear momentum. Thus, when they hit a surface, they exert a pressure on it. Maxwell showed that, if the energy U of the photons is totally absorbed by the surface during a time t, then the total momentum q transferred to the surface is $q=U / v$, where v is the velocity of the photons [1]. Then, a pressure, p (defined as force F per unit area A), is exerted on the surface.

In a previous paper [2], we have shown that this pressure has a negative component (opposite to the direction of propagation of the photons) due to the existence of the negative linear momentum transported by the photons, shown in the new expression for momentum q transported by the photon, i.e.,
$\vec{q}=\frac{U}{\vec{v}}=\frac{h f-\frac{1}{2} h f_{0}}{\vec{v}}=\left(1-\frac{1}{2} \frac{f_{0}}{f}\right) \frac{h f}{c} \vec{n}_{r}$
where f is the frequency of the photon and f_{0} is a limit-frequency, which should be of the order of 10 Hz or less; $n_{r}=c / v$ is the index of refraction of the mean.

Equation above shows that for $f>f_{0} / 2$ the resultant momentum transported by the photon is positive, i.e., if this momentum is absorbed by a surface, pressure is exerted on the surface, in the same direction of propagation of the photon. These photons are well-known. However, Eq. (1) point to a new type of photons when $f=f_{0} / 2$. In this case $q=0$, i.e., this type of photon does not exert pressure when it incides on a surface. What means that it does not interact with the matter. Obviously, this
corresponds to a special type of photon, which we will call of neutral photon. Finally, if $f<f_{0} / 2$ the resultant momentum transported by the photon is negative. If this momentum is absorbed by a surface, pressure is exerted on the surface, in the opposite direction of propagation of the photon. This special type of photon has been denominated of attractive photon.

Here we show that, in the photoelectric effect, the electrons are ejected by the action of the negative component of the momentum transported by the light photons. It is still shown that, also the gravitational interaction results from the action of the negative component of the momentum transported by specific photons.

2. Theory

The photoelectric effect was first observed in 1887 by Heinrich Hertz [3,4] during experiments with a spark-gap generator - the earliest form of radio receiver. He discovered that electrodes illuminated with ultraviolet light create electric sparks more easily.

Attempts to explain the effect by Classical Electrodynamics failed. In 1905 Einstein proposed that the experimental data from the photoelectric effect were the result of the fact of light energy to be carried in discrete quantized packets.

When a photon strikes on an electron the momentum carried by the photon is transferred to the electron. According to Eq. (1), the momentum transferred to the electron is given by
$\vec{q}=\left(1-\frac{1}{2} \frac{f_{0}}{f}\right) \frac{h f}{c}\left(\frac{c}{v}\right)=\frac{h f}{\vec{v}}-\frac{h f_{0}}{2 \vec{v}}=\vec{q}_{r}-\vec{q}_{a}$
where $\vec{q}_{r}=\vec{F}_{r} \Delta t_{r}$ and $\vec{q}_{a}=\vec{F}_{a} \Delta t_{a}$. Thus, the electron requires a time interval Δt_{r} for absorbing a quantum of energy $h f$ and a time interval Δt_{a} for absorbing a quantum of energy $h f_{0}$.

Assuming that the time interval required by the photon for absorbing a quantum of energy $h f$ is proportional to the power of the photon $\left(h f^{2}\right)$, i.e., $\Delta t_{r} \propto h f^{2}$ and $\Delta t_{a} \propto h f_{0}^{2}$. Then, we get

$$
\begin{equation*}
\frac{\Delta t_{r}}{\Delta t_{a}}=\frac{f^{2}}{f_{0}^{2}} \tag{3}
\end{equation*}
$$

Since the expressions of \vec{F}_{r} and \vec{F}_{a} are given, respectively, by $\vec{F}_{r}=\vec{q}_{r} / \Delta t_{r}=h f / \vec{v} \Delta t_{r}$ and $\vec{F}_{a}=\vec{q}_{a} / \Delta t_{a}=h f_{0} / 2 \vec{v} \Delta t_{a}$, then , we obtain

$$
\begin{equation*}
\frac{F_{a}}{F_{r}}=\frac{1}{2}\left(\frac{\Delta t_{r}}{\Delta t_{a}}\right) \frac{f_{0}}{f} \tag{4}
\end{equation*}
$$

Substitution of Eq. (3) into Eq. (4) gives

$$
\begin{equation*}
\frac{F_{a}}{F_{r}}=\frac{1}{2} \frac{f}{f_{0}} \tag{5}
\end{equation*}
$$

This equation shows that the force \vec{F}_{a} is directly proportional to the frequency f of the photon, and thus explains why low frequency light does not produce photoelectrons. If the light incident on the electron has low frequency, then the force \vec{F}_{a} may not be strong enough to eject the electron (whatever the intensity of the light beam).Thus, in order to produce the photoelectric effect the light incident must have high frequency (upper spectrum of light).

In the case of the photoelectric effect we have $f \gg f_{0}$, then $F_{a} \gg F_{r}$. Thus, the resultant acting on the electron is
$\vec{F}_{r}-\vec{F}_{a} \cong-\vec{F}_{a}$. Then, the condition for an electron be ejected from a metallic surface is

$$
\begin{equation*}
\left|\vec{F}_{r}-\vec{F}_{a}\right| r_{e} \cong\left|-\vec{F}_{a} r_{e}\right|=\varphi \tag{6}
\end{equation*}
$$

where r_{e} is the orbital radius of the electron and φ is the work function, which gives the minimum energy required to remove a delocalized electron from the surface of the metal.

Substitution of the expression of \vec{F}_{a} into Eq. (6) yields

$$
\begin{equation*}
\Delta t_{a}=\frac{r_{e} h f_{0}}{2 v \varphi} \tag{7}
\end{equation*}
$$

Substitution of the expression of Δt_{a}, given by Eq. (3), into Eq. (7), gives

$$
\begin{equation*}
\Delta t_{r}=\frac{h f^{2} r_{e}}{2 v f_{0} \varphi} \tag{8}
\end{equation*}
$$

For example, in the case of a light beam $\left(f=4.39 \times 10^{14} \mathrm{~Hz} ; v \cong c\right)$, incident on a lamina of Sodium metal $\left(r_{e}=9.3 \times 10^{-11} \mathrm{~m}\right.$ and $\varphi=2.75 \mathrm{eV}=4.4 \times 10^{-19} \mathrm{~J} \quad{ }^{1} \quad$ [5]), considering $f_{0} \approx 10 \mathrm{~Hz}$ [2], then Eqs. (7) and (8) give

$$
\begin{align*}
\Delta t_{a} & \approx 10^{-33} \mathrm{~s} \tag{9}\\
\Delta t_{r} & \approx 10^{-6} \mathrm{~s} \tag{10}
\end{align*}
$$

Thus, we can conclude that the electron is ejected by the action of the force \vec{F}_{a} much before the total absorption of the quantum $h f$. Therefore, the cause of the ejection of the electron is not the absorption of the quantum $h f$ (as Einstein thought [6]), but the action of the force \vec{F}_{a} (See Fig.1). Similarly, when an electron is pumped from an orbit to another - by the action of a light photon, it is ejected from its initial orbit by the force \vec{F}_{a}.

[^0]Then, in its trajectory, the electron is "captured" in the upper energetic level E_{f}. Therefore, the electron will be pumped from the initial orbit to a final orbit ${ }^{2}$ if $h f-\frac{1}{2} h f_{0}=E_{i}-E_{f}$, where E_{i} is the initial energy in the initial orbit, E_{f} is the total energy in the final orbit.

Fig. 1 - The Photoelectric Effect

Finally, we will derive the new expression for the pressure exerted by a radiation on a surface. From Eq. (2), we have $\vec{q}=\vec{q}_{r}-\vec{q}_{a}$. Thus, we can write that

$$
\frac{\vec{q}}{\Delta t}=\frac{\vec{q}_{r}}{\Delta t}-\frac{\vec{q}_{a}}{\Delta t} \Rightarrow F=\frac{h f}{v \Delta t}-\frac{h f_{0}}{2 v \Delta t}=\left(1-\frac{f_{0}}{2 f}\right) \frac{h f}{v \Delta t}
$$

Therefore,

$$
\begin{equation*}
F_{\text {total }}=\left(1-\frac{f_{0}}{2 f}\right) \frac{N h f}{v \Delta t}=\left(1-\frac{f_{0}}{2 f}\right) \frac{P}{v} \tag{11}
\end{equation*}
$$

[^1]where N is the total number of absorbed photons by the surface; P is the total power. Thus, the expression of the pressure, p, exerted by the radiation on a surface with area A is given by
\[

$$
\begin{equation*}
p=\frac{F_{\text {total }}}{A}=\left(1-\frac{f_{0}}{2 f}\right) \frac{P}{A v}=\left(1-\frac{f_{0}}{2 f}\right) \frac{D}{v} \tag{12}
\end{equation*}
$$

\]

where D is the power density of the radiation. Note that, only for $f \gg f_{0}$ the equation above reduces to $p \cong D / v$ (the wellknown expression for radiation pressure).

The law of inverse square of the distance, which is implicit in the Newton's law, shows that gravitation is propagated spherically. This reveals the principle of diffusion of the gravitational energy, i.e., it is transmitted by waves (or photons). The Quantum Field Theory shows that the gravitational interaction results from the interchange of a type of "virtual" quantum. Then, based on the above exposed, we can conclude that this typical "virtual" quantum is a typical "virtual" photon. Thus, we can say that the gravitational interaction, between two particles with gravitational masses $m_{g 1}$ and $m_{g 2}$, respectively, results from the action of an amount of energy related to $E_{g 1}=m_{g 1} c^{2}$, ejected from the particle 1 under the form of N_{1} "virtual" photons with a typical frequency f_{g}, and an amount of energy related to $E_{g 2}=m_{g 2} c^{2}$, ejected from the particle 2 under the form of N_{2} "virtual" photons with frequency f_{g}.

Assuming that the amounts of energies ejected from the particles 1 and 2 are, respectively, $k_{0} E_{g 1}$ and $k_{0} E_{g 2}$, where k_{0} is a constant, and considering that, according to Eq. (1), the energy of the photons is expressed by $h f-\frac{1}{2} h f_{0}$, then we can write that

$$
\begin{equation*}
k_{0} E_{g 1}=N_{1}\left(h f_{g}-\frac{1}{2} f_{0}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{0} E_{g 2}=N_{2}\left(h f_{g}-\frac{1}{2} f_{0}\right) \tag{14}
\end{equation*}
$$

Since

$$
\left(\frac{A_{1}}{A_{1}}\right) k_{0} E_{g 1}=A_{1} k_{0}\left(\frac{E_{g 1}}{A_{1}}\right)=k_{s 1}\left(\frac{E_{g 1}}{A_{1}}\right)
$$

and

$$
\left(\frac{A_{2}}{A_{2}}\right) k_{0} E_{g 2}=A_{2} k_{0}\left(\frac{E_{g 2}}{A_{2}}\right)=k_{s 2}\left(\frac{E_{g 2}}{A_{2}}\right)
$$

Then, Eqs. (13) and (14) can be rewritten as follows

$$
\begin{equation*}
k_{s 1}\left(\frac{E_{g 1}}{A_{1}}\right)=N_{1}\left(h f_{g}-\frac{1}{2} f_{0}\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{s 2}\left(\frac{E_{g 2}}{A_{2}}\right)=N_{2}\left(h f_{g}-\frac{1}{2} f_{0}\right) \tag{16}
\end{equation*}
$$

where A_{1} and A_{2} are the incidence areas of the mentioned "virtual" photons, respectively on the particles 1 and 2 (See Fig.2); $k_{s 1}=k_{0} A_{1}$ and $k_{s 2}=k_{0} A_{2}$.

If the forms and the gravitational masses of the two particles remain constants, then $E_{g_{1}} / A_{1}$ and $E_{g_{2}} / A_{2}$ are constants, i.e.,

$$
\begin{equation*}
\frac{E_{g 1}}{A_{1}}=k_{1} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{E_{g 2}}{A_{2}}=k_{2} \tag{18}
\end{equation*}
$$

where k_{1} and k_{2} are constants.
From Eq. (17) and (18), we obtain

$$
\begin{equation*}
E_{g 1} E_{g 2}=k_{1} k_{2} A_{1} A_{2} \tag{19}
\end{equation*}
$$

By substitution of $E_{g 2}$ given by Eq. (14) into Eq. (19), gives

$$
\begin{equation*}
E_{g 1}=\frac{k_{0} k_{1} k_{2} A_{1} A_{2}}{N_{2}\left(h f_{g}-\frac{1}{2} h f_{0}\right)}=\frac{K}{\left(h f_{g}-\frac{1}{2} h f_{0}\right)} \tag{20}
\end{equation*}
$$

Since N_{1} and N_{2} are pure numbers, then $k_{0} k_{1} k_{2} A_{1} A_{2} / N_{2}$ is a constant, which here will be denoted by K.

On the other hand, we can write that

$$
\begin{equation*}
\frac{k_{0} E_{g 2}}{S_{2}} A_{1}=n_{1}\left(h f_{g}-\frac{1}{2} h f_{0}\right) \tag{21}
\end{equation*}
$$

where n_{1} is the number of photons incident on particle 1 and $S_{2}=4 \pi r_{2}^{2}$, where r_{2} is the distance from the center of the particle 2 to the center of the particle 1.

Substitution of $\left(h f_{g}-\frac{1}{2} h f_{0}\right)$ given by Eq. (20) into Eq. (21), gives

$$
\begin{equation*}
n_{1}=\left(\frac{k_{s 1}}{K}\right) \frac{E_{g 1} E_{g 2}}{S_{2}}=\left(\frac{1}{\alpha_{1}^{2}}\right) \frac{E_{g 1} E_{g 2}}{S_{2}} \tag{22}
\end{equation*}
$$

The constant $K / k_{s 1}$ has the dimension of $(\text { force })^{2}$. Thus, $k_{s 1} / K$ was changed in Eq. (22) by the constant $1 / \alpha_{1}^{2}$, where

$$
\alpha_{1}^{2}=\frac{K}{k_{s 1}}=\frac{K}{k_{0} A_{1}}=\frac{k_{0} k_{1} k_{2} A_{1} A_{2}}{N_{2} k_{0} A_{1}}=\frac{k_{1} k_{2} A_{2}}{N_{2}}
$$

or

$$
\begin{equation*}
\alpha_{1}^{2}=\frac{k_{1} k_{2} A_{2}}{N_{2}}=\left(\frac{E_{g 2}}{A_{2}}\right) \frac{k_{1} A_{2}}{N_{2}}=\frac{k_{1} E_{g 2}}{N_{2}} \tag{23}
\end{equation*}
$$

Substitution of N_{2} gives by Eq. (16) into Eq. (23), yields

$$
\begin{equation*}
\alpha_{1}^{2}=E_{g 2}\left(\frac{h f_{g}-\frac{1}{2} h f_{0}}{k_{0} E_{g 2}}\right)=\frac{k_{1}\left(h f_{g}-\frac{1}{2} h f_{0}\right)}{k_{0}} \tag{24}
\end{equation*}
$$

Note in the equation above that the frequency f_{g} of the "virtual" photon (quantum of the gravitational interaction) is in fact constant, because α_{1}, k_{0}, f_{0} and k_{1} are constants. This confirms our initial hypotheses that the quantum of the gravitational interaction, is a photon with a typical frequency.

By analogy to Eq. (22), we can write that

$$
\begin{equation*}
n_{2}=\left(\frac{k_{s 2}}{K}\right) \frac{E_{g 1} E_{g 2}}{S_{1}}=\left(\frac{1}{\alpha_{2}^{2}}\right) \frac{E_{g 1} E_{g 2}}{S_{1}} \tag{25}
\end{equation*}
$$

Multiplying n_{1} (Eq. 22) by n_{2} (Eq. 25), we obtain

$$
\begin{equation*}
n_{1} n_{2}=\frac{1}{\left(\alpha_{1} \alpha_{2}\right)^{2}} \frac{E_{g 1}^{2} E_{g 2}^{2}}{S_{1} S_{2}}=\frac{c^{8} m_{g 1}^{2} m_{g 2}^{2}}{\left(\alpha_{1} \alpha_{2}\right)^{2}\left(4 \pi \pi_{1}^{2}\right)\left(4 \pi \pi_{2}^{2}\right)} \tag{26}
\end{equation*}
$$

where $S_{1}=4 \pi r_{1}^{2} ; r_{1}$ is the distance from the center of the particle 1 to the center of the particle 2. Since $r_{1}=r_{2}=r$, then Eq. (26) can be rewritten in the following form

$$
\begin{equation*}
n_{1} n_{2}=\frac{c^{8} m_{g 1}^{2} m_{g 2}^{2}}{\left(\alpha_{1} \alpha_{2}\right)^{2}\left(4 \pi r^{2}\right)^{2}} \tag{27}
\end{equation*}
$$

According to Eq. (11), we can write that

$$
\begin{equation*}
F_{1}=\left(1-\frac{f_{0}}{2 f_{g}}\right) \frac{n_{1} h f_{g}}{c \Delta t_{1}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}=\left(1-\frac{f_{0}}{2 f_{g}}\right) \frac{n_{2} h f_{g}}{c \Delta t_{2}} \tag{29}
\end{equation*}
$$

whence we obtain

$$
\begin{equation*}
F_{1} F_{2}=\left(1-\frac{f_{0}}{2 f_{g}}\right)^{2} \frac{n_{1} n_{2}\left(h f_{g}\right)^{2}}{c^{2} \Delta t_{1} \Delta t_{2}} \tag{30}
\end{equation*}
$$

Substitution of $n_{1} n_{2}$ given by Eq. (26) into Eq. (30), yields

$$
\begin{equation*}
F_{1} F_{2}=\left(1-\frac{f_{0}}{2 f_{g}}\right)^{2} \frac{\left(h f_{g}\right)^{2}}{\Delta t_{1} \Delta t_{2}} \frac{c^{6} m_{g 1^{2}}^{2} m_{g 2}^{2}}{\left(\alpha_{1} \alpha_{2}\right)^{2}\left(4 \pi r^{2}\right)^{2}} \tag{31}
\end{equation*}
$$

For $\Delta t_{1}=\Delta t_{2}=\Delta t_{g}$, we have $F_{1}=F_{2}=F$. Thus, Eq. (31) reduces to

$$
\begin{equation*}
F=\left(1-\frac{f_{0}}{2 f_{g}}\right) \frac{c^{3}\left(h f_{g}\right)}{4 \pi \Delta t_{g}\left(\alpha_{1} \alpha_{2}\right)} \frac{m_{g 1} m_{g 2}}{r^{2}} \tag{32}
\end{equation*}
$$

In order to communicate ultra-small gravitational forces the energy $h f_{g}-\frac{1}{2} h f_{0}$ of the "virtual" photon (quantum of the gravitational interaction) must be also ultrasmall. This means that, f_{g} must be less than $\frac{1}{2} f_{0}$ and ultra close to $\frac{1}{2} f_{0}$, i.e., $h f_{g}-\frac{1}{2} h f_{0}=-\varepsilon \rightarrow 1-f_{0} / 2 f_{g}=-\varepsilon / h f_{g}$, where ε is a constant. Thus, Eq. (32) can be rewritten as follows

$$
\begin{equation*}
F=-\left(\frac{\varepsilon c^{3}}{4 \pi \Delta t_{g} \alpha_{1} \alpha_{2}}\right) \frac{m_{g 1} m_{g 2}}{r^{2}} \tag{33}
\end{equation*}
$$

The term in parentheses must generate, obviously, the universal gravitational constant, $G=6.67 \times 10^{-11} \mathrm{~N} .(\mathrm{m} / \mathrm{kg})^{2}$, i.e.,

$$
\begin{equation*}
\left(\frac{\varepsilon c^{3}}{4 \pi \Delta t_{g} \alpha_{1} \alpha_{2}}\right)=G \tag{34}
\end{equation*}
$$

For $\Delta t_{1}=\Delta t_{2}=\Delta t_{g}$ and $n_{1}=n_{2}=1$ (just one "virtual" photon incident on each particle) Eq. (30) gives $F_{1}=F_{2}=F_{\text {min }}$, where $F_{\text {min }}$ is the minimal gravitational force in the Universe, i.e.,

$$
\begin{equation*}
F_{\min }=\left(1-\frac{f_{0}}{2 f_{g}}\right) \frac{h f_{g}}{c \Delta t_{g}}=-\frac{\varepsilon}{c \Delta t_{g}} \tag{35}
\end{equation*}
$$

On the other hand, according to the Newton's law, we can write that

$$
\begin{equation*}
F_{\min }=-G \frac{m_{g \min }^{2}}{r_{\max }^{2}}=-\frac{\varepsilon}{c \Delta t_{g}} \tag{36}
\end{equation*}
$$

where $m_{g \text { min }}$ is the gravitational mass of the material particle with minimal mass in the Universe, and $r_{\text {max }}$ is the maximal distance (diameter of the Universe) between two particles of this type.

Fig. 3 -Two particles with the minimal mass, $m_{g \text { min }}$, in the opposite positions (diametrically opposed) in the border of the Universe.

Based on Eq. (3), we can write that

$$
\begin{equation*}
\frac{\Delta t_{a}}{\Delta t_{g}}=\frac{f_{0}^{2}}{f_{g}^{2}} \tag{37}
\end{equation*}
$$

Since $\Delta t_{a} \approx 10^{-33}$ s (Eq. (9)), and as $f_{\mathrm{g}} \lesssim f_{0} / 2$, then Eq. (37) gives

$$
\begin{equation*}
\Delta t_{g} \approx 10^{-33} s \tag{38}
\end{equation*}
$$

Substitution of this value into Eq. (36), and considering that $m_{g \text { min }} \ll m_{g(\text { proton })}$ and $r_{\text {max }} \gg 2 c / H_{0}$ (diameter of the observable Universe) where $H_{0}=1.75 \times 10^{-18} \mathrm{~s}^{-1}$ is the Hubble constant, then we can conclude that, ε must be ultra-small.

References

[1] Henry, G. E., (1957) Radiation Pressure, Scientific American, p. 99.
[2] De Aquino, F. (2014) The Bipolar Linear Momentum transported by the Electromagnetic Waves,
http://vixra.org/abs/1402.0022;
https://hal.archives-ouvertes.fr/hal-01077208
[3] Sears, F. W.; Zemansky, M. W.; Young, H. D. (1983). University Physics (6th ed.). Addison-Wesley. pp. 843844.
[4] Hertz, H. (1887). Ueber den Einfluss des ultravioletten Lichtes auf die electrische Entladung. Annalen der Physik 267 (8): S. 983-1000.
[5] Whitefield, R. J. and Brady, J. J. (1971) New Value for Work Function of Sodium and the Observation of Surface-Plasmon Effects. Phys. Rev. Lett. 26, 380 (1971). Erratum: Phys. Rev. Lett. 26, 1005 (1971).
[6] Einstein, A., (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 17 (6): 132-148.

[^0]: ${ }^{1}$ The work function of very pure $N a$ is 2.75 eV . The work function of not purified sodium is less than 2.75 eV because of adsorbed sulfur and other substances derived from atmospheric gases. The most common values cited on the literature are 2.28 eV and 1.82 eV .

[^1]: ${ }^{2}$ Independently of the absorbing time Δt_{r}, which is of the order of $10^{-6} \mathrm{~s}$.

