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Abstract

This paper is concerned with statistical inference for infinite range interaction

Gibbs point processes and in particular for the large class of Ruelle superstable

and lower regular pairwise interaction models. We extend classical statistical

methodologies such as the pseudolikelihood and the logistic regression meth-

ods, originally defined and studied for finite range models. Then we prove that

the associated estimators are strongly consistent and satisfy a central limit

theorem. To this end, we introduce a new central limit theorem for almost

conditionally centered triangular arrays of random fields.

Keywords: Lennard-Jones potential; pseudolikelihood; central limit theorem.

1 Introduction

Spatial Gibbs point processes are an important class of models used in spatial point
pattern analysis (Lieshout, 2000; Møller and Waagepetersen, 2004; Illian et al., 2008).
Gibbs point processes can be viewed as modifications of the Poisson point process
in order to introduce dependencies, such as attraction or repulsion, between points.
These models initially arise from statistical physics to approximate the interaction
between pairs of particles (Ruelle, 1969; Preston, 1976; Georgii, 1988). The most
well-known example is the Lennard-Jones model (Lennard-Jones, 1924) which yields
repulsion at short scales and attraction at long scales.

Assuming that the Gibbs model has a parametric form, an important ques-
tion concerns the estimation of the parameters from a realization of the point pro-
cess observed on a finite subset of R

d. Popular solutions include likelihood (e.g.
Ogata and Tanemura, 1981; Huang and Ogata, 1999), pseudolikelihood (e.g. Besag,
1977; Jensen and Møller, 1991; Baddeley and Turner, 2000) and logistic regression
(Baddeley et al., 2014). The two latter methods are more interesting from a prac-
tical point of view as they avoid the computation of the normalizing constant in
the likelihood, which is in most cases inaccessible for Gibbs point processes and
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must be approximated by simulation-based methods. We focus in this paper on the
pseudolikelihood and logistic regression methods.

When the Gibbs model is assumed to have a finite range interaction, consistency
and asymptotic normality of the pseudolikelihood and logistic regression estimators
are established in Jensen and Møller (1991); Jensen and Künsch (1994); Billiot et al.
(2008); Dereudre and Lavancier (2009); Coeurjolly and Drouilhet (2010); Baddeley et al.
(2014), for large families of Gibbs models. The finite range assumption means that
there exists R ą 0 such that the particles do not interact at all if they are at a
distance greater than R ą 0 apart. For the two aforementioned inference methods,
this assumption turns out to be crucial from both a practical point of view and a
theoretical point of view, as explained below. However this assumption may imply
an artificial discontinuity of the interactions between particles, where two particles
at a distance R ´ ǫ apart interact while they do not at a distance R ` ǫ, for any
small ǫ ą 0. This is for instance the case for the widely used Strauss model, see
e.g. Møller and Waagepetersen (2004). In fact, this assumption rules out many in-
teresting Gibbs models from statistical physics like the Lennard-Jones model. The
purpose of this work is to extend the pseudolikelihood and logistic regression meth-
ods to infinite range interaction Gibbs models.

From a practical point of view, an important issue is edge effects. Assume we
observe a Gibbs point process with finite range interaction R ą 0 on a window
W Ă R

d. Then the pseudolikelihood computed on W actually depends on the point
process on W ‘R, where W ‘R denotes the dilation of W by a ball with radius R.
Some approximation or some border correction is then needed. An obvious solution
is to compute the pseudolikelihood on the eroded set WaR, since pWaRq‘R Ď W

(see Chiu et al. (2013)) and the observation of the point process onW is sufficient for
the computation. From a theoretical point of view, this border correction preserves
the unbiasedness property of the pseudolikelihood score function and standard tech-
nical tools for unbiased estimating equations are available to derive the asymptotic
properties of the associated estimator. If the Gibbs point process has infinite range
interaction, then the pseudolikelihood computed on W depends on the point pro-
cess over the whole space R

d. It is in general impossible to apply a border correction
that preserves unbiasedness of the pseudolikelihood score function. Following the
previous border correction for the finite range setting, we propose to alleviate this
bias by computing the pseudolikelihood and the logistic regression on an eroded set.
The details are exposed in Section 2. However these procedures still lead to biased
score functions and the standard ingredients to derive consistency and asymptotic
normality of the estimators do not apply.

The strong consistency of the maximum pseudolikelihood estimator was stud-
ied by Mase (1995) for pairwise interaction Gibbs point processes, including the
infinite range interaction case, but under the assumption that the configuration of
points outside W is known. Under the more realistic setting where the point pro-
cess is observed only on W , we prove the strong consistency of the pseudolikelihood
estimator in Proposition 4.1. The asymptotic normality is more challenging to estab-
lish. When the pseudolikelihood score function is unbiased, the main ingredient is a
central limit theorem for conditionally centered random fields proved and general-
ized in Guyon and Künsch (1992); Jensen and Künsch (1994); Comets and Janžura
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(1998); Dedecker (1998); Coeurjolly and Lavancier (2013). It allows in particular to
avoid mixing assumptions for Gibbs point process that are only known in restrictive
frameworks (see for instance Heinrich (1992); Jensen (1993)). In our infinite range
setting where the score function is biased, a new ingredient is needed. We prove in
Theorem 3.1 a new central limit theorem for triangular arrays of almost condition-
ally centered random fields. This allows us to derive in Theorem 4.2 the asymptotic
normality of the pseudolikelihood estimator for a large family of pairwise Gibbs mod-
els, namely the class of Ruelle superstable and lower regular models. Proposition 4.3
discusses similar asymptotic results for the logistic regression estimator.

In Section 2 we recall some basic facts about Gibbs point processes and we
explain how to generalize inference methods for Gibbs models with infinite range
interaction. Section 3 contains our main theoretical tool, a new central limit theorem,
and we derive in Section 4 the asymptotic properties of our estimators. Auxiliary
lemmas are gathered in Section A.

2 Background and statistical methodology

2.1 Notation

We write Λ Ť R
d for a bounded set Λ in R

d. A configuration of points x is a locally
finite subset of R

d, which means that the set xΛ :“ x X Λ is finite for any set
Λ Ť R

d. We use the notation xΛc “ xzxΛ and denote by Ω0 the space of all locally
finite configurations of points in R

d. For a pp, qq matrix M with real entries, we
denote by }M} “ trpMJMq1{2 its Frobenius norm where tr is the trace operator
and MJ is the transpose matrix of M . For a vector z P R

p, }z} reduces to its
Euclidean norm. For a bounded set E Ă Z

d, |E| denotes the number of elements of
E, while for z P R

p or i P Z
p, |z| and |i| stand for the uniform norm.

At many places in the document, we use the notation c to denote a generic
positive constant which may vary from line to line.

2.2 Pairwise interaction Gibbs point processes

We briefly recall the needed background material on point processes and we refer
to Daley and Vere-Jones (2003) for more details. A point process is a probability
measure on Ω0. The reference distribution on Ω0 is the homogeneous Poisson point
process with intensity β ą 0, denoted by πβ. For Λ Ť R

d, we write π
β
Λ

for the
restriction of πβ to Λ. For any ∆ Ť R

d and x P Ω0, N∆pxq denotes the number of
elements of x X ∆. Let ∆i be the unit cube centered at i P Z

d. We consider the
following space of tempered configurations.

ΩT “ tx P Ω0; Dt ą 0, @n ě 1,
ÿ

iPZd,|i|ďn

N2

∆i
pxq ď tp2n` 1qdu.

From the ergodic theorem (see Guyon (1995)), any second order stationary measure
on Ω0 is supported on ΩT . We denote by Φ : Rd Ñ R Y t`8u a pair potential
function, to which we associate the pairwise energy function HΛ : ΩT Ñ R Y t`8u,
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indexed by Borel sets Λ Ť R
d and defined by

HΛpxq “ 1

2

ÿ

u,v Px, u‰v,
tu,vuXxΛ‰H

Φpu ´ vq (2.1)

and we let
Ω “ tx P ΩT , @Λ Ť R

d HΛpxq ă 8u.
Following the Dobrushin-Lanford-Ruelle formalism, see Preston (1976), we say

that P is a Gibbs measure with activity parameter β ą 0 for the pair potential
function Φ if P pΩq “ 1 and for P -almost every configuration x and any Λ Ť R

d, the
conditional law of P given xΛc is absolutely continuous with respect to πβ

Λ
with the

density expt´HΛpxqu{ZΛpxΛcq, where ZΛpxΛcq “
ş
Ω
expt´HΛpxΛ Y xΛcqu πβ

Λ
p dxΛcq

is the normalizing constant.
We use at many places in this paper the GNZ equation, after Georgii (1976) and

Nguyen and Zessin (1979b), recalled below, which is a characterization of a Gibbs
measure. It is given in terms of the Papangelou conditional intensity λ : RdˆΩ Ñ R`

defined for any Λ Q u by

λpu,xq “ β
e´HΛpxYuq

e´HΛpxq
“ β e´

ř
vPx Φpv´uq. (2.2)

This quantity does not depend on Λ, provided u P Λ, and can be viewed as the
conditional probability to have a point in a vicinity of u, given that the configuration
elsewhere is x.

Theorem 2.1 (GNZ formula). A probability measure P on Ω is a Gibbs measure
with activity parameter β ą 0 for the pair potential function Φ if for any measurable
function f : Ω ˆ R

d Ñ R such that the following expectations are finite,

E

#
ÿ

uPX

fpu,Xzuq
+

“ E

"ż
fpu,Xqλpu,Xq du

*
(2.3)

where E denotes the expectation with respect to P .

This result can be refined by a conditional version stated in the following lemma.
Its proof is actually part of the initial proof of (2.3), see also Billiot et al. (2008,
Proof of Theorem 2) for a particular case. We reproduce the demonstration below.

Lemma 2.2 (Conditional GNZ formula). Let P be a Gibbs measure with activity
parameter β ą 0, with pair potential Φ and Papangelou conditional intensity λ.
Then for any measurable function f : Ω ˆ R

d Ñ R and for any Λ Ť R
d such that

the following expectations are finite

E

#
ÿ

uPXΛ

fpu,Xzuq | XΛc

+
“ E

"ż

Λ

fpu,Xqλpu,Xq | XΛc

*
(2.4)

where E denotes the expectation with respect to P .
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Proof. By definition of the conditional law of P given x1
Λc

E

#
ÿ

uPXΛ

fpu,Xzuq | XΛc “ x1
Λc

+
“
ż

Ω

ÿ

uPxΛ

fpu,xΛ Y x1
Λczuqe

´HΛpxΛYx
1
Λcq

ZΛpx1
Λcq

π
β
Λ

p dxΛq

“ E
π
β
Λ

#
ÿ

uPXΛ

fpu,XΛ Y x1
Λczuqe

´HΛpXΛYx
1
Λcq

ZΛpx1
Λcq

+

where E
π
β
Λ

denotes the expectation with respect to πβ
Λ
. From the Slivnyak-Mecke for-

mula (Slivnyak (1962); Mecke (1968)), we know that for any admissible measurable
function h

E
π
β
Λ

#
ÿ

uPX

hpu,Xzuq
+

“ β E
π
β
Λ

"ż

Rd

hpu,Xq du
*
.

By definition of the Papangelou conditional intensity (2.2), we also have for any
u P Λ, β e´HΛpxYuq “ e´HΛpxqλpu,xq. Using these two facts, we conclude by

E

" ÿ

uPXΛ

fpu,Xzuq | XΛc “ x1
Λc

*

“ β E
π
β
Λ

"ż

Λ

fpu,XΛ Y x1
Λcqe

´HΛpXΛYx1
ΛcYuq

ZΛpx1
Λcq

du

*

“ E
π
β
Λ

"ż

Λ

fpu,XΛ Y x1
Λcqλpu,XΛ Y x1

Λcqe
´HΛpXΛYx1

Λcq

ZΛpx1
Λcq

du

*

“
ż

Ω

ż

Λ

fpu,xΛ Y x1
Λcqλpu,xΛ Y x1

Λcqe
´HΛpxΛYx

1
Λc q

ZΛpx1
Λcq

du π
β
Λ

p dxΛq

“ E

"ż

Λ

fpu,Xqλpu,Xq | XΛc “ x1
Λc

*
.

The existence of a Gibbs measure P satisfying the above definition and charac-
terization is a difficult question. Sufficient conditions on the pair potential Φ can
be found in Ruelle (1969) and are also discussed in Preston (1976). The special
case of finite range potentials, i.e. compactly supported functions Φ, is treated in
Bertin et al. (1999). As we are mainly interested in this paper by infinite range po-
tentials, we introduce the following assumption, that leads to the existence of at
least one stationary Gibbs measure, as proved in Ruelle (1969).

[Φ] The potential Φ is bounded from below and there exist 0 ă r1 ă r2 ă 8, c ą 0

and γ1, γ2 ą d such that Φpuq ě c}u}´γ1 for }u} ď r1 and |Φpuq| ď c}u}´γ2 for
}u} ě r2.

Examples of potentials satisfying [Φ] are Φpuq “ }u}´γ with γ ą d and Φpuq “
e´}u}}u}´γ with γ ą d, in which cases the assumption is satisfied with γ1 “ γ2 “ γ.
Another important example is the general Lennard-Jones pair potential defined for
some d ă γ2 ă γ1 and some A,B ą 0 by Φpuq “ A}u}´γ1 ´ B}u}´γ2. The standard
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Lennard-Jones model corresponds to d “ 2, γ1 “ 12 and γ2 “ 6. The main interest
of this model is that it can model repulsion at small scales and attraction at large
scales.

2.3 Inference for infinite range Gibbs point processes

In this section, we extend the usual statistical methodologies available for finite
range Gibbs point processes to the infinite range case. We assume that the Gibbs
measure is parametric, in that the explicit expression of the associated Papangelou
conditional intensity (2.2) is entirely determined by the knowledge of some parameter
θ P Θ, including the activity parameter β ą 0, where Θ is an open bounded set of
R
p. We stress this assumption by writing λθ instead of λ and Φθ instead of Φ. For

brevity, assumption [Φ] now means that Φθ fulfills this assumption for any θ P Θ.
Assume that we observe the point process X inWn where pWnqně1 is a sequence of

bounded domains which converges to R
d as n Ñ 8. As outlined in the introduction,

the pseudolikelihood and the logistic regression methods are popular alternatives
to the maximum likelihood as they do not involve the normalizing constant. The
associated estimators are respectively defined as the maximum of

LPLWn
pX; θq “

ÿ

uPXWn

log λθpu,Xzuq ´
ż

Wn

λθpu,Xq du (2.5)

LRLWn
pX; θq “

ÿ

uPXWn

log
λθpu,Xzuq

λθpu,Xzuq ` ρ
´
ż

Wn

ρ log
λθpu,Xq ` ρ

ρ
du (2.6)

where ρ is some fixed positive real number.
A problem however occurs. The integrals in (2.5) and (2.6) are not computable

in practice because for values of u close to the boundary of Wn, λθpu,Xq depends
on XW c

n
which is not observed. When X has a finite range 0 ă R ă 8, meaning

that Φθ is compactly supported on the euclidean ball Bp0, Rq or equivalently that
for any u P R

d and any x P Ω, λθpu,xq “ λθpu,xBpu,Rqq, we can simply substitute
Wn by Wn a R in (2.5) and (2.6), where for a bounded domain Λ Ă R

d and some
κ ě 0 the notation Λa κ stands for the domain Λ eroded by the ball Bp0, κq. Using
this border correction λθpu,Xq can be indeed computed for any u P Wn a R. As a
remaining practical issue, the integrals have to be approximated by some numerical
scheme or by Monte-Carlo, see Baddeley et al. (2014) for an efficient solution.

The asymptotic properties of the pseudolikelihood and the logistic regression es-
timators are well understood in this finite range setting, see the references in intro-
duction. Maximizing the log-pseudolikelihood (or the logistic regression likelihood)
on Wn a R is equivalent to cancel the score, i.e. the gradient of LPLWnaRpX; θq (or
LRLWnaRpX; θq) with respect to θ. The key-ingredient is that both scores constitute
unbiased estimating functions, since by application of the GNZ formula (2.3) their
expectation vanishes when θ corresponds to the true parameter of the underlying
Gibbs measure. Standard theoretical tools for unbiased estimating equations (see
e.g. Guyon (1995)) can therefore be used to study the consistency and asymptotic
normality of the associated estimators.
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In the infinite range setting, the situation becomes more delicate since for any
u, λθpu,Xq depends on XΛ for any Λ Ă R

d. In this case, we introduce the following
modifications of (2.5) and (2.6)

ĄLPLWnaαn
pX; θq “

ÿ

uPXWnaαn

log λθpu,XBu,n
zuq ´

ż

Wnaαn

λθpu,XBu,n
q du (2.7)

ĄLRLWnaαn
pX; θq “

ÿ

uPXWnaαn

log
λθpu,XBu,n

zuq
λθpu,XBu,n

zuq ` ρ
´
ż

Wnaαn

ρ log
λθpu,XBu,n

q ` ρ

ρ
du

(2.8)

where Bu,n “ Bpu, αnq and pαnqně1 is a sequence of positive numbers, which agree
with the classical border correction for finite range interaction models when αn “ R.
Whatever the range of interaction is, each term above can be computed in practice
from the single observation of X in Wn, provided the integrals are approximated
as usual by numerical scheme or by Monte-Carlo. From a theoretical point view,
these modifications introduce new challenges since the gradients of ĄLPLWnaαn

pX; θq
and ĄLRLWnaαn

pX; θq are no longer unbiased estimating equations in the infinite
range case. To overcome this difficulty we prove a new central limit theorem in the
next section that allows us to deduce in Section 4 the consistency and asymptotic
normality of the estimators.

3 A new central limit theorem

When the Gibbs point process has a finite range, the asymptotic normality of the
pseudolikelihood or the logistic regression estimators are essentially derived from a
central limit theorem for conditionally centered random fields, see the references in
introduction. This connection comes from the fact that in the finite range case, the
score function of the pseudolikelihood (or the logistic regression) is not only centered,
as noticed in the previous section, but also conditionally centered, by application
of the conditional GNZ formula (2.4). As already mentioned, this property allows
to prove the asymptotic normality without mixing assumptions, which is crucial for
Gibbs point processes.

In the infinite range case, the score functions of the log-pseudolikelihood and
the logistic regression are neither centered, nor conditionally centered, and a new
central limit theorem is needed. In our Theorem 3.1 below, the conditional center-
ing condition is replaced by condition pdq and we avoid mixing assumptions. The
other conditions are mainly due to our non-stationary setting induced by the border
correction with the sequence αn. They allow in particular to control the asymptotic
behavior of the empirical covariance matrix in (3.1).

For two square matrices A,B we write A ě B when A ´ B is a positive semi-
definite matrix.

Theorem 3.1. For n P N and j P Z
d, let Xn,j be a triangular array field in a

measurable space S. For n P N, let In Ă Z
d and αn P R` such that |In| Ñ 8 and

αn Ñ 8 as n Ñ 8. Define Sn “ ř
jPIn

Zn,j where Zn,j “ fn,jpXn,k, k P Kn,jq with
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Kn,j “ tk P Z
d, |k ´ j| ď αnu and where fn,j : S

Kn,j Ñ R
p is a measurable function.

If α3d
n “ op|In|q as n Ñ 8 and

(a) EZn,j “ 0 and supně1 supjPIn E }Zn,j}4 ă 8,

(b) for any sequences pInq and pαnq as above, as n Ñ 8,

|In|´1
ÿ

j,kPIn

››EpZn,jZJ
n,kq

›› “ Op1q and |In|´1
ÿ

j,kPIn
|k´j|ąαn

››EpZn,jZJ
n,kq

›› “ op1q,

then denoting Σn “ VarpSnq and

pΣn “
ÿ

jPIn

ÿ

kPIn
|k´j|ďαn

Zn,jZ
J
n,k,

we have the following convergence

|In|´1 E }pΣn ´ Σn} Ñ 0. (3.1)

If in addition

(c) there exists a positive definite matrix Q such that |In|´1Σn ě Q for n suffi-
ciently large,

(d) as n Ñ 8
|In|´1{2

ÿ

jPIn

E }E pZn,j| Xn,k, k ‰ jq} Ñ 0,

then
Σ´1{2
n Sn

dÑ N p0, Ipq (3.2)

where
dÑ stands for the convergence in distribution.

Proof. We have

|In|´1}pΣn ´ Σn} ď |In|´1}pΣn ´ EppΣnq} ` |In|´1}EppΣnq ´ Σn}.

The last term satisfies

|In|´1}EppΣnq ´ Σn} ď |In|´1
ÿ

j,kPIn
|k´j|ąαn

››EpZn,jZJ
n,kq

›› “ op1q

by assumption pbq. For m,m1 “ 1, . . . , p, let ∆mm1 “
´
pΣn ´ EppΣnq

¯
mm1

. We have

∆mm1 “ ř
jPIn

Un,j where

Un,j “
ÿ

kPIn,j

 
Zn,jZ

J
n,k ´ EpZn,jZJ

n,kq
(
mm1
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and In,j “ tk P In : |k ´ j| ď αnu. The assertion (3.1) is proved if we show that for
any m,m1, Varp|In|´1∆mm1q Ñ 0 as n Ñ 8. It is clear that Un,j depends only on
Xn,k for |k ´ j| ď 2αn. So if we let j, j1 P In such that |j ´ j1| ą 4αn then

EpUn,jUn,j1q “ E tE pUn,jUn,j1 | Xn,k, |k ´ j| ą 2αnqu
“ E tUn,j1 E pUn,j | Xn,k, |k ´ j| ą 2αnqu
“ E tUn,j1 E pUn,jqu “ 0

whereby we deduce that

Varp∆mm1 q “
ÿ

j,j1PIn
|j´j1|ď4αn

EpUn,jUn,j1q.

Now, by condition paq and Hölder’s inequality

EU2

n,j “
ÿ

k,k1PIn,j

E
” 
Zn,jZ

J
n,k ´ EpZn,jZJ

n,kq
(
mm1

 
Zn,jZ

J
n,k1 ´ EpZn,jZJ

n,k1q
(
mm1

ı

ď c
ÿ

k,k1PIn,j

µ4

ď c

ˆ
sup
jPIn

#
 
k P In, |k ´ j| ď αn

(˙2

“ Opα2d
n q.

From Cauchy-Schwarz’s inequality, we continue with

Varp∆mm1 q ď
ÿ

j,j1PIn
|j´j1|ď4αn

EpU2

n,jq1{2 EpU2

n,j1q1{2 “ O
`
α3d
n |In|

˘

leading to

Varp|In|´1∆mm1q “ O

ˆ
α3d
n

|In|

˙
“ op1q

which completes the proof of (3.1).
We now focus on (3.2) and we let

Sn “ Σ´1{2
n Sn, Sn,j “

ÿ

kPIn,j

Zn,k and Sn,j “ Σ´1{2
n Sn,j

where we recall the notation In,j “ Kn,j X In. According to Stein’s method (see
Bolthausen, 1982), in order to show (3.2) it suffices to prove that for all u P R

p such
that }u} “ 1 and for all ω P R

E
 

piω ´ uJSnqeiωuJSn
(

Ñ 0

as n Ñ 8 where i “
?

´1. Letting v “ ωu, this is equivalent to show that for all
v P R

p, }EpAnq} Ñ 0 where An “ piv ´ SnqeivJSn . We decompose the term An in
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the same spirit as Bolthausen (1982) : An “ An,1 ´ An,2 ´ An,3 where

An,1 “ ieiv
JSnpIp ´ Σ´1{2

n

ÿ

jPIn

Zn,jS
J
n,jΣ

´1{2
n qv

“ ieiv
JSnpIp ´ Σ´1{2

n
pΣnΣ´1{2

n qv
An,2 “ eiv

JSnΣ´1{2
n

ÿ

jPIn

Zn,jp1 ´ ivJSn,j ´ e´ivJSn,j q

An,3 “ Σ´1{2
n

ÿ

jPIn

Zn,je
ivJpSn´Sn,jq

and prove in the following that }EAn,r} Ñ 0 for r “ 1, 2, 3 as n Ñ 8.
First, assumption pcq implies that |In|´1Σn is a positive definite matrix for n

sufficiently large, which is now assumed in the following. By ℓ we denote the constant
p{λminpQq where λminpMq stands for the smallest eigenvalue of a positive definite
squared matrix M . For n sufficiently large, λminp|In|´1Σnq ě λminpQq ą 0 whereby
we deduce

}Σ´1{2
n } “ |In|´1{2 trp|In|Σ´1

n q1{2 ď ℓ1{2|In|´1{2. (3.3)

Using this result and the sub-multiplicative property of the Frobenius norm, we get

}EAn,1} ď }v}E }Ip ´ Σ´1{2
n

pΣnΣ´1{2
n }

ď }v} }Σ´1{2
n }2 E }pΣn ´ Σn}

ď ℓ}v} |In|´1 E }pΣn ´ Σn}

whereby we deduce that }EAn,1} Ñ 0 from (3.1).
Second, since |1 ´ e´iz ´ iz| ď z2{2 for any z P R, we have

}An,2} ď 1

2
}Σ´1{2

n }
ÿ

jPIn

}Zn,j}pvJSn,jq2

ď }v}2
2

}Σ´1{2
n }3

ÿ

jPIn

Bn,j ď ℓ3{2}v}2
2

|In|´3{2
ÿ

jPIn

Bn,j

where
Bn,j “ }Zn,j} }

ÿ

kPIn,j

Zn,k}2 “ }Zn,j}
ÿ

k,k1PIn,j

ZJ
n,kZn,k1 ě 0.

Let us decompose Bn,j “ B
p1q
n,j ` B

p2q
n,j where B

p1q
n,j “ Bn,j1p}Zn,j} ď |In|1{6q and

B
p2q
n,j “ Bn,j1p}Zn,j} ą |In|1{6q. By assumption pbq, we have

}EBp1q
n,j} ď |In|1{6

ÿ

k,k1PIn,j

|EpZJ
n,kZn,k1q| “ Op|In|1{6|In,j|q “ Op|In|1{6αdnq. (3.4)

By assumption paq, using Hölder and Bienaymé-Chebyshev inequalities, we continue
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with

EB
p2q
n,j ď

ÿ

k,k1PIn,j

E
 

}Zn,j} }Zn,k} }Zn,k1} 1p}Zn,j ą |In|1{6}q
(

ď
ÿ

k,k1PIn,j

µ
3{4
4

Pp}Zn,j} ą |In|1{6q1{4

ď µ
3{4
4

ÿ

k,k1PIn,j

µ
1{4
4 |In|´1{6

ď cµ4|In|´1{6α2d
n . (3.5)

Combining (3.4)-(3.5), we deduce that as n Ñ 8

}EAn,2} ď E }An,2} “ O

ˆ
αdn

|In|1{2
|In|1{6

˙
` O

ˆ
α2d
n

|In|1{2
|In|´1{6

˙
“ op1q

since α3d
n “ op|In|q.

Third, for any j P In, Sn ´ Sn,j does not depend on Xn,j. This yields

EAn,3 “ Σ´1{2
n

ÿ

jPIn

E
 
eiv

JpSn´Sn,jq EpZn,j | Xn,k, k ‰ jq
(

whereby we deduce, in view of (3.3), that

}EAn,3} ď c|In|´1{2
ÿ

jPIn

E }E pZn,j | Xn,k, k ‰ jq}

which tends to 0 by assumption pdq.

4 Applications to infinite range pairwise

interaction Gibbs point processes

In this section, we present asymptotic properties of the maximum pseudolikelihood
estimate, derived from (2.7), for infinite range Gibbs point process. Similar results
for the maximum logistic regression derived from (2.8) are presented at the end
of this section without proof. We focus on exponential family models of pairwise
interaction Gibbs point processes and rewrite the model (2.2) for any u P R

d and
x P Ω as

λθpu,xq “ βe´
ř

vPx Φθpv´uq “ e´θJtpu,xq (4.1)

with θ1 “ ´ log β and t “ pt1, . . . , tpqJ where t1pu,xq “ 1 and

tmpu,xq “
ÿ

vPx

gmpv ´ uq, m “ 2, . . . , p. (4.2)

In that connection, our framework amounts to assume that Φ “ řp

m“2
θmgm. For

convenience we let g1 “ 0 and we denote by g the p-dimensional vector g “
p0, g2, . . . , gpqJ. We make the following assumption on g.

[g] For all m ě 2, gm is bounded from below and there exist γ1, γ2 ą d and cg, r0 ą 0

such that
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(i) @}x} ă r0 and @θ P Θ, θ2 g2pxq ě cg}x}´γ1

(ii) @m ě 3, gmpxq “ op}x}´γ1q as }x} Ñ 0

(iii) @m ě 2 and @}x} ě r0, |gmpxq| ď c}x}´γ2 .

Since Θ is bounded, [g] implies [Φ] which yields that for any θ P Θ there exists
a Gibbs measure Pθ. Assumption [g] allows us to specify which function gm is
responsible for the behavior at the origin of Φθ, namely g2. Note that the Lennard-
Jones model defined in Section 2.2 (and the other examples presented in this section)
fits this setting with θ2 “ A, θ3 “ ´B, g2puq “ }u}´γ1 and g3puq “ }u}´γ2. In the
sequel, θ‹ stands for the true parameter vector to estimate. In other words, we
assume observing a realization of a spatial point process X with Gibbs measure Pθ‹

on Wn.
For exponential family models (4.1) the score function of the log-pseudolikelihood

defined by (2.7) writes sWnaαn
pX; θq where for any ∆ Ă R

d

s∆pX; θq “
ż

∆

tpu,XBu,n
qλθpu,XBu,n

q du ´
ÿ

uPX∆

tpu,XBu,n
zuq. (4.3)

Our first result establishes the strong consistency of the maximum pseudolikeli-
hood based on (2.7) for infinite range Gibbs point processes. In close relation, Mase
(1995) proved the strong consistency of estimators derived from (2.5). As pointed
out in Section 2.3, the form (2.5) of log-pseudolikelihood is however unusable as it
can only be computed if X is observed on R

d. We obtain the same result but for
estimators derived from the computable pseudolikelihood given by (2.7).

Proposition 4.1. Assume that for any n P N, Wn is a convex, compact set and
αn a sequence of real numbers satisfying Wn Ñ R

d, αn Ñ 8 and αn “ op|Wn|q
as n Ñ 8. Then, the function θ Ñ ´ĄLPLWnaαn

px; θq is a convex function for any
x P Ω with Hessian matrix given by

´ d

dθ dθJ
ĄLPLWnaαn

pX; θq “ ´ d

dθJ
sWnaαn

pX; θq

“
ż

Wnaαn

tpu,XBu,n
qtpu,XBu,n

qJλθpu,XBu,n
q du. (4.4)

In addition, assume that [g] holds and that for any y P R
pzt0u

P
 
yJtp0,Xq ‰ 0

(
ą 0 (4.5)

then the maximum pseudolikelihood estimator

pθĄLPL
“ argmaxθPΘ

ĄLPLWnaαn
pX; θq

converges almost surely to θ‹ as n Ñ 8.

Proof. The basic assumption on Wn and αn ensures that Wn a αn is a sequence
of regular bounded domains of R

d and that |Wn a αn| Ñ 8 as n Ñ 8. Since
any stationary Gibbs measure can be represented as a mixture of ergodic measures
(Preston, 1976), it is sufficient to prove consistency for ergodic measures. So, we
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assume here that Pθ‹ is ergodic. Since Θ is an open bounded set, and by convexity
of θ Ñ ´ĄLPLWnaαn

px; θq, then from Guyon (1995, Theorem 3.4.4) we only need

to prove that Knpθ, θ‹q “ |Wn a αn|´1

!
ĄLPLWnaαn

pX; θ‹q ´ ĄLPLWnaαn
pX; θq

)
Ñ

Kpθ, θ‹q almost surely as n Ñ 8, where θ Ñ Kpθ, θ‹q is a nonnegative function
which vanishes at θ “ θ‹ only. We decompose Knpθ, θ‹q as the sum of the three
terms T1 ` T2pθ‹q ´ T2pθq where for any θ P Θ

T1 “ |Wn a αn|´1 tLPLWnaαn
pX; θ‹q ´ LPLWnaαn

pX; θqu
T2pθq “ |Wn a αn|´1

!
ĄLPLWnaαn

pX; θq ´ LPLWnaαn
pX; θq

)
.

Lemma A.2 shows in particular that λθp0,Xq and |θJtp0,Xq|λθ‹p0,Xq have finite
expectation under Pθ‹. Hence, using the ergodic theorem for spatial processes of
Nguyen and Zessin (1979a), we can follow the proof of Mase (1995) or the proof of
Billiot et al. (2008, Theorem 1) to prove that T1 Ñ Kpθ, θ‹q almost surely as n Ñ 8
where

Kpθ, θ‹q “ E
´
λθ‹p0,Xq

”
epθ‹´θqJtp0,Xq ´ t1 ` pθ‹ ´ θqJtp0,Xqu

ı¯

which is a nonnegative function that vanishes at θ “ θ‹ only, under the identifiability
condition (4.5). So the rest of the proof consists in proving that T2pθq Ñ 0 almost
surely for any θ P Θ. We have T2pθq “ T 1

1 ` T 1
2 where

T 1
1

“ |Wn a αn|´1
ÿ

uPXWnaαn

θJ
 
tpu,XBu,n

zuq ´ tpu,Xzuq
(

T 1
2 “ |Wn a αn|´1

ż

Wnaαn

 
λθpu,Xq ´ λθpu,XBu,n

q
(
du.

By Lemma A.1, the boundedness of Θ and [g], there exists γ1 ą 0 such that

|T 1
1| ď c

α
γ1

n

|Wn a αn|´1
ÿ

uPXWnaαn

Hpu,Xzuq

|T 1
2| ď c

α
γ1

n

|Wn a αn|´1

ż

Wnaαn

ecGpu,XqHpu,Xqλθpu,Xq du.

By Lemma A.2, the random variables |Hp0,Xq|λθ‹p0,Xq and ecGp0,XqHp0,Xqλθp0,Xq
have finite expectations under Pθ‹ . Hence, using again the ergodic theorem

|Wn a αn|´1
ÿ

uPXWnaαn

Hpu,Xzuq Ñ E tHp0,Xqλθ‹p0,Xqu

|Wn a αn|´1

ż

Wnaαn

ecGpu,XqHpu,Xqλθpu,Xq du Ñ E
 
ecGp0,XqHp0,Xqλθp0,Xq

(

almost surely as n Ñ 8, whereby we deduce that T2pθq Ñ 0 almost surely.

The next result establishes the asymptotic normality of the score function as-
sociated to the modified pseudolikelihood ĄLPLWnaαn

pX; θq at the true value of the
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parameter θ “ θ‹. The proof relies on the central limit theorem of Theorem 3.1. As
a consequence we deduce the asymptotic normality of the associated estimator.

These results require the following notation: let Σn, Σ8 and U8 the pp, pq matrices

Σn “VartsWnaαn
pX; θ‹qu

Σ8 “E
 
tp0,Xqtp0,XqJλθ‹p0,Xq

(

`
ż

Rd

E
 
tp0,Xqtpv,XqJλθ‹p0,Xqλθ‹pv,Xq

(
t1 ´ e´Φθ‹ pvqu dv

`
ż

Rd

E
 
λθ‹p0,Xqλθ‹pv,Xq

(
gpvqgpvqJe´Φθ‹ pvq dv (4.6)

U8 “E
 
tp0,Xqtp0,XqJλθ‹p0,Xq

(
. (4.7)

The matrices Σ8 and U8 are indeed correctly defined, as [g] implies on the one hand
that all the expectations involved are uniformly bounded in v by Lemmas A.1-A.2,
and on the other hand that

ż

Rd

|1 ´ e´Φθ‹ pvq| dv ă 8 and

ż

Rd

}gpvqgpvqJ}e´Φθ‹ pvq dv ă 8.

Theorem 4.2. Under the assumptions of Proposition 4.1 with γ2 ą 5d{2, the as-
sumption that Σ8 is a positive definite matrix and if αn “ ca|Wn|a{d where ca ą 0

and a is such that d
2pγ2´dq

ă a ă 1

3
, then we have the two following convergences in

distribution as n Ñ 8
(i)

Σ´1{2
n sWnaαn

pX; θ‹q dÑ N p0, Ipq,
(ii)

|Wn|1{2
´
pθĄLPL

´ θ‹
¯

dÑ N
`
0, U´1

8 Σ8U
´1

8

˘
.

The restriction γ2 ą 5d{2 includes the standard Lennard-Jones model in dimen-
sion d “ 2 for which γ2 “ 6. Note that the choice of the sequence αn, or equivalently
of a, is always possible since γ2 ą 5d{2 implies d{t2pγ2 ´ dqu ă 1{3.

As shown in the proof of piq, Σ´1{2
n can be replaced by |Wn a αn|´1{2Σ

´1{2
8 . On

the basis of Coeurjolly and Rubak (2013), it should be possible to construct a fast
estimator of the asymptotic covariance matrices Σ8 and U8. This is not investigated
here.

Proof. At several places in the proof the sequence ρn “ |In|1{2{αγ1

n for some γ1 “
γ2 ´ d ´ ε and 0 ă ε ă γ2 ´ d is involved. Then

ρn “ |In|1{2

α
γ1

n

“ O

!
|Wn|

d{2´apγ2´d´εq
d

)
(4.8)

tends to 0 since apγ2 ´ dq ą d{2 and there is no restriction to choose ε sufficiently
small to satisfy aε ă apγ2 ´ dq ´ d{2.

We denote by ∆j the unit cube centered at j P Z
d, by ∆n,j “ ∆j X pWn a αnq

and by In Ă Z
d the set such that Wn a αn “ YjPIn∆n,j. We write for short s∆n,j

“
s∆n,j

pX; θ‹q and we let Zn,j “ s∆n,j
´ Eps∆n,j

q. Then we have

sWnaαn
“ Sn ` EpsWnaαn

q
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where Sn “ ř
jPIn

Zn,j. Clearly VarpSnq “ VarpsWnaαn
q “ Σn. The proof of piq is

completed if we show that Σ
´1{2
n Sn

dÑ N p0, Ipq and Σ
´1{2
n EpsWnaαn

q Ñ 0. Let us
prove the first convergence by application of Theorem 3.1.

From the assumptions on the set Wn and by definition of In, we have |In| “
Op|Wn|q, see e.g. Coeurjolly and Møller (2014, Lemma A.1). Therefore the choice of
αn clearly satisfies the hypothesis of Theorem 3.1, namely α3d

n “ op|In|q.
Assumption paq of this theorem holds by definition of Zn,j and Lemma A.3.
Concerning assumption pbq, let us introduce the notation, for any ∆ Ă R

d,

s1
∆

“
ż

∆

tpu,XBu,n
qλθ‹pu,Xq du´

ÿ

uPX∆

tpu,XBu,n
zuq.

Note that from the GNZ formula E s1
∆

“ 0. We have from Lemma A.4
ÿ

j,kPIn

››EpZn,jZJ
n,kq

›› “
ÿ

j,kPIn

››Covps∆n,j
, s∆n,k

q
››

ď
ÿ

j,kPIn

››Covps∆n,j
, s∆n,k

q ´ Covps1
∆n,j

, s1
∆n,k

q
›› `

ÿ

j,kPIn

››Covps1
∆n,j

, s1
∆n,k

q
››

ď
ÿ

j,kPIn

˜
c

α
γ1

n p1 ` |k ´ j|γ2q
` c

α
2γ1

n

¸
`

ÿ

j,kPIn
|j´k|ď2r0

››Covps1
∆n,j

, s1
∆n,k

q
›› `

ÿ

j,kPIn
|j´k|ą2r0

c|k ´ j|´γ2

ď c α´γ1

n |In| ` c|In|ρ2n ` c|In|}Varps1
∆n,j

q} ` c|In|
which is Op|In|q by Lemma A.3 and from (4.8). We derive with the same ingredients
that ÿ

j,kPIn
|k´j|ąαn

››EpZn,jZJ
n,kq

›› “ op|In|q ` Op|In|ρ2nq “ op|In|q

which proves assumption pbq.
Since Σ8 is assumed to be a positive definite matrix, assumption pcq holds if we

prove that |In|´1VarpSnq Ñ Σ8 as n Ñ 8 . For this, let Σ1
n “ Varps1

Wnaαn
q and

pΣn “
ÿ

jPIn

ÿ

kPIn
|k´j|ďαn

Zn,jZ
J
n,k,

pΣ1
n “

ÿ

jPIn

ÿ

kPIn
|k´j|ďαn

s1
∆n,j

ps1
∆n,k

qJ
.

We have } |In|´1Σn ´ Σ8} ď T1 ` T2 ` T3 ` T4 where

T1 “ |In|´1}Σn ´ EppΣnq}, T2 “ |In|´1}EppΣnq ´ EppΣ1
nq},

T3 “ |In|´1}EppΣ1
nq ´ Σ1

n}, T4 “ }|In|´1Σ1
n ´ Σ8}.

First T1 ď |In|´1 E }pΣn ´ Σn} which tends to 0 from (3.1) in Theorem 3.1, as we
already proved assumptions paq-pbq. Second applying Lemma A.4

T2 ď |In|´1
ÿ

jPIn

ÿ

kPIn
|k´j|ďαn

}EpZn,jZJ
n,kq ´ Ets1

∆n,j
ps1

∆n,k
qJu}

“ |In|´1
ÿ

jPIn

ÿ

kPIn
|k´j|ďαn

››Covps∆n,j
, s∆n,k

q ´ Covps1
∆n,j

, s1
∆n,k

q
››

“ Opα´γ1

n q ` Opα1´2γ1

n q
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and T2 Ñ 0 since the assumption γ2 ą 5d{2 implies 2γ1´1 ą 0 for ε sufficiently small.
Third, note that Σ1

n “ ř
j,kPIn

Ets1
∆n,j

ps1
∆n,k

qJu, so that from piiiq in Lemma A.4

T3 ď |In|´1
ÿ

jPIn

ÿ

kPIn
|k´j|ąαn

}Ets1
∆n,j

ps1
∆n,k

qJu}

ď c |In|´1
ÿ

jPIn

ÿ

kPIn
|k´j|ąαn

1

|k ´ j|γ2 ď c
ÿ

|i|ąαn

1

|i|γ2 “ op1q.

Finally T4 Ñ 0 from piiq in Lemma A.4, which concludes the proof of condition pcq
of Theorem 3.1.

To prove assumption pdq, we apply the conditional GNZ formula (2.4) to write,
for any j P In,

E
`
Zn,j |X∆n,k

, k ‰ j
˘

“ E

«ż

∆n,j

tpu,XBu,n
q
 
λθ‹pu,Xq ´ λθ‹pu,XBu,n

q
(
du | X∆n,k

, k ‰ j

ff

´ E

ż

∆n,j

tpu,XBu,n
q
 
λθ‹pu,Xq ´ λθ‹pu,XBu,n

q
(
du.

From Lemma A.1, we have for any u P R
d and x P Ω

}tpu,xBu,n
q} |λθ‹pu,xq ´ λθ‹pu,xBu,n

q| ď c

α
γ1

n

Y pu,xq

where Y pu,xq “ }t|tm|pu,xqumě1}Hpu,xqecGpu,xqλθ‹pu,xq using the notation of the
lemma. Since |∆n,j| ď 1, we deduce from the stationarity of X and Lemma A.2 that

E
››E

`
Zn,j | X∆n,k

, k ‰ j
˘›› ď c

α
γ1

n

EtY p0,Xqu “ Opα´γ1

n q.

Hence
|In|´1{2

ÿ

jPIn

E }E
`
Zn,j | X∆n,k

, k ‰ j
˘
} “ Opρnq

tends to 0 from (4.8). All conditions of Theorem 3.1 are therefore satisfied, which

yields that Σ
´1{2
n Sn

dÑ N p0, Ipq. It remains to prove that Σ
´1{2
n EpsWnaαn

q Ñ 0.
This is a consequence of the GNZ formula, (3.3), Lemma A.1 and the condition
apγ2 ´ dq ą d{2 since

}Σ´1{2
n EpsWnaαn

q} ď }Σ´1{2
n } }EpsWnaαn

q}

ď c |In|´1{2α´γ1

n E

ż

Wnaαn

Y pu,Xq du “ O pρnq “ op1q.

piiq It is worth repeating that θ Ñ ´ĄLPLWnaαn
px; θq is a convex function with

Hessian matrix given by (4.4). Following Lemmas A.1-A.2 and arguments developed
in the proof of Proposition 4.1, we leave the reader to check that almost surely

|Wn a αn|´1

"
d

dθ dθJ
ĄLPLWnaαn

pX; θq ´ d

dθ dθJ
LPLWnaαn

pX; θq
*

Ñ 0
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and

´|Wn a αn|´1
d

dθ dθJ
LPLWnaαn

pX; θq Ñ E
 
tp0,Xqtp0,XqJλθp0,Xq

(

as n Ñ 8, which equals to U8 when θ “ θ‹. We also note that (4.5) implies that
U8 is a positive definite matrix. These facts and piq allow us to apply Guyon (1995,
Theorem 3.4.5) to deduce the result.

The following proposition focuses on the maximum logistic regression and states
its strong consistency and asymptotic normality. The result is given without proof,
but we claim that it follows by the same arguments as those involved in the proofs
of Proposition 4.1 and Theorem 4.2.

Proposition 4.3. Under the assumptions of Proposition 4.1 and Theorem 4.2, the
maximum logistic regression estimator defined by

pθĄLRL
“ argmaxθPΘ

ĄLRLWnaαn
pX; θq

converges almost surely to θ‹ as n Ñ 8 and satisfies the following convergence in
distribution

|Wn|1{2
´
pθĄLRL

´ θ‹
¯

dÑ N
`
0, V ´1

8 Γ8V
´1

8

˘

where denoting hpu,xq “ ρ tpu,xq{tλθ‹pu,xq ` ρu for any u P R
d,x P Ω,

Γ8 “ E
 
hp0,Xqhp0,XqJλθ‹p0,Xq

(

`
ż

Rd

E
 
hp0,Xqhpv,XqJλθ‹p0,Xqλθ‹pv,Xq

(
t1 ´ e´Φθ‹ pvqu dv

`
ż

Rd

E
 
λθ‹p0,Xqλθ‹pv,Xq∆vhp0,Xq∆0hpv,XqJ

(
e´Φθ‹ pvq dv

V8 “ 1

ρ
E
 
hp0,Xqhp0,XqJλθ‹p0,Xq

(

with ∆vhpu,xq “ hpu,x Y vq ´ hpu,xq for any u, v P R
d and x P Ω.

A Auxiliary results

We gather in this section several auxiliary results. They are established under the
setting, assumptions and notation of Section 4. In particular, we recall that ∆j is
the cube centered at j P Z

d with volume 1, ∆n,j “ ∆j XpWnaαnq, Wn “ YjPIn∆n,j,
Bu,n “ Bpu, αnq and

s∆ “ s∆pX; θ‹q “
ż

∆

tpu,XBu,n
qλθ‹pu,XBu,n

q du ´
ÿ

uPX∆

tpu,XBu,n
zuq (A.1)

s1
∆ “ s1

∆pX; θ‹q “
ż

∆

tpu,XBu,n
qλθ‹pu,Xq du´

ÿ

uPX∆

tpu,XBu,n
zuq. (A.2)
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Lemma A.1. Let j P In and u P ∆n,j, assume [g], set γ1 “ γ2 ´ d ´ ε where
0 ă ε ă γ2 ´ d and define

|tm|pu,xq “
ÿ

vPx

|gmpv ´ uq|

Gpu,xq “
ÿ

vPx

}v ´ u}´γ21p}v ´ u} ě r0q

Hpu,xq “
ÿ

vPx

}v ´ u}´d´ε1p}v ´ u} ě r0q.

Then, if αn ě r0

(i) |tm|pu,xBu,n
q| ď |tm|pu,xq

(ii) |tmpu,xq ´ tmpu,xBu,n
q| ď cmintGpu,xq, α´γ1

n Hpu,xqu
(iii) @θ P Θ, |λθpu,xq ´λθpu,xBu,n

q| ď c ecGpu,xqλθpu,xqmintGpu,xq, α´γ1

n Hpu,xqu.

Proof. The first statement is straightforward from the definition. For the second
one, from [g] and since αn ě r0,

|tmpu,xq ´ tmpu,xBu,n
q| “ |

ÿ

vPx

gmpv ´ uq1p}v ´ u} ě αnq|

ď c
ÿ

vPx

}v ´ u}´γ21p}v ´ u} ě αnq,

which is clearly lower than cGpu,xq. Pushing one step further, we get

|tmpu,xq ´ tmpu,xBu,n
q| ď c α´γ1

n

ÿ

vPx

}v ´ u}´d´ε1p}v ´ u} ě αnq ď c α´γ1

n Hpu,xq,

which proves piiq. For the third statement, since for all x, |1 ´ ex| ă |x|e|x|, we have

|λθpu,xq ´ λθpu,xBu,n
q| “ λθpu,xq

ˇ̌
ˇ1 ´ e

ř
vPxBc

u,n
Φθpv´uq

ˇ̌
ˇ

ď λθpu,xq
ˇ̌
ˇ

ÿ

vPxBc
u,n

Φθpv ´ uq
ˇ̌
ˇe
ˇ̌ř

vPxBc
u,n

Φθpv´uq

ˇ̌
.

The result follows from the same inequalities as before, noting that

ˇ̌
ˇ

ÿ

vPxBc
u,n

Φθpv ´ uq
ˇ̌
ˇ “

ˇ̌
ˇ

pÿ

m“2

θm
ÿ

vPxBc
u,n

gmpv ´ uq
ˇ̌
ˇ ď c

ÿ

vPx

|gmpv ´ uq|1p}v ´ u} ě αnq

where c “ pp ´ 1q supθPΘ supm |θm| ă 8, since Θ is bounded.

Lemma A.2. Under the assumption [g], then for any θ P Θ we have the following
statements where E denotes the expectation with respect to Pθ‹.

(i) For any q ě 0, Etλθp0,Xqqu ă 8.
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(ii) Let f : Rd Ñ R be a measurable function such that |fpuq| ď cp1 ` }u}q´γ with
γ ą d, then for any q ě 0

E
!
eq|

ř
uPX fp}u}q|

)
ă 8.

(iii) For any q ě 0, q1 ą 0 and θ P Θ, Et|tm|p0,Xqqλθp0,Xqq1u ă 8.

(iv) Let f1 and f2 be two functions as in piiq, then for any q1, q2, q3 ě 0 and q1 ą 0,

E

#
|tm|p0,Xqq1

ˇ̌
ˇ̌
ˇ
ÿ

uPX

f1p}u}q
ˇ̌
ˇ̌
ˇ

q2

eq3|
ř

uPX f2p}u}q|λθp0,Xqq1

+
ă 8.

Proof. The first statement is a consequence of Proposition 5.2 (a) in Ruelle (1970).
It relies on the following property, see also Mase (1995, Lemma 2). If ψ : R` Ñ R

`

is a decreasing function with
ş8

0
ψptqtd´1 dt ă 8, then for any q ě 0,

Epeq
ř

uPX ψp}u}qq ă 8.

The proof of piiq is an easy consequence of this property. We deduce in particular
that all moments of

ř
uPX fp}u}q exist and are finite. Assuming piiiq is true, then pivq

is a straightforward consequence of the previous properties and Hölder’s inequality.
Let us prove piiiq. For any ε ą 0, using the fact that for any q ě 0, κ ą 0, x ÞÑ xqe´κx

is bounded on r0,8q, we have

|tm|p0,xqqλθp0,xqq1 “ |tm|p0,xqqe´q1
řp

k“2
θktkp0,xq

“ |tm|p0,xqqe´q1ε|θmtmp0,xq|eq
1ε|θmtmp0,xq|´q1

řp
k“2

θktkp0,xq

ď c e´q1
ř

uPx Φ̃θpuq,

where Φ̃θpuq “ řp

k“2
θkgkpuq ´ ε|θmgmpuq|. The proof of piiiq is completed in view

of piq if we show that Φ̃θ satisfies [Φ] for any θ. Write Φ̃θpuq “ Φ̃1puq ` Φ̃2puq with

Φ̃1puq “ θ2

2
g2puq `

pÿ

k“3

θkgkpuq, Φ̃2puq “ θ2

2
g2puq ´ ε|θmgmpuq|.

From [g], we deduce that there exists r ą 0 such that }u} ă r implies Φ̃1puq ą
c}u}´γ1. Moreover if m “ 2, Φ̃2puq ą 0 for all }u} ă r0, provided ε ă 1{2. If m ě 3,
there exists r1 such that }u} ă r1 implies |θmgmpuq| ă cg}u}´γ1{p4εq where cg is the
constant in [g], yielding Φ̃2puq ą pcg{4q}u}´γ1. In all cases, we obtain that for some
r1 ą 0, }u} ă r1 implies Φ̃puq ą c}u}´γ1. On the other hand, it is clear that if
}u} ą r0 then |Φ̃puq| ď c}u}´γ2 and that Φ̃θ is bounded from below, proving that it
satisfies [Φ].

Lemma A.3. Let j P In and sm “ ps∆n,j
qm, respectively s1

m “ ps1
∆n,j

qm, be the m-th
coordinate of s∆n,j

given by (A.1), respectively s1
∆n,j

given by (A.2). Under [g], if
αn ě r0 then, for any q P N, Ep|sm|qq ă 8 and Ep|s1

m|qq ă 8.
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Proof. The proof being similar for sm and s1
m, we only give the details concerning

sm. From (A.1) and the binomial formula, the statement is a consequence of

E

$
&
%

ˇ̌
ˇ̌
ˇ̌

ÿ

uPX∆n,j

tmpu,XBu,n
zuq

ˇ̌
ˇ̌
ˇ̌

p1 ˇ̌
ˇ̌
ˇ

ż

∆n,j

tmpu,XBu,n
qλθ‹pu,XBu,n

q du
ˇ̌
ˇ̌
ˇ

p2
,
.
- ă 8

for any p1, p2 P N. Applying the Cauchy-Schwarz’s inequality, we consider each term
above separately. First, for any p P N, by Hölder’s inequality and using Lemma A.1
we get

E

"ˇ̌
ˇ̌
ż

∆n,j

tmpu,XBu,n
qλθ‹pu,XBu,n

q du
ˇ̌
ˇ̌
p*

ď c

ż

∆n,j

E
 ˇ̌
tmpu,XBu,n

q
ˇ̌p
λθ‹pu,XBu,n

qp
(
du

ď c

ż

∆n,j

E
“
|tmpu,Xq|p

 
λθ‹pu,Xqp ` |λθ‹pu,XBu,n

q ´ λθ‹pu,Xq|p
(‰

du

ď c

ż

∆n,j

E
“
|tmpu,Xq|p λθ‹pu,Xqp

 
1 ` Gppu,xqec pGpu,xq

(‰
du

which is finite by Lemma A.2 and the stationarity of X.
Second, we can prove by induction and successive application of the GNZ for-

mula, see Corollary 3.1 in Decreusefond and Flint (2014), that

E

»
–
$
&
%

ÿ

uPX∆n,j

tmpu,XBu,n
zuq

,
.
-

pfi
fl

“
pÿ

k“1

ÿ

pP1,...,PkqPT k
p

E

ż

∆k
n,j

λθ‹ptu1, . . . , uku,Xq
kź

ℓ“1

t|Pℓ|
m puℓ,XBu,n

Y tuzuℓuq du

where T k
p is the set of all partitions of t1, . . . , pu into k subsets, |P| is the cardinality

of P, u “ pu1, . . . , ukq and uzuℓ “ pu1, . . . , uℓ´1, uℓ`1, . . . , ukq. Since

λθ‹ptu1, . . . , uku,Xq “
kź

ℓ“1

λθ‹puℓ,Xq
kź

i“1,i‰ℓ

e´Φθ‹ pui´uℓq,

we obtain by application of Hölder’s inequality,

E

$
&
%

ˇ̌
ˇ̌
ˇ̌

ÿ

uPX∆n,j

tmpu,XBu,n
zuq

ˇ̌
ˇ̌
ˇ̌

p,.
- ď

pÿ

k“1

ÿ

PPT k
p

kź

ℓ“1

E1{k

ż

∆k
n,j

λθ‹puℓ,Xqk|tmpuℓ,XBu,n
Y tuzuℓuq|k|P|

kź

i“1,i‰ℓ

e´kΦθ‹ pui´uℓq du.
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The proof is completed if we show that all expectations above are finite. To that
end, note that

tmpuℓ,XBu,n
Y tuzuℓuq “ tmpuℓ,XBu,n

q `
kÿ

h“1,h‰ℓ

gmpuh ´ uℓq

whereby, denoting q “ k|P|

E

ż

∆k
n,j

λθ‹puℓ,Xqk|tmpuℓ,XBu,n
Y tuzuℓuq|q

kź

i“1,i‰ℓ

e´kΦθ‹ pui´uℓq du

ď
qÿ

r“0

ˆ
q

r

˙ż

∆k
n,j

ˇ̌
ˇ̌
ˇ

kÿ

h“1,h‰ℓ

gmpuh ´ uℓq
ˇ̌
ˇ̌
ˇ

r

ˆ

kź

i“1,i‰ℓ

e´kΦθ‹ pui´uℓq E
 

|tmpuℓ,XBu,n
q|q´rλθ‹puℓ,Xqk

(
du

ď c

qÿ

r“0

kÿ

h“1,h‰ℓ

ż

∆k
n,j

|gmpuh ´ uℓq|rˆ

kź

i“1,i‰ℓ

e´kΦθ‹ pui´uℓq E
 

|tmpuℓ,XBu,n
q|q´rλθ‹puℓ,Xqk

(
du.

The last expectation is finite in view of Lemma A.2, so the above expression is lower
than

c

qÿ

r“0

kÿ

h“1,h‰ℓ

ż

∆k
n,j

|gmpuh ´ uℓq|r
kź

i“1,i‰ℓ

e´kΦθ‹ pui´uℓq du

ď c

"ż

Rd

e´kΦθ‹ pvq dv

*k´2 qÿ

r“0

ż

Rd

|gmpvq|re´kΦθ‹ pvq dv,

which is finite from [g].

Lemma A.4. The following properties hold under the assumption [g].

(i) For Λ1,Λ2 two bounded Borel sets of Rd

Covps1
Λ1
, s1

Λ2
q “ E

ż

Λ1XΛ2

tpu,XBu,n
qtpu,XBu,n

qJλθ‹pu,Xq du

` E

ż

Λ1

ż

Λ2

tpu,XBu,n
qtpv,XBv,n

qJtλθ‹pu,Xqλθ‹pv,Xq ´ λθ‹ptu, vu,Xqu du dv

` E

ż

Λ1

ż

Λ2

∆vtpu,XBu,n
qt∆utpv,XBv,n

quJλθ‹ptu, vu,Xq du dv

where for any u, v P R
d, x P Ω and any measurable function f : Rd ˆ Ω Ñ R

p,
the difference operator ∆v is defined by ∆vfpu,xq “ fpu,x Y vq ´ fpu,xq.
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(ii) Let p∆nqně1 be a sequence of increasing domains such that ∆n Ñ R
d as n Ñ 8,

then
|∆n|´1Varps1

∆n
q Ñ Σ8

where Σ8 is defined by (4.6).

(iii) Let j, k P In. Then if αn ě r0 and |k ´ j| ą 2r0,

›››Covps1
∆n,j

, s1
∆n,k

q
››› ď c|k ´ j|´γ2 .

(iv) For j, k P In denote

Cn,jk “ Covps∆n,j
, s∆n,k

q ´ Covps1
∆n,j

, s1
∆n,k

q.

Then if αn ě r0, for any j, k P In,

}Cn,jk} ď c

α
γ1

n p1 ` |k ´ j|γ2q
` c

α
2γ1

nÿ

j,kPIn

}Cn,jk} “ Opα´γ1

n |In|q ` Opα´2γ1

n |In|2q
ÿ

j,kPIn
|k´j|ďαn

}Cn,jk} “ Opα´γ1

n |In|q ` Opα1´2γ1

n |In|q

ÿ

j,kPIn
|k´j|ąαn

}Cn,jk} “ op|In|q ` Opα´2γ1

n |In|2q,

as n Ñ 8, where we recall that γ1 “ γ2 ´ d ´ ε with 0 ă ε ă γ2 ´ d.

Proof. piq is a slight extension of Coeurjolly and Rubak (2013, Lemma 3.1) where
the case Λ1 “ Λ2 was considered. The proof is omitted.

For piiq, we note that for any u, v P R
d, m ě 1 and x P Ω

λθ‹pu,xqλθ‹pv,xq ´ λθ‹ptu, vu,xq “ λθ‹pu,xqλθ‹pv,xqt1 ´ e´Φθ‹ pv´uqu (A.3)

and

∆vtmpu,xq “ tmpu,x Y vq ´ tmpu,xq “
"

0 if m “ 1

gmpvq if m ě 2
(A.4)

which leads to ∆utpv,xq “ gpvq. Letting |t|pu,xq “ t|tm|pu,xqumě1 for any u P R
d

and x P Ω, we have for any u, v P R
d

}tpu,XBu,n
qtpv,XBv,n

qJ} ď } |t|pu,Xq|t|pv,XqJ}.

The result is derived using the dominated convergence theorem, the stationarity of
X and since from Lemma A.2 the random variables } |t|p0,Xq|t|p0,XqJ}λθ‹p0,Xq
and } |t|p0,Xq|t|pv,XqJ}λθ‹p0,Xqλθ‹pv,Xq have expectation uniformly bounded in
v while by [g]

ż

Rd

|1 ´ e´Φθ‹ pvq| dv ă 8 and

ż

Rd

}gpvqgpvqJ}e´Φθ‹ pvq dv ă 8.
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To prove piiiq, we apply piq to the disjoint sets ∆n,j, ∆n,k and relations (A.3)-
(A.4) to get

›››Covps1
∆n,j

, s1
∆n,k

q
›››

ď E

ż

∆n,j

ż

∆n,k

} |t|pu,Xq|t|pv,XqJ}λθ‹pu,Xqλθ‹pv,Xq|1 ´ e´Φθ‹ pv´uq| du dv

` E

ż

∆n,j

ż

∆n,k

}gpv ´ uqgpv ´ uqJ} λθ‹pu,Xqλθ‹pv,Xqe´Φθ‹ pv´uq du dv. (A.5)

Since |k ´ j| ą 2r0, we deduce from [g] that for any pu, vq P ∆n,j ˆ ∆n,k and any
m ě 2, |gmpv ´ uq| ď c|k ´ j|´γ2 . This leads to

}gpv ´ uqgpv ´ uqJ} ď c|k ´ j|´γ2 .

Similarly since Φθ‹ “ řp

m“2
θ‹
mgm, for any pu, vq P ∆n,jˆ∆n,k, e

´Φθ‹ pv´uq ď e|Φθ‹ pv´uq| ď
c and

|1 ´ e´Φθ‹ pv´uq| ď |Φθ‹pv ´ uq|e|Φθ‹ pv´uq| ď c|k ´ j|´γ2 . (A.6)

Plugging these inequalities in (A.5) shows piiq, as the remaining terms have finite
expectations from Lemma A.2.

We now focus on pivq. Let us write s∆n,j
“ s1

∆n,j
` Ij where Ij “

ş
∆n,j

πnpu,xq du
and

πnpu,xq “ tpu,xBu,n
qtλθ‹pu,xBu,n

q ´ λθ‹pu,xqu.
We have

Covps∆n,j
,s∆n,k

q ´ Covps1
∆n,j

, s1
∆n,k

q
“ Eps1

∆n,j
IJ
k q ` Eps1

∆n,k
IJ
j q ` EpIjIJ

k q ´ Eps∆n,j
qE ps∆n,k

qJ
. (A.7)

Let us control each term in (A.7). From the GNZ formula

Eps1
∆n,j

IJ
k q “ E

ż

∆n,j

ż

∆n,k

tpu,Xqλθ‹pu,Xqtπnpv,Xq ´ πnpv,X Y uquJ du dv.

By definition of λθ‹ and t (see (2.2) and (4.2)), we have for any u, v P R
d and x P Ω

πnpv,x Y uq “ e´Φθ‹ pv´uqrπnpv,xq ` gpv ´ uqtλθ‹pv,xBv,n
q ´ λθ‹pv,xqus,

whereby

Eps1
∆n,j

IJ
k q “ E

ż

∆n,j

ż

∆n,k

tpu,Xqλθ‹pu,Xq
 
1 ´ e´Φθ‹ pv´uq

(
πnpv,XqJ du dv

´ E

ż

∆n,j

ż

∆n,k

tpu,Xqλθ‹pu,Xqe´Φθ‹pv´uqgpv ´ uqJtλθ‹pv,xBv,n
q ´ λθ‹pv,xqu du dv.

(A.8)

[g] implies [Φ] which in turn yields |1 ´ e´Φθ‹ pv´uq| ď 1 ` e´Φθ‹ pv´uq ď c since
Φθ‹ is bounded from below. On the other hand, for any m ě 2, denoting Φ̃θ‹ “
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Φθ‹ ´ ε|θ‹
mgm| for some ε ą 0, we have |gm|e´Φθ‹ “ |gm|e´ε|θ‹

mgm|e´Φ̃θ‹ ď c since
x ÞÑ xe´κx is bounded on r0,8q for any κ ą 0 and Φ̃θ‹ satisfies [Φ] as seen in the
proof of Lemma A.2. This proves that for any u, v, }e´Φθ‹ pv´uqgpv´uqJ} is bounded.
Moreover, from (A.6), we know that if |k´j| ą 2r0, then |1´e´Φθ‹ pv´uq| ď c|k´j|´γ2

and similarly }e´Φθ‹ pv´uqgpv´uqJ} ď c|k´j|´γ2. We deduce that for any u P ∆n,j, any
v P ∆n,k and any j, k, |1´ e´Φθ‹ pv´uq| ď cp1` |k´ j|q´γ2 and }e´Φθ‹ pv´uqgpv´uqJ} ď
cp1` |k´ j|q´γ2. Plugging these inequalities in (A.8) and applying Lemmas A.1-A.2
to the remaining terms shows that for any j, k

}Eps1
∆n,j

IJ
k q} ď c

α
γ1

n p1 ` |k ´ j|γ2q
. (A.9)

The same inequality obviously holds for }Eps1
∆n,k

IJ
j q}. For the two last terms in the

right hand side of (A.7), namely

EpIjIJ
k q “ E

ż

∆n,j

ż

∆n,k

πnpu,Xqπnpv,XqJ du dv

and, after application of the GNZ formula,

Eps∆n,j
qEps∆n,k

qJ “
ż

∆n,j

ż

∆n,k

E πnpu,XqEπnpv,XqJ du dv,

we deduce from Lemmas A.1-A.2 that their norm is bounded by α´2γ1

n for any j, k,
up to a positive constant. The latter and (A.9) prove the first inequality in pivq from
which the three remaining statements are easily deduced.
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