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Abstract

This paper is concerned with statistical inference for infinite range interaction
Gibbs point processes and in particular for the large class of Ruelle superstable
and lower regular pairwise interaction models. We extend classical statistical
methodologies such as the pseudolikelihood and the logistic regression meth-
ods, originally defined and studied for finite range models. Then we prove that
the associated estimators are strongly consistent and satisfy a central limit
theorem. To this end, we introduce a new central limit theorem for almost
conditionally centered triangular arrays of random fields.

Keywords: Lennard-Jones potential; pseudolikelihood; central limit theorem.

1 Introduction

Spatial Gibbs point processes are an important class of models used in spatial point
pattern analysis (ILj_es_hm]:d, 2000; Maller and Waagepetersen, 2004; Tlian et all, |20Qé§).
Gibbs point processes can be viewed as modifications of the Poisson point process
in order to introduce dependencies, such as attraction or repulsion, between points.
These models initially arise from statistical physics to approximate the interaction
between pairs of particles (IBmalld, |l95_g; |Er£SIQ_U|, |l9_m; Georgii |l9§_g) The most
well-known example is the Lennard-Jones model (Lennard-Jones, 1924) which yields
repulsion at short scales and attraction at long scales.

Assuming that the Gibbs model has a parametric form, an important ques-
tion concerns the estimation of the parameters from a realization of the point pro-
cess observed on a finite subset of R?. Popular solutions include likelihood (e.g.
Ogata and Ta,nemuraL |L9§l|; Huang and Ogatal, |J.£L9_Q), pseudolikelihood (e.g. ﬁé,
11977: lJensen and Maller, 1991; Baddeley and Turner, |20£)_d) and logistic regression
(IB_addQ]gL@_aﬂ, [2Ql_4]) The two latter methods are more interesting from a prac-
tical point of view as they avoid the computation of the normalizing constant in
the likelihood, which is in most cases inaccessible for Gibbs point processes and




must be approximated by simulation-based methods. We focus in this paper on the
pseudolikelihood and logistic regression methods.

When the Gibbs model is assumed to have a finite range interaction, consistency
and asymptotic normality of the pseudolikelihood and logistic revression estimators

are established mLLens_Qn_and_MQllgﬂ (|19_9_1| Bﬂhmmﬂ
%), (2009); Coenjolly and Drouilhet (Izmd ;Baddeley et all

), for large families of Gibbs models. The finite range assumption means that
there exists R > 0 such that the particles do not interact at all if they are at a
distance greater than R > 0 apart. For the two aforementioned inference methods,
this assumption turns out to be crucial from both a practical point of view and a
theoretical point of view, as explained below. However this assumption may imply
an artificial discontinuity of the interactions between particles, where two particles
at a distance R — € apart interact while they do not at a distance R + ¢, for any
small € > 0. This is for instance the case for the widely used Strauss model, see
e.g. M@Mdj&@ag@_pgjﬂs_ed 4291)_41) In fact, this assumption rules out many in-
teresting Gibbs models from statistical physics like the Lennard-Jones model. The
purpose of this work is to extend the pseudolikelihood and logistic regression meth-
ods to infinite range interaction Gibbs models.

From a practical point of view, an important issue is edge effects. Assume we
observe a Gibbs point process with finite range interaction R > 0 on a window
W < R?. Then the pseudolikelihood computed on W actually depends on the point
process on W @ R, where W @ R denotes the dilation of W by a ball with radius R.
Some approximation or some border correction is then needed. An obvious solution
is to compute the pseudolikelihood on the eroded set WO R, since (WOR)®R < W
(see Chiu_et.al! (|2D_13|)) and the observation of the point process on W is sufficient for
the computation. From a theoretical point of view, this border correction preserves
the unbiasedness property of the pseudolikelihood score function and standard tech-
nical tools for unbiased estimating equations are available to derive the asymptotic
properties of the associated estimator. If the Gibbs point process has infinite range
interaction, then the pseudolikelihood computed on W depends on the point pro-
cess over the whole space RY. It is in general impossible to apply a border correction
that preserves unbiasedness of the pseudolikelihood score function. Following the
previous border correction for the finite range setting, we propose to alleviate this
bias by computing the pseudolikelihood and the logistic regression on an eroded set.
The details are exposed in Section 2l However these procedures still lead to biased
score functions and the standard ingredients to derive consistency and asymptotic
normality of the estimators do not apply.

The strong consistency of the maximum pseudolikelihood estimator was stud-
ied by (@) for pairwise interaction Gibbs point processes, including the
infinite range interaction case, but under the assumption that the configuration of
points outside W is known. Under the more realistic setting where the point pro-
cess is observed only on W, we prove the strong consistency of the pseudolikelihood
estimator in Proposition .1l The asymptotic normality is more challenging to estab-
lish. When the pseudolikelihood score function is unbiased, the main ingredient is a
central limit theorem for conditionally centered random fields proved and general-

ized in[Guyon and Kiinschl (1992); Jensen and Kiinsch (1994); (Comets and Janzura




(1998); Dedeckerl (1998): [Coeurjolly and Lavancier (2013). It allows in particular to

avoid mixing assumptions for Gibbs point process that are only known in restrictive
frameworks (see for instance Heinrich (1992); lJensen (1993)). In our infinite range
setting where the score function is biased, a new ingredient is needed. We prove in
Theorem [BI] a new central limit theorem for triangular arrays of almost condition-
ally centered random fields. This allows us to derive in Theorem the asymptotic
normality of the pseudolikelihood estimator for a large family of pairwise Gibbs mod-
els, namely the class of Ruelle superstable and lower regular models. Proposition 3]
discusses similar asymptotic results for the logistic regression estimator.

In Section [2] we recall some basic facts about Gibbs point processes and we
explain how to generalize inference methods for Gibbs models with infinite range
interaction. Section [ contains our main theoretical tool, a new central limit theorem,
and we derive in Section [ the asymptotic properties of our estimators. Auxiliary
lemmas are gathered in Section [Al

2 Background and statistical methodology

2.1 Notation

We write A € R? for a bounded set A in R?. A configuration of points x is a locally
finite subset of R?, which means that the set x5, := x n A is finite for any set
A € R%. We use the notation x,. = x\x, and denote by Qg the space of all locally
finite configurations of points in RY. For a (p,q) matrix M with real entries, we
denote by |M| = tr(MTM)Y? its Frobenius norm where tr is the trace operator
and M" is the transpose matrix of M. For a vector z € RP, ||| reduces to its
Euclidean norm. For a bounded set E < Z4, |E| denotes the number of elements of
E, while for z € R? or i € ZP, |z| and |i| stand for the uniform norm.

At many places in the document, we use the notation ¢ to denote a generic
positive constant which may vary from line to line.

2.2 Pairwise interaction Gibbs point processes

We briefly recall the needed background material on point processes and we refer
to [Daley and Vere-Jones (|2_0_Oj) for more details. A point process is a probability
measure on )y. The reference distribution on ) is the homogeneous Poisson point
process with intensity 3 > 0, denoted by 7°. For A € R?, we write ﬂﬁ for the
restriction of 77 to A. For any A € R? and x € Qy, Na(x) denotes the number of
elements of x N A. Let A, be the unit cube centered at i € Z%. We consider the
following space of tempered configurations.

Op = {xeQ; It >0,Yn=>1, > N3 (x) <t@n+1)%

i€Zd |i|<n

From the ergodic theorem (see m (@)), any second order stationary measure
on Qg is supported on Q. We denote by ® : RY — R U {+o0} a pair potential
function, to which we associate the pairwise energy function Hy : Qp — R U {+ o0},



indexed by Borel sets A € R? and defined by

HA(X)z1 > @(u—v) (2.1)

U,V EX, UF,
{uvtrxr =

and we let
Q= {xeQr, VA ER? Hy(x) < w0}

Following the Dobrushin-Lanford-Ruelle formalism, see Preston (|l9ld), we say
that P is a Gibbs measure with activity parameter 5 > 0 for the pair potential
function @ if P(Q) = 1 and for P-almost every configuration x and any A € R?, the
conditional law of P given x,. is absolutely continuous with respect to ﬂﬁ with the
density exp{—Hx(x)}/Zx(xac), where Zy(xpc) = {, exp{—Ha(xa U Xpc)} 7 (dxae)
is the normalizing constant.

We use at many places in this paper the GNZ equation, after m (@) and

Mgu;@n_and_z_essid (|19_Z9jg|), recalled below, which is a characterization of a Gibbs

measure. It is given in terms of the Papangelou conditional intensity A : R4 x ) — R,
defined for any A > u by

—Hp (xuu)

e — v—u
— e B e Zwex Pv=u) (2.2)

Mu,x) = f

This quantity does not depend on A, provided v € A, and can be viewed as the
conditional probability to have a point in a vicinity of u, given that the configuration
elsewhere is x.

Theorem 2.1 (GNZ formula). A probability measure P on € is a Gibbs measure
with activity parameter B > 0 for the pair potential function ® if for any measurable
function f:Q x RY — R such that the following expectations are finite,

E {Z f(u,X\u)} - B Uf(u, X)A(u, X) du} (2.3)
ueX
where E denotes the expectation with respect to P.

This result can be refined by a conditional version stated in the following lemma.
Its proof is actually part of the initial proof of (Z3), see also Billiot et all (2008,

Proof of Theorem 2) for a particular case. We reproduce the demonstration below.

Lemma 2.2 (Conditional GNZ formula). Let P be a Gibbs measure with activity
parameter [ > 0, with pair potential ® and Papangelou conditional intensity .
Then for any measurable function f : Q x R? — R and for any A € R? such that
the following expectations are finite

E{ DT fw,X\u) | XAC} - E UA £, XM, X) | XAC} (2.4)

ueXp

where B denotes the expectation with respect to P.



Proof. By definition of the conditional law of P given x/,.

fHA(xAuxAc)

E{ Z fu, X\u) | Xpe = X/AC} f Z fu,xp UXAc\u) 7o) 7 (dxy)

ueX A UEX A

e Ha(Xaux)c)
/
=E. { D) flu, Xy u XAc\U)TX,AC)

uGXA

where E_s denotes the expectation with respect to o \- From the Slivnyak-Mecke for-

mula we know that for any admissible measurable
1d&lmn¥ajs|d1MLMedd(ll%g know that for any admissibl bl

function h
E s {Z h(u,X\u)} = BE s U h(u,X) du}.
. ueX A R4

By definition of the Papangelou conditional intensity (22)), we also have for any
ue A, Beabvuw) — o=Hax) \(y, x). Using these two facts, we conclude by

E{ DT FwX\u) [ Xpe = x’Ac}

UEXA

—Hp(Xpux) cuu)
du
Z5 (X)) }

- < A X ) e_HA(XAUXAc)d
e R e o et

e—HA(xAux’AC)

CZa(Xh)
—E UA Flu, XM, X) | Xpe = X’AC} .

= BEW;{? {JA f(u,XA U X;\c)e

= JQ fA fu,xp U X)) A (u,xp U X)e) du7h (dxy)

O

The existence of a Gibbs measure P satisfying the above definition and charac-
terization is a difficult question. Sufficient conditions on the pair potential ® can
be found in (@) and are also discussed in [Preston (I_L9E) The special
case of finite range potentials, i.e. compactly supported functions @, is treated in
Bertin et all (Il}}l&d) As we are mainly interested in this paper by infinite range po-
tentials, we introduce the following assumption, that leads to the existence of at
least one stationary Gibbs measure, as proved in Ruelld M)

[®] The potential ® is bounded from below and there exist 0 < r; < ry < o0, ¢ >0
and 71,72 > d such that ®(u) > cfu| ™ for [u] < ry and [@(w)] < fu] 7 for
Juf = 7.

Examples of potentials satisfying [®] are ®(u) = ||ul|~7 with v > d and ®(u) =
e~ ll|u|= with v > d, in which cases the assumption is satisfied with v, = 75 = 7.
Another important example is the general Lennard-Jones pair potential defined for
some d < yo < 71 and some A, B > 0 by ®(u) = Alju|™ — B|u|~72. The standard



Lennard-Jones model corresponds to d = 2, v, = 12 and 75 = 6. The main interest
of this model is that it can model repulsion at small scales and attraction at large
scales.

2.3 Inference for infinite range Gibbs point processes

In this section, we extend the usual statistical methodologies available for finite
range Gibbs point processes to the infinite range case. We assume that the Gibbs
measure is parametric, in that the explicit expression of the associated Papangelou
conditional intensity (2.2) is entirely determined by the knowledge of some parameter
0 € O, including the activity parameter § > 0, where © is an open bounded set of
RP. We stress this assumption by writing Ay instead of A and ®4 instead of ®. For
brevity, assumption [®] now means that ®, fulfills this assumption for any 6 € ©.

Assume that we observe the point process X in W,, where (W,,),,>1 is a sequence of
bounded domains which converges to R? as n — 0. As outlined in the introduction,
the pseudolikelihood and the logistic regression methods are popular alternatives
to the maximum likelihood as they do not involve the normalizing constant. The
associated estimators are respectively defined as the maximum of

LPLw, (X;0) = > log)\g(u,X\u)—J Ao(u, X) du (2.5)

ue XWn Wn

Ao (u, X Ao (u, X
LRLyy, (X;6) = log - o, Xu) —J plogwcm (2.6)

where p is some fixed positive real number.

A problem however occurs. The integrals in (23] and (2.6]) are not computable
in practice because for values of u close to the boundary of W,,, A\g(u, X) depends
on Xyye which is not observed. When X has a finite range 0 < R < o0, meaning
that ®y is compactly supported on the euclidean ball B(0, R) or equivalently that
for any u € R? and any x € Q, Ag(u,x) = Ag(u,Xp(,r)), we can simply substitute
W, by W, © R in (23] and (Z8), where for a bounded domain A < R? and some
k = 0 the notation A © k stands for the domain A eroded by the ball B(0, x). Using
this border correction Ag(u, X) can be indeed computed for any u € W,, © R. As a
remaining practical issue, the integrals have to be approximated by some numerical
scheme or by Monte-Carlo, see Baddeley et all (2014) for an efficient solution.

The asymptotic properties of the pseudolikelihood and the logistic regression es-
timators are well understood in this finite range setting, see the references in intro-
duction. Maximizing the log-pseudolikelihood (or the logistic regression likelihood)
on W, © R is equivalent to cancel the score, i.e. the gradient of LPLy, or(X;6) (or
LRLw, or(X;6)) with respect to 6. The key-ingredient is that both scores constitute
unbiased estimating functions, since by application of the GNZ formula (23] their
expectation vanishes when 6 corresponds to the true parameter of the underlying
Gibbs measure. Standard theoretical tools for unbiased estimating equations (see
e.g. M (@)) can therefore be used to study the consistency and asymptotic
normality of the associated estimators.




In the infinite range setting, the situation becomes more delicate since for any

u, Mo(u, X) depends on X, for any A = R?. In this case, we introduce the following
modifications of (2.5]) and (2.0)

LPLw,ca, (X:0) = > logMe(u,Xp,,\u) - f No(u, X, ) du (2.7)

UEXWn@an Wnan

)\e(u7 XBu,n) + p

I:ﬁT_Wn@an (X;0) = Z du

UEXWn@an

plog

)\0 (U/, XBu,n\u) J‘
lo —
WnBan P

)\9 (u7 X'Bu,n\u) + p
(2.8)

where B, ,, = B(u, a,) and (o,),>1 is a sequence of positive numbers, which agree
with the classical border correction for finite range interaction models when «,, = R.
Whatever the range of interaction is, each term above can be computed in practice
from the single observation of X in W,,, provided the integrals are approximated
as usual by numerical scheme or by Monte-Carlo. From a theoretical point view,
these modifications introduce new challenges since the gradients of LPLyy, o4, (X;0)
and Iﬁwn@an (X;0) are no longer unbiased estimating equations in the infinite
range case. To overcome this difficulty we prove a new central limit theorem in the
next section that allows us to deduce in Section Ml the consistency and asymptotic
normality of the estimators.

3 A new central limit theorem

When the Gibbs point process has a finite range, the asymptotic normality of the
pseudolikelihood or the logistic regression estimators are essentially derived from a
central limit theorem for conditionally centered random fields, see the references in
introduction. This connection comes from the fact that in the finite range case, the
score function of the pseudolikelihood (or the logistic regression) is not only centered,
as noticed in the previous section, but also conditionally centered, by application
of the conditional GNZ formula (2Z4]). As already mentioned, this property allows
to prove the asymptotic normality without mixing assumptions, which is crucial for
Gibbs point processes.

In the infinite range case, the score functions of the log-pseudolikelihood and
the logistic regression are neither centered, nor conditionally centered, and a new
central limit theorem is needed. In our Theorem [3.1] below, the conditional center-
ing condition is replaced by condition (d) and we avoid mixing assumptions. The
other conditions are mainly due to our non-stationary setting induced by the border
correction with the sequence «,,. They allow in particular to control the asymptotic
behavior of the empirical covariance matrix in (3.1]).

For two square matrices A, B we write A > B when A — B is a positive semi-
definite matrix.

Theorem 3.1. For n € N and j € Z%, let X,,; be a triangular array field in a
measurable space S. Forn € N, let T, = Z¢ and «,, € R, such that |I,| — oo and

a, — o asn — 0. Define S, = Zjdn Zy,j where Zy, i = fni(Xnk, k € Ky ;) with



K.;=1{keZ |k —j| < a,} and where f,;: S*i — RP is a measurable function.
If &% = o(|Z, |) asn — oo and

(a) EZ,; =0 and sup,,., supj;cr, E | Z;|* < o0,
(b) for any sequences (I,,) and () as above, as n — oo,
Za ™ Y [E(ZasZi )| = 0()  and (T[T Y [E(ZasZ))] = ol1),
J:k€Ln J, ke,
[k—j|>an
then denoting ¥, = Var(S,) and

= Z Z Z ZT—er7

J€Ln k€L,
Ik__] ‘ <an

we have the following convergence
Z.J T E S, — Sa] = 0. (3.1)
If in addition

(c) there exists a positive definite matriz Q such that |Z,|7'%, = Q for n suffi-
ciently large,

(d) asn — o
T 72 Y BB (Zngl Xogo ke # §)| =0,

JE€Ln

then
125, 4 N0, I,) (3.2)

where 5 stands for the convergence in distribution.
Proof. We have
Zal 7% = Sl < |Zal 780 — BE)] + | T EE0) — Sl
The last term satisfies
TEC) =Sl < 1T 3 [B(ZasZ00)] = o)

j,kely,
[k—jl>an

by assumption (b). For m,m’ = 1,...,p, let Ay = (in — E(f]n)) . We have

mm/
A = Zjdn U, ; where

= 2 {%0iZis = BZ0s 200

kel ;



and Z,,; = {k€Z, : |k — j| < a,}. The assertion (B3] is proved if we show that for
any m,m’, Var(|Z,| ' Apm) — 0 as n — oo. It is clear that U, ; depends only on
Xk for [k — j| < 2ay,. So if we let j, 5’ € Z,, such that |j — j'| > 4o, then

E(Un;Unj) = E{E (UnjUnj | Xop, |k —j| > 2an)}
=E{Uny E(Un; | Xog, |k —J] > 20,)}
=E{Un; E(Un;)} =0

whereby we deduce that

Var(Apm) = Y, B(Un;Uny).
3,3'€In
|j*j/|<4an

Now, by condition (a) and Hélder’s inequality

EUZ,= Y E [{Zn,jz,jk —EB(Zu 2N} A Z D — E(Zn,jz,jk,)}mm,]

k k€T, ;
Sc Z 4
kK€L, ;
2
<c (sup #{keL, |k—j| < an}> = O(a?h).
J€Ln

From Cauchy-Schwarz’s inequality, we continue with

Var(Apw) < Y, E(U2)VPEUL ;)Y = O (a3T,)

3:3'€Ln
l7—3'|<4don

leading to
3d
Var(|Z,| ' Apt) = O <—") = o(1)

which completes the proof of (B.1]).
We now focus on (B.2) and we let

Sp =528, Suj= > Zux and S,; =325,

kGIn’j

where we recall the notation Z,,; = K, ; n Z,. According to Stein’s method (see

Bolthausen, [1982), in order to show (B.2) it suffices to prove that for all u € R? such
that ||u/ = 1 and for all w e R

E {(iw — uTgn)ei““Tgn} — 0

as n — o0 where i = v/—1. Letting v = wu, this is equivalent to show that for all
v e R, |E(A,)| — 0 where A, = (iv — S,)e™ 5». We decompose the term A, in



the same Splrlt as &lﬁhﬁ(ﬂsﬁd (Il_%d) : An = An,l - An72 - An,3 Where

Apy =i (L, = 52N 7,580 5

n

JELn
. TS Z1/98 w——
_ lelv Sn(Ip o an/QZnan/Q)v
v’ Spy—1/2 . TQ —iv’ S,
Ao =ce oY Z Zpi(1—iv'S, j—e )
JEL,
—1/2 iv! (Sp—Sn 4
A = 572 3 7, st Gnm5n)
JEL,

and prove in the following that |E A, .| — 0 for r = 1,2,3 as n — .

First, assumption (c) implies that |Z,|7'%, is a positive definite matrix for n
sufficiently large, which is now assumed in the following. By ¢ we denote the constant
P/ Amin(Q) where Apin (M) stands for the smallest eigenvalue of a positive definite
squared matrix M. For n sufficiently large, Amin(|Z,|713,) = Amin(Q) > 0 whereby
we deduce

|52 = Zal ™2 6 (|Z0 | 21) 2 < 02T, 2, (3.3)

Using this result and the sub-multiplicative property of the Frobenius norm, we get
B Ansl < 0] B, - 57428, 5,17)
< ol 12217 E 2, — 2
<) 2] E )20 — B

whereby we deduce that |E A, 1| — 0 from (B1)).
Second, since |1 — e7¥* — iz| < 22/2 for any z € R, we have

1. _
[An| < 5H2n1/2|\ > 1Znsl(07 80 ;)
JEL,
[v]1? o CR o
< G IZ PP Y By < = |l ) By
jGIn jeIn
where
Buj = 1Zuil 1> Zul? = 1Zusl >, Z)4Zuw >0.
k:GIn’j k,k’EInJ’

Let us decompose B, ; = BT(LIJ) + B,(f; where BS; = Bn;1(|Zn;] < |1Z,]Y%) and
B,(f; = B, j1(|Zn | > |Z.|"%). By assumption (b), we have

1
IEBVI < IV N |E(Z] Zuw)|l = O VOITayl) = O(T.Voad).  (3.4)

kK€L, ;

By assumption (a), using Holder and Bienaymé-Chebyshev inequalities, we continue

10



with

2
EBY < > E{|Zujl | Zusl | Zuwl 1(1Z0y > 1Z.]Y))}
kK€L, ;
3/4
< D W P Zug) > 1T V0) VA
kkeIn]
3/4 1/4 _
<N4/ Z N4/ |Z,| 1o
kK€, ;
< cpy|T,| V00, (3.5)

Combining (34)-(B.H), we deduce that as n — o

2d
=0 <|I |1/2|Z |1/6) + O (|I 7 .|~ 1/6) =o(1)
since a2? = o(|Z,]).

Third, for any j € Z,, S, — S, ; does not depend on X,, ;. This yields

EA,s =35, Y E{ "D B(Z, ;| Xop k # )}

JjELy,

|EAn| < EfA,

whereby we deduce, in view of (B3), that
|EAus] < dZal ™2 Y EIE(Zng | Xk # )
JEL,

which tends to 0 by assumption (d). O

4 Applications to infinite range pairwise
interaction Gibbs point processes

In this section, we present asymptotic properties of the maximum pseudolikelihood
estimate, derived from (2.71), for infinite range Gibbs point process. Similar results
for the maximum logistic regression derived from (28] are presented at the end
of this section without proof. We focus on exponential family models of pairwise
interaction Gibbs point processes and rewrite the model ([Z2) for any u € R? and
x € () as

Ao(u,x) = e~ Zoex Po(v=u) — e 0T Hwx) (4.1)
with 6; = —log 8 and ¢t = (¢y,...,t,)" where ¢;(u,x) = 1 and
X)ngm(U—u), m=2,...,p. (4.2)
VEX
In that connection, our framework amounts to assume that ® = >* _ 6,,9,,. For
convenience we let g3 = 0 and we denote by ¢ the p-dimensional vector g =

(0,92, ...,9,)". We make the following assumption on g.

[g] For all m > 2, g,, is bounded from below and there exist 71,72 > d and ¢,,79 > 0
such that

11



(i) V|z| <roand Vo € ©, 8 ga(x) = gl
(i) Vm >3, gm(z) = of|z[ ™) as ] — 0

(iii) Vm =2 and V|z| = ro, |gm(2)] < cfz]| 2.

Since O is bounded, [g] implies [®] which yields that for any 6 € © there exists
a Gibbs measure Fy. Assumption [g] allows us to specify which function g, is
responsible for the behavior at the origin of ®y, namely g». Note that the Lennard-
Jones model defined in Section [Z2 (and the other examples presented in this section)
fits this setting with 0y = A, 03 = —B, go(u) = |u|™ and g3(u) = |ul 2. In the
sequel, 6* stands for the true parameter vector to estimate. In other words, we
assume observing a realization of a spatial point process X with Gibbs measure Py«
on W,.

For exponential family models (1)) the score function of the log-pseudolikelihood
defined by (7)) writes sy, o, (X;0) where for any A < R?

sa(X:0) — f o, X, o, X, ) du— 3t X, ). (43)

A ueX A

Our first result establishes the strong consistency of the maximum pseudolikeli-
hood based on (2.7)) for infinite range Gibbs point processes. In close relation,

) proved the strong consistency of estimators derived from (Z3]). As pointed
out in Section 23] the form (Z3]) of log-pseudolikelihood is however unusable as it
can only be computed if X is observed on R%. We obtain the same result but for
estimators derived from the computable pseudolikelihood given by (2.7).

Proposition 4.1. Assume that for any n € N, W,, is a convex, compact set and
o, a sequence of real numbers satisfying W,, — R?, o, — o0 and a,, = o(|W,])
as n — 0. Then, the function § — —Iﬁwn@an (x;0) is a convex function for any
x €  with Hessian matriz given by

d

“ a0 LPLw,ca, (X;0) = —Wswnean(x 0)

= J t(u, Xp,,)t(u,Xp,..) Ao(u,Xp,,,)du. (4.4)
WnOam
In addition, assume that [g] holds and that for any y € RP\{0}
P{y"t(0,X) # 0} >0 (4.5)
then the maximum pseudolikelihood estimator
é\ﬁ = argmaXy.o Ijﬁ/LWn@an (X;0)
converges almost surely to 0* as n — 0.

Proof. The basic assumption on W,, and «, ensures that W, © «,, is a sequence
of regular bounded domains of R? and that |W,, © a,| — o as n — o0. Since
anf stationar% Gibbs measure can be represented as a mixture of ergodic measures

), it is sufficient to prove consistency for ergodic measures. So, we
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assume here that Fy- is ergodic. Since © is an open bounded set, and by convexity
of 0 — —LPLW Sa, (X;0), then from Guyon , Theorem 3.4.4) we only need

to prove that K,(0,0%) = |[W, © a,|™* {LPLWn@an(X; 0*) — I:IBT_Wn@an(X;G)} —
K(0,60*) almost surely as n — oo, where § — K(0,0*) is a nonnegative function

which vanishes at § = 6* only. We decompose K,(,6*) as the sum of the three
terms T + T5(0*) — T5(6) where for any 6 € ©

Ty = W, © an| H {LPLiy a, (X: 60%) — LPLyp on, (X 0))
T5(0) = | W, © an| {I:IBT_Wn@an (X:0) — LPLyy, on, (X; 9)} .

Lemma [A.2] shows in particular that \g(0,X) and [07#(0,X)|\g- (0, X) have finite
expectation under FPy«. Hence, using the ergodic theorem for s atlal processes of
Neuven and Zessin (|19_7_9_a|) we can follow the proof of Mase ) or the proof of
Billiot et all (2008, Theorem 1) to prove that Ty — K (6, 0*) almost surely as n — o0

where

K(8,6%) zE(Ag*(O,X)[ ©*-0)TH0.X) _ (1 4 (p* 9)%(0,){)}])

which is a nonnegative function that vanishes at # = 6* only, under the identifiability
condition (LH). So the rest of the proof consists in proving that 75(f) — 0 almost
surely for any 6 € ©. We have Ty(0) = T] + T3 where

T = W, ©ay|™" Z 0" {t(u,Xp,, \u) — t(u, X\u)}

UEXWn Oan

T, = |Wn@an|_1f {No(u, X) = No(u, Xp,,.)} du.
WnBan

By Lemma [AT] the boundedness of © and [g], there exists 7/ > 0 such that

C
T <= Wa©an™ ), H(u,X\u)
(%0

ueXWn@an

1 < S IWa©anl™ | R H i X)d(, X) du
O{n Wn@an

By Lemmal[A-2] the random variables | H (0, X)| A+ (0, X) and e““©X) H (0, X)\y(0, X)
have finite expectations under Py.. Hence, using again the ergodic theorem

Wo©an|™ > H(u,X\u) - E{H(0,X)X(0, X)}

UEXWn@an
(W, © an| ™! J "X H (u, X)Ag(u, X) du — E {e““ O H (0, X) (0, X)}
WnOan
almost surely as n — oo, whereby we deduce that T5(0) — 0 almost surely. O

The next result establishes the asymptotic normality of the score function as-
sociated to the modified pseudolikelihood LPLW ca, (X;0) at the true value of the

13



parameter 6 = 6*. The proof relies on the central limit theorem of Theorem Bl As
a consequence we deduce the asymptotic normality of the associated estimator.
These results require the following notation: let ¥,,, ¥, and Uy, the (p, p) matrices

Y, = Var{sw, ca, (X;0%)}
Yo =E{t(0,X)t(0,X) A+ (0, X)}

| B 40010, 3) A0 0,30 (0. ) H1 - %o

+ JRd E {2+ (0, X) Ao+ (v, X) }g(v)g(v) "e e ®) du (4.6)
Uy, =E {(0,X)t(0,X) "X+ (0, X)}. (4.7)

The matrices ¥, and Uy, are indeed correctly defined, as [g] implies on the one hand
that all the expectations involved are uniformly bounded in v by Lemmas [A.THA 2,
and on the other hand that

Jd 1—e®®dy <o and Jd lg(v)g(v) e %™ dv < 0.
R R

Theorem 4.2. Under the assumptions of Proposition [{.1) with v > 5d/2, the as-
sumption that ¥ 1s a positive definite matriz and if o, = ca|Wn|“/d where ¢, > 0
and a is such that m <a< %, then we have the two following convergences in
distribution as n — o0

(i)
S 250 g (X3 07) 5 N(0, 1),
(i1)

~

W, |12 <9L~PL - 9*) N (0, U515, U5 .

The restriction v5 > 5d/2 includes the standard Lennard-Jones model in dimen-
sion d = 2 for which v = 6. Note that the choice of the sequence «,,, or equivalently
of a, is always possible since 75 > 5d/2 implies d/{2(v, — d)} < 1/3.

As shown in the proof of (i), S can be replaced by W, © an|_1/22501/2. On
the basis of (Coeurjolly and Rubak (2013), it should be possible to construct a fast
estimator of the asymptotic covariance matrices >, and U,. This is not investigated
here.

Proof. At several places in the proof the sequence p, = |Z,|"/?/a) for some ' =
Yo —d—¢ and 0 < £ < 75 — d is involved. Then
|In|1/2
po = = = O{ W,

n

d/2—a('(yig—d—s) } (4.8)
tends to 0 since a(y2 — d) > d/2 and there is no restriction to choose ¢ sufficiently
small to satisfy ae < a(y2 —d) — d/2.

We denote by A; the unit cube centered at j € Z¢, by A, ; = A; n (W, © o)
and by Z,, = Z% the set such that W,, © a,, = Ujez,, An ;. We write for short SAn; =
sa,,;(X;0%) and we let Z,, ; = sa,, — E(sa, ;). Then we have

SWn@Oén = Sn + E(Swnea’n)

14



where S, = > . 7 Zy ;. Clearly Var(Sn) = Var(sw,oa,) = 2n. The proof of (i) is

completed if we show that ¥,7?S, > N(O,Ip) and %, "/ E(sw,0a,) — 0. Let us
prove the first convergence by application of Theorem [B.11
From the assumptions on the set W, and by definition of Z,,, we have |Z,| =
O(|W,|), see e.g. [Coeurjolly and Mallerl (2014, Lemma A.1). Therefore the choice of
a, clearly satisfies the hypothesis of Theorem B.1], namely a2 = o(|Z,|).
Assumption (a) of this theorem holds by definition of Z,, ; and Lemma [A.3]
Concerning assumption (b), let us introduce the notation, for any A = R,

S,A = J t(u, XBu n))\g* (’LL, X) du — Z t(ua X'Bu n\u)
R ’ ,

uEXA

Note that from the GNZ formula E s/, = 0. We have from Lemma [A.4]
2 |BZasZi0l = 25 [ Covlsan,sa.l

j kEIn j,kGIn
Z H Cov(sa,,»5a,,.) — Cov( SA H Z H Cov(s’Anyj, SlAnk)H
] kel, ,] keZn,
c
< Z + - + Z H Cov(sy ,sh )H+ Z clk — 17
G ReTn ( (1+ |k’ i) a?ﬂ) G ReTn nTE S eTn
= k|<2ro = k|>2ro

< ca, || + ¢fTulpp + clTal| Var (s, )| + ¢/Z]

which is O(|Z,]) by LemmalA.3] and from ([A8). We derive with the same ingredients
that
Y | B(ZZ]0)| = ol1Z) + O(Tli) = ol )

7,kely,
[k—j|>an

which proves assumption (b).
Since Y4, is assumed to be a positive definite matrix, assumption (¢) holds if we
prove that |Z,|™! Var(S,) — X, as n — oo . For this, let ¥/, = Var(s{,v Oa,,) and

=2 X ZuZie =2 2 (b))

j€In  keIn J€Tn  keIn

‘k_ﬂga’n |k'_j‘<04n
We have | |I 713, — S| < Ty + Ty + T3 + T where
= L8 - EE), T = [T EE) - EE)],
Ty = T NEE) =Sl To=IZ 7S — S

First 7 < |[Z,| "' E||£, — 2, which tends to 0 from (BI) in Theorem B as we
already proved assumptions (a)-(b). Second applying Lemma [A.4]

— T
L<|T™ ) D IE(ZasZli) —Elsh,,(sa,,) )

j€ln keI,
|k—jl<an

=27 Y Y | Cov(sa,,.sa,,) — Cov(sy, . sh, )|

j€L, keI,
lk—jl<on

= 0(a,”) + O(a,™)
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and Ty — 0 since the assumption 75 > 5d/2 implies 27'—1 > 0 for ¢ sufficiently small.
Third, note that 3}, = 3., 7 E{S’An’j(s’An’k)T}, so that from (i) in Lemma [A.4]

Ti<|Zl™ ), Y, IBfsh,,(sh,,)" )

J€In  keIn

|k—j|>an
1
|I|1Z Z \CZ,—zo(l).
j|“f2 |Z|“f2
J€Ln keI, [i|>an
|k— J|>C“n

Finally 7y — 0 from (i7) in Lemma [A.4] which concludes the proof of condition (c)
of Theorem [B.1]

To prove assumption (d), we apply the conditional GNZ formula (2.4]) to write,
for any j € Z,,,

E(Zn; | Xa,, k#7)

=F [Jv t(u, XBu’n) {)\9* (’U/,X) — )\9* (u,XBuyn)} du | XAn,k’ k #* j
Anj

— EJ t(u, XBu,n> {)\9* (u, X) — )\9* (u, XBu,n)} du.
A

n,j

From Lemma [A1] we have for any v € R and x €

C
[t(u, x5, )| [Agx (u, x) = Ao+ (u, X, )| < —Y (u, %)
(677

where Y (u,x) = [[{|tm|(u, X) 1 | H (u, x)ecC0 %) \g. (u, x) using the notation of the
lemma. Since |A,, ;| < 1, we deduce from the stationarity of X and Lemma [A.2 that

E[E (Znj | Xa, ok #4)] < (0,X)} = O(a, ™).

n

Hence
IZ.[ 7 Y B E (Zoy | Xa,,k#5)| = Opn)

JELn
tends to 0 from (4.8]). All conditions of Theorem Bl are therefore satisfied, which

yields that ¥,7%S, -5 N(0,1,). It remains to prove that 2, E(sw,0m,) — 0.
This is a consequence of the GNZ formula, [33]), Lemma [A ] and the condition
a(ve — d) > d/2 since

12512 E(swea)| < 12521 E(sw.an)|
|| 7V EJ Y (u,X)du = O (p,) = o(1).

WnOan

(77) It is worth repeating that  — —I:IEIJ_W,L@% (x;0) is a convex function with
Hessian matrix given by (&4]). Following Lemmas [ATA 2] and arguments developed
in the proof of Proposition L1l we leave the reader to check that almost surely

_ d —~ d
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and

—|W,, © an| ' ——=LPLiy, 00, (X;0) — E{£(0, X)t(0,X) "Ay(0, X)}

d
dgdot

as n — oo, which equals to U, when 8 = 6*. We also note that implies that
Uy is a positive definite matrix. These facts and (i) allow us to apply (@,
Theorem 3.4.5) to deduce the result. 0

The following proposition focuses on the maximum logistic regression and states
its strong consistency and asymptotic normality. The result is given without proof,
but we claim that it follows by the same arguments as those involved in the proofs
of Proposition A.1] and Theorem

Proposition 4.3. Under the assumptions of Proposition[{.1] and Theorem[].3, the
mazximum logistic regression estimator defined by

~

QI:I\?T_ = arginaxycg EﬁT—Wn@an (X;0)

converges almost surely to 0* as n — o0 and satisfies the following convergence in
distribution

(Wl 2 (B = 07) 5 N 0,V T V)
where denoting h(u,x) = pt(u,x)/{ e+ (u,x) + p} for any u e Re x e Q,
Lo = B {h(0,X)A(0,X) A+ (0, X) }
+ J E {h(0,X)h(v, X) "Ag+ (0, X) N+ (v, X) } {1 — e~ "} dv
Rd
* f E {0, X) g+ (v, X) A, 2 (0, X) Agh(v, X) T} e~ ) duy
Rd

Vi = %E {n(0,X)R(0,X) X+ (0,X)}

with Ayh(u,x) = h(u,x U v) — h(u,x) for any u,v € R? and x € €.

A Auxiliary results

We gather in this section several auxiliary results. They are established under the
setting, assumptions and notation of Section [l In particular, we recall that A; is
the cube centered at j € Z? with volume 1, A,,; = A; n (W, 0a,), W, wjeznAn,j,
By, = B(u, a,) and

sa = sa(X;0%) =J t(u,Xp,,. ) Ao+ (u, Xp, ) du — Z t(u, Xp, ., \u) (A1)
A uEXA

s = s\ (X;0%) = J t(u, Xp, ,) Ao (u, X) du — Z t(u, Xp,, \u). (A.2)
A

uEXA
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Lemma A.1. Let j € 7, and uw € A, ;, assume [g], set ¥ = v — d — ¢ where
0 <e <y —d and define

[tm|(u,x) = Z|gmv—u

VEX

x) = > o —u| 1o = u| = ro)

VEX

x) = > v —u| " 1(jo — ] = o).

VEX

Then, if o, = 1

(1) [tm|(u,xp,, )| < [tm|(u, %)
(“) |tm(u’ X) - tm(ua XBu,n)| < Cmin{G(ua X)7 O‘;A/H(ua X)}
(iii) V0 € O, [No(u,x) — Ng(u,xp,,)| < e\ (u, x) min{G(u,x), o,

n

V' H(u,x)}.

Proof. The first statement is straightforward from the definition. For the second
one, from [g] and since a,, = 1o,

[t (1, %) = (1, Xp,.,)| = | D g (v = w)L(J0 = u] > )]

VEX

<ey o —ul 1o —ul = aw),

VEX

which is clearly lower than ¢ G(u, x). Pushing one step further, we get

[t (%) =t (. %Xp,.,)| < e Y o —ul| "L — ul > an) < cay” H(u,x),

VEX

which proves (7). For the third statement, since for all z, |1 — e”| < |z|e!*l, we have

Sexge  Po(o-u)
u,n

Mo, %) = Mot x5,,)| = ()1 — e

<ol X)) Z Dy(v — U))G}Z“E"Bﬁ,n ¢9(”‘“)"

UEXBﬁ n

The result follows from the same inequalities as before, noting that

‘ Z Dy ( v—u‘ )29 gm(v—u))<02|gm(v—u)|1(Hv—uH>an)

veXpe vEXpE VEX

where ¢ = (p — 1) supyeo sup,, |0m| < o0, since © is bounded. O

Lemma A.2. Under the assumption [g], then for any 6 € © we have the following
statements where E denotes the expectation with respect to Py«.

(i) For any q = 0, E{\s(0,X)} < o0.
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(ii) Let f: R — R be a measurable function such that |f(u)] < c(1 + |ul])™ with
v > d, then for any ¢ = 0

E {eq|zuex f(HuH)|} .

(iii) For any q =0, ¢ >0 and § € O, E{|t,,,|(0,X)7\(0, X))} < 0.
(iv) Let fi and fy be two functions as in (i1), then for any qi,q2,q3 = 0 and ¢ > 0,

B {Itml(()’X)ql > A

ueX
Proof. The first statement is a consequence of Proposition 5.2 (a) in Ruelld (M
It relies on the following property, see also Masd , Lemma 2). If¢: Rt - R*
is a decreasing function with So Pttt dt < oo, then for any ¢ > 0,

2
93| Suex f2(|u|>|)\9(07x)q'} < o,

E(quueX 1/’(”“”)) < 0.

The proof of (ii) is an easy consequence of this property. We deduce in particular
that all moments of >,  f(|u|) exist and are finite. Assuming (i77) is true, then (iv)
is a straightforward consequence of the previous properties and Holder’s inequality
Let us prove (iii). For any € > 0, using the fact that for any ¢ > 0,k > 0, z — 2%~ "

is bounded on [0, o0), we have

|tm| (0, %)% (0, X)q’ _ |tm| (0, X)qe—q’ S Okt (0,%)

—aq / _ /NP
_ |tm|(0,x)qe q'€|0mtm (0,%)] oq'€lmtm (0.%)|=¢" 25 Ortr (0,%)

< ¢ o0 Tuex Bol)
where ®p(u) = SP_, Orgr(u) — €|0mgm(u)|. The proof of (iii) is completed in view
of (i) if we show that ®y satisfies [®] for any 6. Write ®y(u) = O (u) + Po(u) with

Bi(u) = Zoa(u) + Z rgil), Balr) = L) — <lomgm(w)].

From [g], we deduce that there exists r > 0 such that |u| < r implies ®(u) >
c|u|~7. Moreover if m = 2, ®(u) > 0 for all |u| < ro, provided e < 1/2. If m > 3,
there exists 7’ such that |u| < " implies |09, (u)| < ¢,|u| 7 /(4e) where ¢, is the
constant in [g], yielding ®5(u) > (c,/4)|u| . In all cases, we obtain that for some
ry > 0, |lu| < r implies ®(u) > c|u|™*. On the other hand, it is clear that if
|u| > 7o then |®(u)| < ¢|u| = and that &, is bounded from below, proving that it
satisfies [®]. O

Lemma A.3. Let j € T,, and s, = (54, )m. 'respectively 81y = (SA, )m, be the m-th
coordinate of sa, , gwen by (A, respectively s given by M Under |g], if
> 1o then, for any q € N, E(|s;,|?) < o0 and E(|s/ 7) < 0.
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Proof. The proof being similar for s, and s/,, we only give the details concerning
Sm. From (A.J)) and the binomial formula, the statement is a consequence of

p1

E 2 t (u, X, \ut)

uEXAn J

p2

f fltt, X5, o (1, X, ) du| b < o0
Anj

for any p1, p2 € N. Applying the Cauchy-Schwarz’s inequality, we consider each term
above separately. First, for any p € N, by Holder’s inequality and using Lemma [A.T]

we get
}

8
< CJ E {\tm(ua XBu,n) ‘p )\9* (u7 XBu,n)p} du

¥

f b1, X5, ) hge (1, X s, )
Ay j

< CJ E [|tm(ua X)|p {)\0* (U, X)p + |)‘9* (u7 XBu,n) - )‘9* (u’ X)|p}] du
<o B X0 N X {1+ G 967
A

n,j

which is finite by Lemma [A.2] and the stationarity of X.
Second, we can prove by induction and successive application of the GNZ for-

mula, see Corollary 3.1 in Decreusefond and Flint (2014), that

p

=2 f Mo ({u, .. uk}xﬂt“’“ (u, X5, , U {u\uc}) du

k=1 ('Pl ,,,,, Pk ETk

where 7;’“ is the set of all partitions of {1,...,p} into k subsets, |P| is the cardinality
of P,u= (uy,...,u) and u\ug = (U1, ..., Up_1,Ups1,- -, Ug). Since

k k
)\9*({“17 cet ,Uk}, X) = 1_[ )\.9* (Ug, 1_[ eicbe*(uzful
/=1

i=1,i#l

we obtain by application of Holder’s inequality,

p
ES| Y tw(u,Xp, \u)| ¢ <
UGXA j
k
Z > HEI/’“J A (g, X)F [t (g, X s, ,, U {a\ugh) [PV ] e mPor 70 qu,
k=1 peTh (=1 Ak i=1,i0
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The proof is completed if we show that all expectations above are finite. To that
end, note that

k
b (g, X, U {W\Ue}) =t (e, X, )+ D Gon(un — )

h=1,h#(
whereby, denoting ¢ = k|P)|
k
EJ >\9* (UZ, X)k|tm(u€7XBu’n ) {U\Ug}”q 1_[ e_kcbe*(ui—ue) dll
Ak i=1i#l
e k
<Z<)J Z Gm (up — ug)| X
r=o N/ JAk ST

1—[ ok (ui—ue) B {|tm(uz,XBu,n)|q*r>\9* (Uz,X)’f} du.

i=1,i#l

The last expectation is finite in view of Lemma [A.2] so the above expression is lower
than

which is finite from [g]. O

Lemma A.4. The following properties hold under the assumption [g].
(i) For Ay, Ay two bounded Borel sets of R?
Cov(sy,,Sh,) = EJA K t(u, Xp, )t (u, Xp,.,) " Ao (u, X) du
+ EJA JA t(u, Xp, ), Xp,.,.)  { e (1, X)Ag (v, X) — A ({u, v}, X) } dudv
+E JA JA Ayt(u, Xp,  ){Aut(v, XBU’H)}T)\G*({u, v}, X) dudv

where for any u,v € R%, x € Q and any measurable function f : R? x ) — RP,
the difference operator A, is defined by A, f(u,x) = f(u,x v v) — f(u,x).
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(ii) Let (A,)n=1 be a sequence of increasing domains such that A, — R? asn — oo,
then
A7 Var(s)y ) — Sy

where Yo, is defined by (40).
(iii) Let j,k € T,. Then if o, = ro and |k — j| > 2rq,

HCOV(S’AW, S| < ek =g

(iv) For j, k€ I, denote
Cr,jk = Cov(sa, ;,50,,) — COV(S'AW_, S,Amk).

Then if o, = rg, for any 7,k € L,

C C

; - + —

ol (1 + [k—j[) a2

N Casil = Oy, |T,]) + O, |T,[)
7,keLy,

Y el = Ol IT]) + Oy~ |,
7,keLy,
‘k_]lga’n

N 1€kl = o(|Zu]) + Oy Z,2),

J:ke€In
lk—j|>cn

|Co gl <

!

as n — oo, where we recall that v = vo —d — ¢ with 0 < & < 75 — d.

Proof. (i) is a slight extension of \Coeurjolly and Rubak dZQ]j, Lemma 3.1) where

the case Ay = Ay was considered. The proof is omitted.
For (ii), we note that for any u,v € R m > 1 and x € Q

Ao (1, %) Mge (0, %) — Mg ({1, 0}, X) = Age (1, X) Age (v, x) {1 — e~ Por (0=} (A.3)
and

0 tm=1

gm(v) ifm =2 (A4)

Ayt (u, X) =t (u,x U V) =t (u,x) = {

which leads to Aut(v,x) = g(v). Letting |t|(u,x) = {|t;] (1, X)}m=1 for any u € R?
and x € €, we have for any u,v € R?

[t(u, X, (0, X,,) " < | 1t (u, X)Jt] (v, X) .

The result is derived using the dominated convergence theorem, the stationarity of
X and since from Lemma [A.2] the random variables | |¢(0,X)[¢[(0,X) | Ag-(0, X)
and | [¢](0, X)[t](v, X) T||Ag= (0, X) Ao+ (v, X) have expectation uniformly bounded in
v while by [g]

J 1—e®®|dv <o and f lg(v)g(v) e~ dv < 0.
R4 Rd
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To prove (iii), we apply (i) to the disjoint sets A, ;, A, and relations (A3)-

(A4) to get

HCOV(S’AM, S/An’k)

EJ J [t X[ (0, X) T Age (11, X)Age (0, X)L = € du do

Apj n,k

+ EJ f lg(v —w)g(v —u) T Ags (u, X)Age (v, X)e ®* " dudo.  (A.5)
A

Since |k — j| > 2ry, we deduce from [g] that for any (u,v) € A, ; x A, ) and any
m =2, |gm(v —u)| < ¢|k — j|772. This leads to

lg(v —w)g(v—u)'|| < clk - j| 7.

Similarly since ®p» = o 05, 9m, for any (u,v) € Ay jx Ay, =% ) < el 7l <
c and
1= e 0] < g (0 — w) |l 7 < ek — |72 (A.6)

Plugging these inequalities in ([A.5]) shows (i), as the remaining terms have finite
expectations from Lemma [A.2
We now focus on (iv). Let us write sa,, ; = s, +1; where [; = SAW_ o (u, x) du
and
ﬂ-n(u’ X) = t(u’ XBu,n){AG* (U/, XBu,n) - )\9* (U/, X)}

We have

Cov(sa,;5a,,) — COV(S’AM, S/Anyk)
= E(sh, 1)) + B(sh, 1)) + B(LIL) = B(sa, ) E(sa,,) . (A7)

Let us control each term in ([A.7). From the GNZ formula

E(sy, Ik f f t(u, X) N+ (1, X){mp (v, X) — 7, (v, X U )} dudo.

By definition of \g~ and ¢ (see (2:2) and [2))), we have for any u,v € R? and x €
To(v,x U u) = e PO, (v, %) + g(v — u){ N (v, X5,,.) — Ao+ (v, %)}],

whereby
ESA [T zEf J uX))\g*uX{l—e’%*”“}ﬂan) dudv
An] Ank
- Ef J t(u, X)Age (u, X)e™ ™ g (v — u) {Nge (v, x5, ,.) — Ao+ (v, %)} du do.
(A.8)

[g] implies [®] which in turn yields |1 — e P ™| < 1 4¢P (") < ¢ since
®y« is bounded from below. On the other hand, for any m > 2, denoting ®y» =

23



_ —clo* _d .
Bge — |05, gpm| for some £ > 0, we have |g,|e"®" = |gn|e lPmomle=P < ¢ since

x +— xe " is bounded on [0, o0) for any £ > 0 and Py« satisfies [®] as seen in the
proof of Lemma[A-2] This proves that for any u, v, |e~®e* @~ g(v —u)"| is bounded.
Moreover, from ([A.6G), we know that if [k —j| > 27, then |1 —e~®o* (=% | < c|k—j|772
and similarly |e=%e* =" g(v—u)T| < c|k—j|772. We deduce that for any u € A, ;, any
ve A, and any j, k, |1 —e P =W < (1 + |k —j])72 and [e= P Wg(v—u) | <
c(1+ |k —j])72. Plugging these inequalities in (A.§]) and applying Lemmas [A.THA 2]
to the remaining terms shows that for any j, k

C
an (L+ [k —j]=)

| E(sa,, 2i)| < (A.9)

The same inequality obviously holds for || E(s’y  I])|. For the two last terms in the
right hand side of (A.7), namely

E(LI)) = EJA JA T (1, X) 7, (v, X) T du do
n,j n,k

and, after application of the GNZ formula,

we deduce from Lemmas [AIHAZ that their norm is bounded by a; 2" for any j, k,
up to a positive constant. The latter and [A.9) prove the first inequality in (iv) from
which the three remaining statements are easily deduced. O
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