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Phase unwrapping for dual-beam
electronic speckle pattern interferometry:

method

3. Yoshida, Suprapedi, R. Widiastuti, Marincan, Septriyanti, Julinda,

A. Faisal, and A. Kusnowo

A new algorithm to reveal the order and sign of fringes formed by dual-beam electronic speckle-pattern
interferometry is described.  When combined with a previously reported phase-extraction method, it
mukes possible the evaluation of displacement absolutely and continuously over the entire surface of the
object from a total of five frames.  This technique is particularly uselul when displacement is spatially
digcontinuous and temporally fast and the amount of data 1= larpe. A model experiment showing the

validity of this method 15 presented.

We have applied dual-beam, inplane sensitive elec-
tronic speckle pattern interferometry! (ESPI) to the
study of plastic deformation. The key subject of this
study is an investigation of the temporal change in
the spatial distribution of distortion tensor compo-
nents (strain and rotation) in connection with a ma-
terial fracture.? As described in detail in Ref. 3, the
spatial distribution of distortion tensor components
varies both spatially and temporally in a complicated
way, depending on the material’s substructure, which
also changes temporally as the deformation
progresses. [t is essential to obtain fringe patterns
sequentially with an interval sufficiently small to
trace abrupt change in the material's mechanical
state in the plastic region, which obliges us to handle
a large amount of image data. In the currently con-
ducted tensile analysis, we typically acquire more
than 200 sets of image data every 10 5. Because the
mechaniecal state of the abject changes every minute,
it is particularly important to take image data corre-
sponding to the same state, i.e., the state before or
after a displacement of interest, at a sharply defined
moment. In the case of a tensile load the material
changes its mechanical state at a rate higher than the
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head speed of the tensile machine by an order of
magnitude or even higher.* Ifthe head speed is 0.35
mm,/min, for example, this rate becomes 3.5 mm/
min = 58 pm/s, and this means that if the uncer-
tainty in the data acquisition time is (.01 s (the order
of typical scanning time of a video frame), the result-
ing error in displacement becomes 0.58 pum, which is
commparable with the wavelength of the He—Ne laser,
the laser used in our optical setup.

In this condition, it is unrealistic to employ conven-
tional phase-step methods®® to extract displacement
from image data. First, the phase-step method re-
quires at least two frames both before and after dis-
placement.® Tt then uses these images to caleulate
the absolute value of the displacement. Therefore,
unless all the frames corresponding to the same state,
1.e., before or after displacement, are taken within a
time negligibly smaller than the above-mentioned
time scale of the temporal change of the mechanical
state, the resultant displacement data do not corre-
spond to two sharply defined states. Hence they be-
come meaningless, Second, because the phase-step
methods evaluate Lthe phase in the range of —+ to ,
phase unwrapping is needed as a post-data-
acquisition process.  We usually do this by presum-
ing the unknown multiple of 2+ for each pixel in such
a way that the resultant phase difference between
adjacent pixels may not be greater than =% How-
ever, this is not suitable in our case because the spa-
tial phase change can be discontinuous by the nature
of plastic deformation.

The carrier fringe method, which is another con-
ventional technique for extracting phase data from
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Fig. 1. Optical arrangement of the current scheme,

ESPI fringe patterns capable of evaluating displace-
ment corresponding to two sharply defined moments,
is also difficult to employ in the current situation
because the amount of image data is too large for us
to conduct a post-data-acquisition process to filter out
the carrier-fringe frequency component from the sig-
nal component.”

For reasons mentioned above, we invented a new
method of phase extraction that allows us to extract
displacement corresponding to two definite times®
In short, thiz method (referred to as the new phase-
extraction method) functions in the following way.
At each time step, four frames of image are taken, two
of which correspond to the states before and after the
current displacement, and the other two correspond
to the average intensities of the respective interfero-
metric branches. Because the latter two are irrele-
vant to the phase change and therefore considered to
be constant during the displacement, the extracted
displacement data correspond to two sharply defined
states. However, because the new phase-extraction
method outputs the phase data in the form of an
arctangent of an intensity ratio,? ambiguity concern-
ing the order and sign of fringes remains. The aim
of this paper is to introduce an algorithm to clarify
this ambiguity.

Our idea is to extract the absolute value of the
phase by the new phase-extraction method and re-
veal the order and sign of fringes by monitoring the
dircctions in which the fringes move when a phase
shift iz introduced into one of the interferometric
branches. Note that, although the current method
resembles the phase-step method in the sense that
one of the interferometric branches is phase shifted,

the current method is fundamentally different in the
fact that it does not use the phase-shifted image data
for evaluation of the absolute value of the phase but
for determining the order and sign of fringes only.
As described below, the direction of the fringe move-
ment is solely dependent on the spatial derivative
(slope) of the phase data along an axis of interest.
It is reasonable to consider that the sign of the slope
is kept the same during the phase-shift operation.
In other words, it is unlikely that the relative order
of neighboring fringes is reversed in such a short
time. (At least it can be said that the sign of the
slope varies more slowly than the absolute value of
phase.) Because the fringe shift is used only to
determine the sign of the slope, the amount of the
phase shift given to one of the branches does not
have to be known quantitatively as long as it is
known to be less than a quarter of the period so that
the direction of the fringe shift may be known.
Thus a simple means such as an optical wedge can
be used for the phase shifter, and no computation is
needed. The present algorithm can be used to re-
veal the order and sign of fringes formed by dual-
beam ESFPI in general.

Consider Fig. 1, which illustrates an inplane sen-
sitive ESPT setup' and the phases of beam 1 and
beam 2 at a reference point on the object surface.
Suppose the object deforms and the reference point is
displaced by u in the positive x direction (leftward).
If the initial phases of beam 1 and beam 2 at the
reference point are 8, and #.,,, respectively, and the
dizsplacement causes a phase change of ¢/2, the re-
sultant phases of these beams after the deformation



are
B, = Hyy +&/2, (1)
By =ty — &/2, (2)
and the phase difference becomes
B =8, — 8, =, - d, (3)

where 8, is the initial phase difference, #,,4,,, and &
iz defined to be positive when the displacement u is in
the positive direction. The phase change &/2 is re-
lated to the displacement u through a constant of
proportion 27 sinfo)/A as

d/2 = Zu sinfo)/ A, (4)

where o is the angle of incidence and A is the wave-
length of the laser. '

In this situation, let us increase the phase of beam
1 at the reference point by &, where 0 < &, < w/4.
This can be done, for example, by moving a wedge
placed in the optical path of beam 1 in such a way
that the optical path in the wedge becomes longer by
&, inphase (Fig. 1). This changes the phase of beam
1 at the reference point to

B," =8, + /2 + 5, (5)

whereas the phase of beam 2 is unchanged. Conse-
quently the phase difference becomes

B =8, — By =0, + b+ 8, (6)

Now consider the subtraction of the images taken
before and after the deformation. Let us call the
images taken before the deformation [, after the
deformation but before the wedge movement [z, and
after the deformation and wedge movement [z’
The intensities of these images can be written as

I'I:sz = fu.l_l T I"'|I' EDE-{E”'], {T::l
In.Ft = Ilill.-i + k) EUHEH ™ ':I:"::I:L fﬂ]
.Tln' = ID[]' - EDE{GJ 4 d:l]]l {9

where I, is the total average intensity and v is the
visibility. Because the same argument for the ref-
erence point holds for any point on the object surlace,
the subtractions of [, from I and I_,' can be ex-
pressed, respectively, as!

.= I — Ios = 21,y sin(0y + &/2)sin(d/2), (10)
Iar = 5ﬁr - Ih-nF = 211:."'[' E{HEHD T li_'.l,."lg + 5_.4._.-"2}
¥ sin(d/2 + &,/2). (11)

Note that 8, and & are functions of (x, v) whereas &,
15 a constant.

Ag is well known, I, represents a fringe system in
which fringes (dark peaks) appear at the locations
where the displacement is such that the correspond-
ing phase change ¢ satisfies the condition sin(d/2) =
0. Physically this means that if part of the ohject
displaces in such a way that the resultant phase
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Fig. 2. [, and I,’ fringe patterns (upper} and phase variation
along line % (lower). Arrowsz indicate the directions of the fringe
shift. Vertical lines relate the fringes and their phase values.

change is ¢/2 = nw, the intensity of the speckle gen-
erated by that part of the object is unchanged before
and after the displacement., Now consider that such
a displacement is accompanied by a phase change of
3, in the first beam. In this case, those parts of the
object that displace the phase changes of &/2 = nmw —
& _, rather than &/2 = nw, will form fringes in the
resultant subtraction image. This means that if one
compares {, and I", the fringes are found to be shified
from the loci of displacement corresponding to &/2 =
n to those of &/2 = nw — &, in going from I to 1",
In 1, therefore, if the locus of /2 = nw — &, 1s located
ta the left of the locus of &/2 = i, the fringe shift is
leftward, and if the locus of ¢/2 = nm — &, is located
to the right of the locus of &/2 = nw, the fringe shift
is rigchtward. The important thing is that the direc-
tion of the fringe shift is determined by the location of
the ¢/2 = nw — &, locus relative to that of /2 = n,
not by the sign of &/2,

To make the above argument underatood more eas-
ily, let us use Fig. 2. Suppose the fringe pattern
representing I, is as shown in the upper half of Fig. 2,
and the phase variation $(x, y)/2 along a represen-
tative axis x is as shown in the lower half of Fig. 2.
Because the phase value at any point in the I," image
is higher by &,/2 than that of I, at the same point
[compare Eqs. (10) and (11}], the phase variation on
the I’ image along the same axis x should be as
shown by the dashed curve in the lower part of Fig. 2.
This means that the x values at which fringes were
seen in the I, image now correspond to phase values
of nw + &,/2 in I.’, and the x values that were cor-
responding to nw — §,/2 in I, now correspond to
fringes at nw in I.'. Thus the fringes in I are
shifted, compared with I,, either rightward or left-
ward depending on the slope of the ¢(x, y)/2-versus-x
curve [hereafter called the &(x, ¥)/2 curve] in the
vicinity of the fringe positions as indicated by dashed
curves in the upper part of Fig. 2.

The kev point in the above argument is that the
amount and direction of the fringe shift depend solely
on the slope of the &ix, ¥)/2 curve and the amount
and direction of the wedge movement. In the case of
Fig. 2 where the wedge movement increases the



Table 1. Legic to Determine Fringe Order

Sipn of Slope (5& )/ fx) Phase al Fringe

Fringe Fringe Fringe Fringe
a b a h

- i iR In+ 1w
T nT
- + R nT

- bR in— 1=

phase of beam 1 (the wedge thickness increases as in
Fig. 1), the fringe necessarily shifts rightward if the
slope is negative and leftward if the slope is positive.
The reverse is also true; i.e., if a fringe shifts leftward
(rightward) the slope is necessarily positive (nega-
tive) around that fringe, provided that the direction of
the wedge movement is the same. If the wedge
moves in the other direction, the &ilx, v)/2 curve
moves the other way and the fringe shifiz to the
opposite direction for the same &/2 slope. The
amount of the fringe shift indicates the distance be-
tween the two values of x corresponding to dix, ¥)/
= nmw — ,,/2 and &(x, ¥)/2 = n7 and therefore is
inversely proportional to the absolute value of the
slope. The same argument holds along any axis,

The above-mentioned relationship between the
fringe shift and the &ix, ¥)/2 slope can be conve-
niently used to determine the order of fringes for a
riven fringe pattern. Let us use Fig. 2 to discuss
this process. First, suppose that the I, and I." fringe
patterns are given and the orders of these fringes are
unknown (therefore the ¢/2 ecurve is unknown). By
comparing {_and [.’, we know that each fringe moves
in which direction. The two leftmost fringes (let us
call them fringes a and b}, for example, are shifted
leftward when the thickness of the wedge increases,
From this and the argument above, we know that the
slopes in the vicinities of these fringes are positive.
The slopes around all the other fringes can be known
n the same way.

Now that the slope of every fringe is known, we can
determine the order of the fringes by the following
logic. Let us consider fringes a and b and suppose
that fringe a corresponds to &/2 = nw.  Because the
slopes of the &/2 curve in the vicinities of both fringes
are known to be positive, we know that the order of
fringe b iz higher than a by w.  This is because, if the
order of fringe b is the same or lower than that of
fringe a, the &/2 curve must cross the line nw (corre-
sponding to fringe a’s order) at least onee again in
order to cross fringe b with a positive slope, and if this
iz the caze there must be another fringe appearing
between fringe a and b, In this fashion one can de-
termine the order of a fringe relatively to a neighbor-
ing fringe based on the slopes of the /2 curve at
these fringes. Table 1 shows the logic for the other
cases.

This argument indicates that if the order of one of
the fringes is absolutely known icall this fringe the
reference fringe), one can determine the orders of all

the other fringes by applying the logic shown in Table
1 to each fringe one by one, starting from the refer-
ence fringe. The order of the reference fringe, on the
other hand, can be determined in a couple of ways:
(One possible way is to change the wavelength or the
incident angle and determine how the fringes move.
Either of these changes alters the coefficient in pro-
portion to Eq. (4) and therefore makes all the fringes
appear at different values of u In [, except for u = 0.
Thus the fringe corresponding to &/2 = 0 can be
found as the only fringe insensitive to these changes,
Once the orders of subtraction-mode fringes are de-
termined, the orders of the addition-mode fringes®
[corresponding to 1/2(m + ), where m is an integer]
can be delermined by the same logic, and all the
phase values are evaluated without the sign and
quadrant ambiguity.

To verify this phase-unwrapping method, we con-
ducted an experiment using a model object. We
used an aluminum plate for the target object and
cave it a small rotation about an axis normal to its
gsurface. Thiz generates an equidistant parallel
fringe system in which the phase change ¢ owing to
the rotation is proportional to an axis, say the y axis,
perpendicular to the direction at which the inter-
ferometer 1s sensitive.d This means that the
h-versus-y curve becomes linear and that therefore
when the wedge is moved all the fringes are expected
to shift by the same amount in parallel to the y axis.

We mounted a wedge having a slant angle of 0.5
and surface roughness of <A/4 at 0.6328 pm on a
one-dimensional movable stage (called the x stage)
and placed the x stage in the optical path of beam 1
(Fig. 1). To place and move the wedge precisely per-
pendicularly to the optical path, we placed an aper-
ture near the output mirror of the laser and adjusted
the angle of the wedge to the optical path in such a
way that the laser beam reflected at the input surface
of the wedse may go through the aperture, Because
the aperture diameter and the distance between the
aperture and the wedge were approximately 5 and
3600 mm, respectively, the error in the angle of inei-
dence to the wedge is estimated to be less than
5/3600 = 1.39 mrad = 0.08°. The phase difference
caused by this error is negligibly small compared
with the phase difference introduced by the wedge
movement.

We moved the wedge by rotating the micrometer
attached to the x stage with a unit of 10 pm (hereafter
called the unit wedge movement). Because the an-
gle of the wedge iz 0.5%, the unit wedge movement
causes the optical path covered by the wedge to be
changed by 10 % tan(0.5°) = (L0873 pm. This opti-
cal path change in turn causes a phase change of 2
# 0L.0BT3/Mn — ng) = 27 % 0.0710, where n and n,
are the refractive indices of the wedge material and
air, which are, respectively, 1 and 1.515 in the cur-
rent case.

Figure 3 shows fringe patterns of I, and I." corre-
sponding to &, of 2w * 0.0710 = 4 or four times the
unit wedge movement. In this experiment we in-
creased the wedge thickness in going from Iy, to [.g”
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Fig.3. I andl,” ofthe model object.
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and rotated the target counterclockwize when viewed
from the camera. Thus, in accordance with the ex-
planation above, the fringes in I," are supposed to go
down compared with the corresponding fringes in I..
Figure 3 clearly shows such a movement. (Note the
fringe movement with respect to the position of the
screws imaged in these figures.)

Having verified that the fringe moves in the pre-
dicted direction, our interest was in determining the
accuracy of the movement. Thus we conducted the
following experiment: After taking I, we moved
the wedge in the same direction successively with a
constant increment and obtained an image corre-
sponding to I  at each wedge position. This en-
abled us to obtain I at the respective wedge
positions. Because these [” terms correspond to the
same target movement, the fringes keep moving in
the same direction with a constant increment in go-
ing from the first wedge position to the last. In the
upper part of Fig. 4, we plotted such a movement of
two representative fringes in the fringe pattern
shown in Fig. 3 in a unit of vertical pixel position and
as a function of the unit wedge movement. In the
lower part of Fig. 4, the fringe movement is expressed
in a unit of fraction of 2w, The solid lines are theo-
retical curves representing the unit wedge movement
causing a phase change of 2w % 0.0710. It is seen
that the experimental fringe shift is in fairly good
agreement with the theory. The trend line of the
experimental data based on least-squares fitting
shows a slope of 0.0726, which agrees with the theo-
retical value of 0.0710 with an error of only 2.2%.

In summary, we have demonstrated a new algo-
rithm to reveal the order and sign of fringes formed
by a dual-beam ESPI setup, where a simple phase
shifter such as an ordinary glass wedge can be em-
ployed and no caleulation is needed. By combining
this algorithm with our previously reported phase-
extraction method, one can evaluate displacement
absolutely and continuously over the entire surface of
the ohject from a total of five frames. This technique
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Fig. 4. Fringe shift versus wedge move.

is particularly useful for deformation analyses where
displacement is a complicated function of fime and
space.
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