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ABSTRACT

This article gives a survey on formal hardware verification tools developed in Europe. It
describes the main objectives and domains of application of the formal methods for the verification of
electronic system-on-a-chip models and designs. Further, it attempts to introduce some classification
scheme for the existing commercial or prototype tools, which is based on the different verification
aspects: proof technique, type of the circuit, abstraction level, verification objective, mathematical
model, input format, diagnostic method incorporated, verification execution and shows the particular
resulls for each of these aspects. Finally, some conclusions concerning the possible future trends in
development are drawn.

i. SYSTEM DESIGN FLow

The design of electronic circuits leveraged by the deep submicron technology development
allowing very high chip densities and driven by the need for more and more complex applications is
moving towards the system design. -

Electronic system design aiming at the design of the single-chip systems can be accelerated by
the integration of cores which encapsulate the intellectual property (IP) and by their interfacing with
the rest of the system to be built. The cores are the black-box models of intellectual property
building blocks supplied by the IP providers/developers and the third-party library providers. The
systcm design process requires system-building tools, bringing all the necessary elements and
encompassing the application expertise of library providers for the development of the systems-on-a-
chip. This must include the integration and interfacing of the IP cores, These procedurcs of
integration and interfacing needs to be formalized by the standardization work, which may happen in
the frame of the VSI Alliance initiative, where the focus concentrate along the six axes: on-chip
buses, IP protection, test, system level design and verification, mixed signal and implementation-ievel
verification.

In the development of building block models, the verification of the model correctness plays a
crucial role in guarantying the modeler that the results obtained are in compliance with the modeler’s
intent and/or the design specification, as well as in making the IP biock user confident that the block
behavior is fully compliant to the specification. The model development is a multi-skill process. Not
only design ability and HDL mastering are necessary but model correctness assessment is now
mandatory.

2. THE NEED FOR THE FORMAL MODEL/DESIGN VERIFICATION

Traditionally, the verification of the design/model correctness is done by the simulation, which
despite of the progress in simulation performance due to the introduction of the methods like e.g.
cycle-based simulation, cannot cope with the complexity of the deep submicron designs. The test
vectors employed in simulation can cover only a reduced number of all circuit states, thus, there is a
significant part of the design which remains unverified. The formal methods applied to hardware
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verification offer the significant gain in the verification time, and, what is more important, can give a
total certitude that the specified property is accomplished by the system, when the verification
succeeds.

In the design process there is a need for different types of verification according to the design
step or level of abstraction: the verification of the design idea / intent of the modeler (the
specification validation); the verification of some properties of the model; the comparison of the
more detailed model (implementation) done at the  lower level of abstraction with the system model
provided at the higher abstraction level; the comparison of two equivalent design descriptions given
at the same level of abstraction.

3. FORMAL VERIFICATION TOOLS

Several university and industry research centers have tried to develop the tools founded on
fermal methods, which could help the designer to examine the functional and/or dynamic (temporal)
correctness of the design/model. This section contains some results of the survey on formal
verification tools developed in Europe. It will introduce the classification scheme for the tools and
some of their properties which are useful for the application of this tools in modeler’s practice,

3.1. European tools available

The following list contains the names of the formal verification tools developed in Europe
which has been taken into account in the survey '

BSNVERI, FVG BDD Tool {Eindhoven University of Technology, Netherlands); ); C@$
{University of Karlsruhe, Germany); CheckOff-E, CheckOff-M, LAMBDA (Abstract Hardware
Limited, UK): ELLA Verification Environment (University of Manchester; UK); FANCY (Institut
National Polytechnique de Lorraine, France), HOL (University of Cambridge, UK); ICOS (OFFIS,
Oldenburg, Germany); LOVERT (Darmstadt University, Germany); MONA (University of Aarhus,
Denmark); SMOCK, VHDL2NQTHM, PREVAIL® {Université Joseph Fourier, Grenoble, France);
Synchronized Transitions (ST) (Technical University of Denmark); SVP Specification and
Verification of Processors (Université de Nice, France); TACHE (Université de Provence, France):
Verification Condition Generator for VHDL (VCG) (Universidad Politecnica de Madrid, Spain);
YERENA (University of Passau, Germany); VFORMAL (Compass Design Automation); YATC
(Philips. Netherlands).

3.2. Description of the classification scheme

The principal formal verification tools characteristics are divided into four groups: the
technical  characteristics, the environment characteristics, the performances and the system
requirements, and finally, the bibliographical information.

In the first group we consider the type of the circuit to be verified, the abstraction level
accepted by the tool, the objective of the verification, the mathematical model used by the tool and
the formal proof method.,

The environment characteristics precise for each tool the different usage aspects of the tool like
the input format, , the diagnostic method incorporated in the tool, the user interface and the helps
available, and finally the execution methods,

The third type of characteristics taken into account in the survey are the performances and the
System requirements. The performances of the tools depend on several particular 1o the tool
characteristics like the input format, the abstraction level of the input description, the proof method
and mathematical modei used, the System environment, etc., thus, they remain relative for each
verification system, so they will not be shown in this article,

Finally, the bibliographical information related to each tool is presented in the references to
this article.
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3.3. Survey results

3.31. Formal proof method

There are five main approaches to formal verification which are applied in the European tools:
tautology checking, equivalence. checking, model checking, theorem proving - and symbolic
simulation. All of these approaches assume given a specification of the circuit reflecting its expected
function and an implementation reflecting the designed hardware, The formal verification consist in
proving that the circuit implementation is correct with respect to the specification.

Tautology checking

The equivalence in terms of function of the specification and the implementation is checked.
The implementation is correct when its outputs are equal to the outputs of the specification when to
the inputs of both of them arc supplied the same input sequences. Both implementation and
specification are given at the same level of abstraction.

Egquivalence checking
The equivalence in terms of function of the specification and the implementation is checked.
Here the specification and implementation may be given at different levels of abstraction.

Model checking

The specification is in the form of a logic formula, the truth of which is determined with
respect te a semantic model provided by an implementation. This method allows to verify specific
functional or temporal properties of the verified circuit which can be essential to assure its correct
behavior,

Theorem proving

The specification and implementation are represented as the formulas in logic. The relationship
between a specification and an implementation is specified as a theorem in logic which is proved
within the context of a proof calculus (using the libraries of axioms and the deductive apparatus).

Symbolic simulation
The symbolic simulation uses a model of hardware and simulation engine to proof the equivalence
between the design specification and implementation. These both circuit representations are
simulated concurrently and the results of the simulation are compared to establish the proof. This
type of simulation differs from the conventional one because it employs the symbols in place of the
actual values of circuit signals or variables.

The table 1 presents the formal proof method used in the European verification tools.

Formal verification I Formal proof method
- Yool - - | TP | TC EC | MC SS
BSNVERI I |
ces [ | [ |
CheckOff-E [ ]
CheckOff-M [ |
ELLA Verification Environment ] [ |
FANCY a
FVG BDD Too! - a
HOL ' 2]
licos B m m
LAMBDA [
LOVERT =] E
MONA |
SMOCK ‘ I N
ST n o I ]
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Formai verification | ,
e Mood ] TP $8
SVP — n
TACHE
VCG
VERENA ||
VFORMAL [ [
VHDL2NQTHM [
YATC ]
TP theorem proving TC tautology checking
EC equivalence checking S8 symbolic simulation

MC model checking

Table 1: Formal proof method.

3.3.2. Type of models to be verified

There can be three major groups of the models for which the formal verification is possible:
combinatorial, synchronous sequential, asynchronous sequential circuits.

Almost all the examined tools can be applied to the verification of the combinatorial circuits
except the symbolic model checker SMOCK. Also most of the tools verify the synchronous
sequential circuits. The only exception is BSNVERI, which is a specialized tool for the combinatorial
circuits. Some tools can be in addition applied to the verification of the asynchronous sequential
design; these are C@S, CheckOff-E, CheckOff-M, HOL, MONA, ST, VCG and VFORMAL.

?j Formal verification _ | Circuit type. - 47
tool | combinatorial |  sequential | seguential

SRR SAEE G _Synchronous | asynchtghous |

BSNVERI u

ces [ [ m'

CheckOff-E [ | B [ |

CheckOff-M [ | [ | [*]

ELLA Verification Environment [ | a

FANCY [ ]

FVG BDD Tool a m?

HOL [ | n | |

1C0S [ | |

LAMBDA | ] e -

LOVERT ] B

MONA | ] E [ ]

SMOCK [ ]

ST 1] u ]

SVP a E

TACHE ] E_ 2 o

VG5 = u E |

VERENA [ =

VFORMAL E [ | [

VHDLZNQTHM ] ]

YATC [ ]

necessary correct modeling
>
" necessary the same state encoding

Table 2: Acceptance of the circuit type by the formal verification tools.
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3.3.3. Models abstraction Ievels

The abstraction level accepted by the tools extends from system level, throughout behavioral
and gate level to switch level.

Almost all the tools can be applied for the verification of the designs specified at the
behavioral, register-transfer and gate level. The exceptions are BSNVERI, TACHE and VFORMAL
which do not accept the behavioral level description, FANCY, FVG BDD Tool and YATC which do
not accept nzither behavioral nor RTL level, as well as VHDL2NQTHM which is not appropriate for
the gate level circuit specification and VCG accepting only the behavioral circuit description.

Onty some of the tools allow to verify the design at the system Ievel. Those are C@S, MONA,
ST and SVP. From the other side HOL and ST accept switch level design description.

Formal verifieation | - ] Bl!adehng level =
' tool ,r;ystem | beha- | RTL gate | swilch
|  vioral

BSNVERI
ces [ ] E
CheckOif-E - a
CheckOff-M o)
ELLA Verification Environment
FANCY

FG BDD Tool

HOL

ICOS

LAMBDA

LOVERT

MONA [ ]
SMOCK
ST

SVP [ ]
TACHE [ ]
VCG .
VERENA
VFORMAL - o -
VHDL2NQTHM [ a :
YATC [ ]

~H|Ee
KM Enm

5]

Table 3: Modeling icvel of abstraction.

3.3.4. Objective of the verification

The objeciive of the verification may be the verification of the lunction of the sysiem or the
dynamic properties.

All European formal verification tools have been created for the verification of the design
function. Some of them (C@S, ELLA Verification Environment, HOL, ICOS. SMOCK and vCGQG)
permit to verify some temporal qualitative properties.

3.3.5. Mathematical model

The mathematical model used by the tool can be based on a type of & formal logic. on an
dmega-automata or a process algebra [1, 2, 3].
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The different kinds of logic are most often used as a mathematical model of the design. The
propositional logic is used in the C@S, FANCY and TACHE tools. Various types of the predicate
logic have been widely employed: first-order logic in ST and VHDL2ZNQTHM (Boyer-Moore logic),
second-order monadic logic in MONA and higher-order logic in HOL and LAMBDA. Also different
types of temporal logic have found a wide use in hardware verification tools. The linear temporal
logic has been applied in C@S and ICOS, the variation of branching time temporal logic have been
applied to the verification task in C@S (the CTL" and QCTL logic) and 'in ICOS (the CTL logic).
Another mathematical model used is omega-automata, on which ELLA Verification Environment is.-
based, as well as a tool incorporated in C@S environment. ELLA is also using another mathematical
model based on process algebra. .

Several above mentioned formal verification tools use the different types of mathematical
models combined with the data representation based on binary decision diagrams (BDDs) supported
by optimization and reduction algorithms to manage the design complexity [6, 7].

Formal verification - | Wathematical model used L
tool 1 ‘logie - | BPD | auto- | process |
S s— o A | S mata | algebra
BSNVERI u
ces ¢ propositional [ ]
e LTL
s CTL*
s QCTL
CheckOff-E &
CheckOff-M | |
ELLA Verification Environment . m
FANCY propositional (Boolean - | [ |
term rewrite system)
s FVG BDD Tool [ |
HOL higher-order
ICOs s LTL [ |
¢« CTL
LAMBDA higher-order
LOVERT [ ] B
MONA monadic second-order n
SMOCK ' =
ST predicate
SVP « first-order
s higher-order
. (for specific cases)
TACHE propositional [ ] [ ]
VCG temporal predicate /
Kripke model |
VERENA higher-order
VFORMAL | I D T
VHDLZNQTHM Boyer-Moore
YATC B il

Table 4: Mathematical model used.

3.3.6. Model description formalism

The formal verification tools use, as an input description formalism, either the standardized
lunguages/formats: the hardware description languages (VHDL and Verilog) and the interchange
formats (e.g. EDIF) or proprietary formats or languages. The table S presents the details on the
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; description formats accepted by the tools. Since VHDL is very popular hardware description
: language in Europe, it is also very often used as the design description language for the formal
‘ verification.
[+ Formal verification |  __ Ioput format | :
f BSNVERI proprietary language #
¢ caes proprietary language
: CheckOff-E EDIF, (Verilo
£ CheckOff-M | EDIF, Verilog
g properties: CIL
& ELLA Verification Environment specific language Core
¥ ELLA
b FANCY ISCAS'89, BLIF
| FVG BDD Tool intermediate format
: HOL specific language HOL
ICOS X (] timing diagrams
state diagrams
‘ LAMBDA language L2
E LOVERT language SMAX
1 MONA logic formulas
F | SMOCK (5] language SMAX
¥ ST synchronized transitions
E notation
SVvP . FHSL (close to the subsets
1 of VHDL and Verilog)
E‘ TACHE subset
) VCG
: l VERENA [ language VIOLA
ki VFORMAL ]
{ VHDL2ZNQTHM L
YATC Verilog, NDL, EDIF

Table 8: Input format.

P p— Eriphi il

3.3.7. Diagnostic method

PR B G e

The diagnostic facility incorporated in the formal verification tool allows to find the design

errors when the verification fails. Most of the tools provide the counter-example which is generated
& when non-equivalence is discovered and shows the Situation in which the proof fails. Some of the
P ools furnish the sequences of Iput vectors to show the state where the behavior of compared
g description is different,
i The PREVAIL environment incorporates the specific diagnostic tool allowing for finding and
{ correcting some types of the errors in the input description.
: T R T ——— P L o L T S—
£ Formal verification 1 ___ Diagnostic method
tool ‘ ; counter- | test vectors /- other

0 il ___example ___Sequences

BSNVERI

caés o}

CheckOff-E E

CheckOff-M u

ELLA Verification Environment ?
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Formal verification Diagnostic method (continued)
T toet counter- | test vectors /|  ather -
| exampie sequences |
FANCY no “'
FvG BDD Tool u
HOL proof trace
ICOS ?
LAMBDA [ ]
LOVERT [ ] [ | state functions
___generation
MONA ?
SMOCK ]
8T ]
SVP | presentation of
the two non
equivalent
expressions
TACHE B
VCG ho
VERENA n
VFORMAL information about
I unwanted
situations
VHDILZNQTHM proof trace
YATC | |

Table 6: Diagnostic methods.

3.3.8. Verification execution

The table 7 below shows the manner in which the verification is executed. Most of the formal
hardware verification methods allow for a completely automated verification process. However, some
of them based on the theorem proving, which presents the most general approach to hardware
verification, need Lo be supported in the verification process.

Formal verification
tooel

B Verification exscution
- aytomated

BSNVER!

c@s

CheckOff-E

CheckOff-M

| ELLA Verification Environment
FANCY

FVG BDD Tool
HOL

ICOS
LAMBDA
 LOVERT
MONA
SMOCK

ST

SVP

EEloE|ENR

[=B] NI-RECE ]
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- Formal verification _Verification execution (continyed) =
N ol automated |  user guided
| TACHE N -1 =
G m
VERENA »
VFORMAL =
VHDLZNQTHM =
YATC n

Table 7: Verification execution.

4. CONCLUSIONS

Formal verification methods and tools can play a significant role in the modeling of electronic
systzms. European universities and research centers have developed a wide range of formal hardware
verification tools which can be used to verify the different. aspects of the correctness of the model of
a design at different levels of abstraction and for different types of the circuit.

The survey presented in this article gives a comprehensive view of the state-of-the-art research
in the domain of formal verification of hardware done in Europe. This view is supposed to be useful
to model developers who are spending a fast growing amount of time for this job.

It shows that researches examine different approaches to formal verification which are adapted
1o the particular objectives of the verification. This is because there is n0 unique method which can
be applied for all kind of circuits, for all aspects of verification process and for all levels of
abstractions.

We can observe the trend to incorporate into a single environment several tools which can deal
with distinct aspects of the verification in order to built a complete verification framework (C@S,
ICOS, PREVAIL). The development of the formal verification environments, with a kind of adaptive
choice of the appropriate verification method, can be one of the possible future objectives.

The survey will help the modeler to identify the tools applicable for the verification of a
specific type of models. In particular it will help choosing the suitable verification tool for a model
whose specification is provided at a specific level of abstraction.

We can see already some first approaches to the verification of the temporal properties of a
design. Although they concern at present only the qualitative verification of dynamic properties, they
establish a significant step towards Quantitative temporal properties verification, which is a crucial
issue in submicron models.

Most of the tools examined are still in the prototype phase of development. However, some of
them have reached already a high level of maturity and have been commercialized. As the examples
can serve CheckOff-E, CheckOff-M, LAMBDA, VFORMAL and YATC.
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