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Abstract How will our estimates of climate uncertainty evolve in the coming7

years, as new learning is acquired and climate research makes further progress?8

As a tentative contribution to this question, we argue here that the future path9

of climate uncertainty may itself be quite uncertain, and that our uncertainty is10

actually prone to increase even though we learn more about the climate system.11

We term disconcerting learning this somewhat counter-intuitive process in which12

improved knowledge generates higher uncertainty. After recalling some definitions,13

this concept is connected with the related concept of negative learning that was14

introduced earlier by Oppenheimer et al. [2008]. We illustrate disconcerting learn-15

ing on several real-life examples and characterize mathematically certain general16

conditions for its occurrence. We show next that these conditions are met in the17

current state of our knowledge on climate sensitivity, as shown physically on hand18

of an energy balance model of climate. Finally, we discuss the implications of these19

results on developing policy for adaptation and mitigation.20

Keywords Climate change uncertainty · Knowledge evolution · Learning models21

1 Introduction and motivation22

Strong scientific consensus prevails over the fact that Earth’s climate is cur-23

rently warming and will be warming further over the coming decades, as a con-24

sequence of the radiative perturbations caused by anthropogenic greenhouse-gas25

(GHG) emissions. The conclusions of the IPCC’s Fourth Assessment Report (AR4:26

[Solomon et al. (2007)], [AR4] hereafter) further buttress this consensus. There27

is, however, substantial uncertainty regarding the extent of future warming, as28

pointed out in the same report and in many of its references.29
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This uncertainty renders decision making on appropriate adaptation and mit-30

igation steps more difficult. In addition, the uncertainty level regarding future31

climate evolution has not decreased significantly over the past decades. This ob-32

servation paves the way for climate-warming naysayers; it is sometimes used as33

an argument to discredit climate science as a whole and to slow down action on34

this issue. Lively scientific debate continues on the extent and the reasons for the35

uncertainty. This debate motivates us to revisit here the question of the future36

evolution of uncertainties.37

Uncertainties regarding future climate warming are usually divided into three38

categories [Hawkins and Sutton (2009)]: (i) those regarding GHG increase scenar-39

ios [AR4]; (ii) those arising from the climate system’s internal variability40

[Ghil et al. (2008)]; and (iii) those inherent to the climate system’s long-term41

response to a given forcing. Because contribution (i) is part and parcel of hu-42

mankind’s future course of action and the relative contribution of (ii) may vanish43

after a few decades, we focus on the third category, which we refer to henceforth44

simply as climate uncertainty. To quantify it, a widely used metric consists in the45

spread σ∆T associated with the probability density function (PDF) of climate sen-46

sitivity; the latter is defined here as the change ∆T in global equilibrium surface47

temperature T associated with a doubling in atmospheric CO2 concentration.48

This metric stems from the fact that the diversity of plausible long-term future49

climate states for a given emission scenario is determined, to a large extent, by50

the range of climate sensitivity ∆T . According to [AR4] — which compiled PDFs51

of ∆T obtained by various studies over the last few years — ∆T is likely to lie52

between 2◦C and 4.5◦C, a range which is still high. It is thus relevant for socio-53

economic and political decision making to ask how this range will evolve in the54

future, as climate research makes further progress.55

To answer this question, one can find, on the one hand, numerous studies (e.g.,56

[Stainforth et al. (2005),Knutti and Hegerl (2008),Roe and Baker(2007),Hannart et al. (2009)]57

and references therein) that focus on the reasons for the presently high range of58

∆T . These studies identified a number of key research areas — such as cloud pro-59

cesses (e.g.,60

[Soden and Held (2006),Dufresne and Bony (2008)]) or oceanic variability and re-61

sponse [Dijkstra and Ghil (2005),Ghil et al. (2008)] — whose better understand-62

ing and modeling may potentially lead to a reduction of the uncertainty in ∆T .63

On the other hand, a vast body of literature addresses the question of learning64

at an epistemological level and that of uncertainty in the general context of scien-65

tific research. For instance, the very definitions of learning and scientific progress,66

as well as the question of the existence of truth, have been debated at length67

over millennia of philosophical tradition (e.g., [Aristotle (40 B.C.),Bacon (1605),68

Kuhn (1962)]). The interplay between learning, uncertainty, erroneous judgements69

and decision making has received increased attention in recent years, especially70

in the context of environmental policy (e.g., [Crutzen and Oppenheimer (2008),71

Keller and McInerney (2007),O’Neill et al. (2006)]). There are still but few stud-72

ies, however, (e.g., [Oppenheimer et al. (2008),Webster et al. (2008)]) that address73

jointly the question of the uncertainty in ∆T — so often debated in the cli-74

matic literature — and the aforementioned, more general literature on learning75

and progress.76

The [Oppenheimer et al. (2008)] paper ([ONW08] hereafter) not only included77

such a broader perspective, but also made several important points that we briefly78
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recall here. First and foremost, [ONW08] challenged the intuitive, and hence per-79

vasive view that usually enters into decision making on environmental problems,80

namely that “scientific research can be equated (...) with truer beliefs about the81

outcomes of problems (...) thus providing a superior basis for crafting solutions.”82

In formulating their challenge, these authors introduced the broad concept of neg-83

ative learning to describe any situation where “new technical information leads to84

scientific beliefs that diverge over time from the a posteriori right answer.”85

[ONW08] illustrated the concept of negative learning on hand of four prominent86

case histories, thus showing that negative learning did occur in the past. One of87

these case histories dealt with advances in the understanding of ozone depletion88

in the 1970’s and 80’s. In the latter case, the negative aspects of the learning89

touched upon important facets of the problem under study, for reasons that were90

similar to those involved in global warming, and did affect policy making. Finally,91

[ONW08] showed that negative learning on climate sensitivity could well occur in92

the future, for instance if an unknown radiative feedback is not incorporated into93

climatic models, i.e. if the latter are subject to structural error.94

The present article pursues the same line of questioning as [ONW08]. While95

[ONW08] focused on the conditions of occurrence and on the damaging effects of96

negative learning, they did not examine the detailed dynamics of learning in the97

“non-negative” case, which they termed progressive learning. Progressive learning,98

though, may still be problematic when it comes to uncertainty. Our main point in99

the present paper is that, while progressive learning always leads to truer beliefs by100

definition, it does not systematically imply that these truer beliefs are less uncer-101

tain. We thus introduce the term disconcerting learning to describe this nonethe-102

less counter-intuitive situation, in which new information leads to scientific beliefs103

that are closer to the a posteriori right answer, while still being marked by greater104

uncertainty. Conversely, we use the term reassuring learning for the more intuitive105

situation in which progressive learning does lead to less uncertainty. These four106

possibilities — of negative vs. positive, and of disconcerting vs. reassuring learning107

— are illustrated in Fig. 1, and are explained more precisely in the next section.108

Although the term “disconcerting learning” introduced here is novel, to the109

best of our knowledge, earlier works in statistics, probability and economics have110

already pointed out the existence of this situation (e.g., [Burdett (1996)] or111

[Zidek and van Eeden (2003),Bagnoli and Bergstrom (2005),Chen et al. (2010)]112

or [Chen (2011)]). These theoretical studies have also established a few rigorous113

results concerning the conditions of occurrence of such a situation, but only under114

some very restrictive conditions.115

Hence, a general theory of disconcerting learning is lacking for the time being116

and [Chen et al. (2010)] have even described such a theory as elusive. In any case,117

research on this type of learning is still in its early days and more work is needed118

to improve its understanding. The importance of uncertainty regarding climate119

sensitivity motivates us to do so, and the relevance of this motivation will be120

made clear in Section 4. Thus, our main contribution here is to further illustrate121

and analyze why and how disconcerting learning occurs and to demonstrate that122

it is prone to occur in learning about ∆T in the future.123

The paper is organized as follows. In Section 2, we recall the definitions of124

[ONW08] and introduce our own definitions and notation. In Section 3, discon-125

certing learning is illustrated based on two real-life, biomedical problems that are126

more insightful in our view than the climatological situation eventually at stake127
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here. Then, we introduce a simple Bayesian model of progressive learning and128

we use it to study the general properties of and conditions for the occurrence of129

disconcerting learning. In Section 4, we return to the physics and sensitivity of130

climate and we show that disconcerting learning may occur in studying ∆T , i.e.131

that climate uncertainty may persist or increase even though scientific research132

yields progressive results. We emphasize this finding in the idealized context of133

a linear energy balance model of climate and illustrate it more concretely with134

a real example. Section 5 comments on some policy implications of the present135

results, while Section 6 discusses some further aspects of our work and states our136

conclusions.137

2 Definitions and notations138

As in [ONW08], an outcome is any quantity, process or structure of interest, and139

we denote it by x. The state of knowledge on x, for a given observer at a given140

moment, consists in the set of informations relating to x that are available to141

the observer at that moment. We denote this set by I and represent the state of142

knowledge on x in probabilistic terms by using the pdf p(x | I) of x conditional143

on I. Further considerations on the relevance of this probabilistic description of144

a state of knowledge, as well as on the underlying interpretation of probabilities,145

can be found in Supplemental Material A.146

Learning on x is thus defined here by a change in the pdf of x subsequent147

to its update by some new information. Such changes may occur as a result of148

developments in theory, modeling, observations or experiments. We denote by I0,149

I and I1 = I0 ∪ I, respectively, the a priori information, the new information150

learnt, and the a posteriori information.151

With this notation, learning can be formalized in the Bayesian framework as152

follows:153

p1(x) =
p0(x)L(x | I)�
p0(x)L(x | I) dx

. (1)154

In Eq. (1), the prior distribution p0(x) = p(x | I0) represents the initial state of155

knowledge on x and is multiplied by a likelihood function L(x | I) that summarizes156

the new information. This product yields, after normalization, the a posteriori157

distribution p1(x) = p(x | I1).158

In this probabilistic definition, the level of uncertainty on x that is associated159

with a given state of knowledge I is easily quantified by using p(x | I). We do160

so using the standard deviation σI of this pdf as a metric. Other metrics for161

uncertainty are possible, i.e. Shannon entropy, but this choice is not critical for162

the present discussion; see Supplemental Material B.163

In this Bayesian setting, the definition of disconcerting learning given in Section164

1 becomes simply165

σ1 > σ0 , (2)166

i.e. the uncertainty level on the outcome increases even though more information on167

x was gained. Conversely, reassuring learning corresponds to a learning situation168

in which σ1 ≤ σ0, while the definition of negative learning given by [ONW08]169

becomes170

p1(x
∗) < p0(x

∗) , (3)171
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whereas p1(x
∗) ≥ p0(x

∗) for progressive learning; here x∗ denotes the true value of172

x. Figure 1 describes the four possibilities associated with the pair of inequalities173

between prior and posterior variance and between prior and posterior bias.174

Since the key idea associated with negative learning is to describe a situation175

in which “scientific beliefs diverge over time from the a posteriori right answer,”176

one could consider an alternative, but very closely related definition of negative177

learning as an increase in bias — i.e. | µ1 − x∗ |>| µ0 − x∗ |; such a definition178

would more closely parallel the definition of disconcerting learning as an increase179

in uncertainty, where µ is the distribution mean. The purpose of this article is180

primarily to study the situation of disconcerting learning, σ1 > σ0, in the context181

of progressive learning, which we choose for simplicity to be defined as p1(x
∗) ≥182

p0(x
∗).183

3 Conditions of occurrence of disconcerting learning184

3.1 Two illustrations of disconcerting learning185

With the quantitative definitions formulated in Section 2 in hand, we now proceed186

to exhibit two typical situations of disconcerting learning that occur in the medical187

context, before turning to our main climatic applications in Section 4.188

Medical screening test. Suppose one is interested in whether or not an individual189

is affected by a disease. The outcome x here is a binary variable with x = 1 if the190

individual is affected by the disease and x = 0 if not. We assume that a medical191

screening test is available for the detection of the disease. The result of the test z192

can also be treated as a binary variable with z = 1 if the test is positive and z = 0193

if it is negative.194

Our initial state of knowledge consists simply in the mean frequency of occur-195

rence q0 of the disease in the population. We thus have p0(x) = qx
0 (1 − q0)

1−x,196

and the a priori standard deviation is given by σ0 =
�

q0 (1− q0). Then, the med-197

ical screening test is conducted on the individual, and we assume that it gives a198

positive result, z = 1, thus suggesting illness. However, the test is known to be199

imperfect: it has a false positive frequency q and a false negative frequency q�.200

The new probability q1 and standard deviation σ1, after learning the test result,201

are equal to202

q1 = {1 + (1− q0)/q0β
2}−1, σ1 = σ0{βq0 + β−1(1− q0)}−1 , (4)203

where β =
�

(1− q�)/q. It thus follows immediately that, whenever the prior204

probability q0 is smaller than (1+β)−1, learning the positive result of the test leads205

to an increase of the uncertainty level, i.e. to disconcerting learning. Furthermore,206

the increase is largest for q0 = q = q�.207

In the present context, q0 is typically small but nonzero — i.e., illness is a priori208

possible, but remains the exception and health the rule — and so are q and q�, since209

medical tests are reasonably trustworthy, although not completely so. We are thus210

often in a situation in which the condition q0 < (1+β)−1 could be met, and where211

q0 � q � q� is also perfectly plausible. For instance, [Humphrey et al. (2002)]212

gives q0 = 0.06, q = 0.13 and q� = 0.02. For these values, learning a positive result213

almost doubles the standard deviation from 0.23 to 0.45, i.e. it is an instance of214

strongly disconcerting learning.215
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It should be emphasized that disconcerting learning in such a situation is pos-216

sible, but not unavoidable. For instance, learning a negative test result (z = 0) will217

result in a sharp decrease in the standard deviation, from 0.23 to 0.16, i.e. reas-218

suring learning. Learning the positive test result (z = 1) could also be reassuring219

in two situations.220

First, if the test were much more reliable, the resulting probability of illness221

q1 would be closer to one and the standard deviation closed to zero. In the above222

example, this would require q < 0.004; for q = 0.001, the standard deviation σ1223

would then decrease from 0.23 to 0.12. Second, if the prior probability of illness q0224

was close to 0.5, the prior uncertainty level would nearly equal its maximal value225

and its posterior value would thus necessarily decrease. In the above example, this226

would require q0 > 0.26 for the given test reliability.227

To summarize the insights gained from this example, one can state the follow-228

ing: For a binary outcome with contrasted a priori probabilities, 0 < q � 0.5 �229

1−q < 1, new information that favors the unexpected modality tends to be discon-230

certing, as long as the new information is not conclusive. One can thus speculate231

that in general, disconcerting learning occurs when surprising but inconclusive232

evidence is found.233

Disease incidence rate. We focus next on a slightly different, but connected,234

real-life situation. We are interested this time in the frequency of occurrence x of235

the disease in a given population. In this case, learning is obtained by observing236

whether a new individual is ill or not.237

Let us suppose that this new individual is found to be affected by the disease,238

i.e. z = 1. Consider, for definiteness, that at the time z is observed, n = 15239

individuals were already observed and that k = 3 of them are ill and n − k = 12240

are healthy. Finally, suppose that prior to this initial observation of n individuals,241

x was assumed to be uniform on [0, 1]. In this situation, we find from Eq. (1)242

that p0(x) is the beta distribution B(k, n− k) and that the posterior p1(x), after243

learning z = 1, is B(k + 1, n− k). (Supplemental Material C). Hence:244

σ1 = σ0{(1− (k + 1)−1)(1 + n−1)(1 + 2 n−1)}−
1
2 . (5)245

Equation (5) yields σ1/σ0 = 1.05 and we find ourselves in a situation of discon-246

certing learning as well.247

As in the previous example, disconcerting learning happens here because the248

new information is simultaneously surprising — i.e., the observation of a new case249

of disease was rather unexpected, due to the fact that most previous observations250

were of healthy people — and yet inconclusive — i.e., one extra case of disease251

is insufficient to properly estimate the frequency of disease occurrence over the252

population. Conversely, had the observation been unsurprising, i.e. had z been253

equal to its expected modality of zero, z = 0 for n = 16, the spread would have254

decreased. Likewise, had the observation been surprising but conclusive, i.e. had255

we observed a very large number (say 500) of cases of disease instead of one single256

case, the spread would also have decreased.257

3.2 Disconcerting learning and shape of the prior distribution258

In this subsection, we now focus on scalar, continuous outcomes x, and we address259

the following two questions: are there characteristics inherent to the prior pdf p0(x)260
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that increase the chances for disconcerting learning to occur; and if so, which? We261

address these questions based on a review of results available in recent literature262

and on hand of a detailed simulation study designed for this purpose.263

The simulation study relies on a Bayesian learning model applied to a variety264

of prior distributions that combine several shape features, namely: skewness, from265

fully symmetric to pronounced asymmetry; kurtosis, from leptokurtic to platykur-266

tic; tail size, from bounded to heavy-tailed; and multimodality, from one to two267

modes. Distributions combining these features were generated based on the Pear-268

son family. The literature review as well as the simulation study are described and269

illustrated in detail in Supplemental Material D and E, respectively.270

This exploration yielded three main findings. First, there are essentially two271

characteristics that enhance the likelihood of disconcerting learning to occur,272

namely that p0(x) (i) is highly skewed, and (ii) that it possesses heavy tails,273

cf. Figs. 2 and SM1; when combining these two characteristics, the incidence of274

disconcerting learning tends to increase substantially. This result sheds light on275

the illustrative examples given in Section 3.1: in each instance, when disconcerting276

learning occurred, the prior distribution did indeed have significant skewness. For277

instance, the skewness of the Bernoulli prior p0(x) = qx
0 (1−q0)

1−x was equal to 3.7278

for q0 = 0.06, and that of the Beta distribution B(3, 12) was equal to 1.5; for com-279

parison purposes, the skewness of the highly asymmetric exponential distribution280

is equal to 2.281

Second, disconcerting learning in this model is always associated with a large282

swing in the value of the mean; see Figs. 2 and SM2. This result further supports283

the validity of the speculation in Section 3.1, according to which disconcerting284

learning occurs whenever surprising evidence is found, as shown by large shifts in285

the expected value of the outcome. Note that the two findings summarized so far286

are perfectly consistent with, and shed light on, each other. Indeed, skewed and287

heavy-tailed distributions share a property that symmetric, light-tailed distribu-288

tions do not have: They assign high probabilities to the occurrence of values that289

are remote from the “central core” of the distribution — i.e., unexpected values —290

which are precisely those that give rise to large swings and disconcerting learning.291

Third, disconcerting learning is systematically associated with a large disper-292

sion of the trajectories of the uncertainty (Figure SM2b). This finding can be293

understood qualitatively by considering the fact that no distribution can generate294

surprises in a systematic manner — otherwise they would not be surprises. In295

other words, a distribution that is compatible with the occurrence of surprises—296

i.e., that is skewed or heavy tailed or both — still generates unsurprising evidence297

most of the time. Accordingly, a distribution that is compatible with the occur-298

rence of disconcerting trajectories still generates reassuring trajectories most of299

the time, resulting in a widespread range of trajectories.300

4 Disconcerting learning and climate sensitivity301

4.1 Implications from recent PDFs of climate sensitivity302

At present, most PDFs obtained for climate sensitivity ∆T are skewed and heavy-303

tailed (Fig. 3). There is ongoing debate and discussion on the reasons for the304

redundancy of skewness in these PDFs (see for instance [Allen et al.(2006)] or305
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[Zaliapin and Ghil (2010),Roe and Baker(2011)]) but these interesting discussions306

are beyond our scope, which is merely to analyze the implications of these factual307

features for disconcerting learning. In this purpose and as a starting point, we first308

applied directly the general learning model used in Section 3.2 to several PDFs309

of climate sensitivity sampled from recent studies (references in Supplemental310

Material). Doing so, we obtained a set of future trajectories for the uncertainty in311

climate sensitivity (Fig. 3). Unsurprisingly, we find that (i) disconcerting learning312

on climate sensitivity is prone to occur in the future; that (ii) it is most severe313

when the prior distribution is highly skewed; and that (iii) the future trajectory314

of the uncertainty is itself quite uncertain.315

The interpretation of these findings is quite straightforward by using the in-316

sights gained from Sections 3.1 and 3.2: because of skewness, high values of climate317

sensitivity are unlikely but cannot be discarded altogether thus our present state318

of knowledge allows surprises to occur as we learn more. More specifically, skew-319

ness here implies that the shape of the PDF is flatter for high values than it is for320

medium values, i.e. high values tend to be more evenly distributed than medium321

values. This means that our knowledge is more imprecise in the upper range than322

it is in the medium range. Therefore, if a new piece of information shifts our be-323

liefs with respect to climate sensitivity upwards, this will take us into a domain324

of values about which we know less. The new information will thereby raise more325

questions and doubts than it will bring answers and certainties. Uncertainty will326

thus increase and the learning will be disconcerting.327

4.2 An illustration of disconcerting learning on climate sensitivity328

We now discuss and illustrate more concretely how learning on climate sensitivity329

may occur. For this purpose, we adapt our general Bayesian learning framework330

to the case of climate sensitivity, by following an approach similar to that of331

[Kelly and Kolstad (1999),Leach (2007),Webster et al. (2008)] in which the new332

knowledge on climate sensitivity ∆T is obtained from a new temperature obser-333

vation T . The latter is interpreted in terms of climate sensitivity by means of334

a climate model that establishes a probabilistic connection between ∆T and T ,335

summarized by p(T | ∆T ). Then, the Bayesian update Equation (1) yields:336

p1(∆T ) =
p0(∆T ) p(T | ∆T )�
p0(∆T ) p(T | ∆T ) dT

. (6)337

Equation (6) describes a learning process on ∆T which combines two types of338

information: (i) a climate observation T indirectly linked to ∆T ; and (ii) a climate339

model representing the available physical knowledge with respect to the indirect340

link between T and ∆T . In the following, we focus on the observational learning341

(i) only. Note, though, that an improvement of our theoretical understanding of342

climate physics subsequently affecting the model (ii) can also be accounted for343

using this framework. But in any case, even though the learning process is assumed344

to be purely observational here, the climate model is at the core of this process,345

because it entirely defines the distribution p(T | ∆T ) of the new observation346

conditional on climate sensitivity used in Equation (6).347

Any choice of climate model — deterministic, stochastic, from low to high348

complexity — is in theory fit within this framework (Supplemental Material F).349
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For the present, learning-theoretic purposes, we chose a stochastic version of a350

zero-dimensional energy balance model, in discrete time:351

κ
δT t

δt
= −∆R0

∆T
T t + Rt , Tt = T t + εt. (7)352

where Rt is the radiative forcing at t; and κ, ∆R0 and σ are climate parameters353

that are assumed to be known, i.e. ∆T is assumed to be the only uncertain pa-354

rameter here. The model and its assumptions are described in detail and solved355

in Supplemental Material G; it yields a closed form expression of p(Tt | ∆T ), the356

distribution of Tt seen from time t−1 conditional on ∆T . For observed trajectories357

of the forcing Rt and of the temperature response Tt, we can thus use p(Tt | ∆T )358

and Eq. (6) to perform iterative updates and obtain the successive PDFs pt(∆T )359

of ∆T at each instant t, as well as the corresponding successive values of the360

standard deviations σt — i.e. the trajectories of the uncertainty in ∆T .361

We applied the latter procedure by using an initial prior distribution p0(∆T )362

that synthesizes the [AR4] inferences on PDFs of climate sensitivity, i.e. a mean363

equal to 3.2◦C, a likely range of 2◦C–4.5◦C, and a positive skewness that we364

assume equal to 0.7. We stopped this updating process at present time t, and we365

studied the sensitivity of pt+1(∆T ) to Tt+1, the new temperature observation for366

year 2013, which is assumed to be still unknown at time t. We found that, for367

the simulated value Tt, whenever Tt+1 − Tt ≤ 0.24◦C — i.e., for a δT in Eq. (7)368

that corresponds to either cooling or to a moderate warming between t and t + 1369

— we will always have σt+1 ≤ σt and, if so, the new observation corresponds to370

reassuring learning. Conversely, when Tt+1 − Tt > 0.24◦C, i.e. for a more intense371

warming between t and t+1, then σt+1 > σt and the new observation corresponds372

to disconcerting learning; see Fig. 4.373

These findings match our previous results and conclusions. Indeed, according374

to the information available at t, a moderate warming between t and t + 1 is to375

be expected. If a moderate warming materializes, this will be in line with the376

expected value of climate sensitivity and will confirm this value; thus learning377

in this case will be reassuring. Conversely, if an intense warming materializes,378

this will be unexpected and come as a surprise. This surprising observation will379

tend to indicate that climate sensitivity is higher than expected. The indication,380

though, will be inconclusive: first, because the unexpected observation could still be381

explained to a large extent by short-term fluctuations caused by internal variability,382

rather than characterizing the climate system’s long-term response; and second,383

because the a priori PDF p0(∆T ) is skewed towards high values. The role of the384

latter skewness is particularly important here. To further emphasize it, we applied385

the same update procedure of Eq. (7) on the same simulated values of temperature,386

but initializing this time with a Gaussian, symmetric prior distribution. We find387

that under such an a priori, learning is always reassuring no matter the value of388

the new observation Tt+1; this is the case even for unexpected, intense warming389

between t and t + 1 (not shown).390

We end this subsection with an example of an actual recent observation that,391

in line with our above illustration, may arguably be considered as disconcerting.392

In 2007, the yearly minimal extent of Arctic sea ice has started to decline abruptly393

and faster than expected by climate models ([Stroeve et al. (2012)]). All observa-394

tions after 2007 were consistent with an abrupt change, especially the latest to date395
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(September 2012). Such a situation is indeed surprising, yet it is clearly inconclu-396

sive: On the one hand, it tends to indicate that climate sensitivity may be higher397

than expected. It might even suggest that the climate system has passed a tipping398

point ([Lenton et al. (2008),Abbot et al.(2011),Livina and Lenton (2012)]), even399

though this possibility is still actively debated ([Tietsche et al. (2011)]). On the400

other hand, internal variability is high in the polar regions401

[Ghil et al. (1987),Darby and Mysak (1993)], and it could explain this situation402

without requiring a high sensitivity. So, it can be argued that the recent decline in403

Arctic sea ice raises more questions than it provides answers, and it is therewith404

a disconcerting observation. To settle the matter would require applying the pro-405

cedure described in Section 4.2 to a more detailed model than our linear model of406

Eq. (7). Such a model would have to explicitly represent sea ice and allow for the407

presence of tipping points [Ghil (2001)]; it is thus beyond the scope of the present408

paper.409

5 Policy implications410

The key finding of the previous section is that the future trajectory of uncertainty411

with respect to climate sensitivity is itself uncertain and that this uncertainty412

could well increase. Such a finding may have implications for the development413

of climate change mitigation policy. In the present section, we merely discuss414

whether and how disconcerting learning may affect policy, but stop short of any415

recommendations on this matter.416

It is clear that climate change may seriously affect humankind’s socio-economic417

well-being in the future. The extent and cost of any future damages, though, are418

quite uncertain, in particular because of uncertainty concerning climate sensitiv-419

ity. It is also clear that uncertain future damages can be mitigated by actions420

taken today — e.g., a CO2 abatement achieved by various means, including a421

carbon tax, for instance. Unlike the cost of climate damages, which lies in future,422

these mitigation actions have a cost that is immediately incurred and is also fairly423

accurately known.424

The crucial issue at the heart of mitigation policies is thus one of defining the425

right trade-off between uncertain, future damages and certain, present costs. The426

issue can thus be posed as a risk management problem, and there is an abundant427

literature in which it is tackled within this framework, using the concepts and tools428

of decision under uncertainty ([Arrow and Fisher (1974)]). In spite of the common429

analysis framework used to tackle mitigation policy design, policy recommenda-430

tions range from very substantial ([Rahmstorf (1999)]) to very low ([Tol (1997)])431

near-term CO2 abatement. Such a degree of divergence may relate to the fact that432

optimal policy design depends critically on a number of key assumptions built433

into both the economic and the climate model involved in the analysis. A lack of434

consensus prevails on these assumptions, e.g. on the assumption of reversibility435

used in the climate model as well as in the target criterion ([Keller et al. (2004)]).436

In the framework of decision making under uncertainty, one wishes to hedge437

against an undesirable future outcome. Thus the present level of uncertainty on438

the future outcome obviously influences the hedge level chosen at the present time.439

In a learning situation in which uncertainty is expected to evolve in the future, it440
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is not as obvious whether and how the expected trajectory of uncertainty should441

affect the present decision.442

Several studies ([Keller et al. (2004),Webster et al. (2008)]) have explicitly ap-443

proached this question by comparing the optimal policy found under static uncer-444

tainty (i.e., no learning) and under decreasing uncertainty (i.e., reassuring learn-445

ing, in the terminology proposed herein). In spite of differences in assumptions446

and methods, the conclusions of these studies are qualitatively consistent: the ex-447

pectation of a future decrease of uncertainty is found to influence policy when its448

aim is to avoid a dangerous threshold, and to have a negligible influence when the449

cost-benefit objective function is smooth and has no such threshold. In the former450

case, the level of abatement is significantly reduced if the uncertainty is expected451

to decrease.452

So far, though, there have been no studies that investigated the influence on453

optimal mitigation policy of an expectation of increasing uncertainty — i.e., of454

disconcerting learning in the present terminology — or even given a more general455

expectation of uncertain future uncertainty. Nevertheless, it is quite plausible,456

given the results of previous studies, that such expectations should greatly affect457

optimal policy design.458

Indeed, since we might expect — given a continued IPCC learning process with459

a 6–7-year cycle — that the uncertainty may get higher before it gets lower, one460

could argue that it is worthwhile to “buy some time” for this hectic learning process461

to reach its final target of full certainty, at which time wiser, optimally informed462

decisions are more likely to be reached. In the present context, buying some time463

could, however, mean one of two things: either (i) enforcing higher abatements so464

as to delay an irreversible climate catastrophe [Ghil (2001),Lenton et al. (2008),465

Zaliapin and Ghil (2010)]; or, (ii) to the contrary, take care of other, possibly more466

urgent problems while the learning goes on, with still-growing or fluctuating uncer-467

tainties [Hillerbrand and Ghil (2008)]. Given the divergence of opinions on such a468

momentous decision, it is imperative to go beyond the speculative reasoning in this469

section and apply systematically the learning-theoretical framework introduced in470

Sections 2–4, in combination with the risk-management type of analyses cited in471

the present section.472

6 Discussion and conclusions473

[Oppenheimer et al. (2008)] (cited as [ONW08] throughout the present paper) in-474

troduced a probabilistic definition of learning in the context of scientific research475

on environmental problems. These authors showed that learning does not neces-476

sarily lead to truer beliefs, a situation they termed negative learning.477

We have extended this analysis here to show that learning does not necessarily478

lead to more certain beliefs either, a situation for which we introduced the term of479

disconcerting learning. Negative learning corresponds to an increase in PDF bias,480

disconcerting learning corresponds to an increase in PDF dispersion. We have481

shown that the latter differs from, and is not tied to, the occurrence of the former.482

In other words, learning may well result in a state of knowledge which is closer to483

the truth and yet more uncertain, cf. Fig. 1.484

We have shown that this rather counter-intuitive situation typically arises when485

a surprising but inconclusive piece of evidence is found. In Section 3.1, we used486
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the simple example of a medical screening test that gives a positive result as an487

illustration of this fact. Such medical evidence is definitely informative but it is488

surprising because a negative result is a priori more likely; at the same time, it is489

also inconclusive because false positives are quite common in screening tests. Thus490

the patient, once informed of the test result, definitely knows more about his or491

her health but is still left with greater uncertainty than before the test.492

Motivated by this simple example, we introduced in Section 3.2 a probabilistic493

model based on reasonable assumptions about learning, and used it to confirm that494

disconcerting learning in general occurs as a result of surprising but inconclusive495

evidence at a particular step in the learning process. Furthermore, we narrowed496

in on this situation arising when the PDF that reflects the state of knowledge497

is asymmetric or has heavy tails (Fig. 2). We have shown that the dispersion of498

the trajectories of uncertainty as learning occurs — i.e. the uncertainty on the499

uncertainty — is high when disconcerting learning is prone to happen.500

Finally, because pronounced asymmetry appears to be a pervasive feature of501

the PDF of climate sensitivity in our current state of knowledge [AR4], climate502

uncertainty is thus prone to remain high or to increase — even if and as climate503

science makes steady progress — and thus its future trajectory is itself highly504

uncertain. Whether or not this is good news remains to be seen.505

At first, the news that substantial research efforts dedicated to improving our506

understanding of the climate system could potentially result in an increased un-507

certainty on the outcome of future climate change may sound rather discouraging.508

On the other hand, the present article also provides a rational justification for509

the fact that constant or even increasing uncertainty is perfectly compatible with510

steady scientific progress and improved knowledge of the climate system. In other511

words, our results suggest that the uncertainty on climate sensitivity should not512

be considered as an appropriate metric to monitor progress in climate science, as513

has sometimes been suggested.514

Our discussion here emphasizes two characteristics of disconcerting learning.515

First, disconcerting learning is a possibility, not a fatality. Since the occurrence of516

a surprise is by nature unexpected — and thus unlikely — so is the occurrence517

of disconcerting learning. Second, when it does occur, disconcerting learning is a518

transient state that eventually ends, at least in our model of Section 3.519

Indeed, the initial increase of uncertainty is caused by the inconclusive nature520

of the surprising evidence. As more reassuring evidence confirms what was at first521

a surprise, uncertainty will eventually decrease. Still, the process of uncertainty522

getting worse before it gets better is intrinsic to the progressive learning model523

that we introduced: a sufficiently large surprise can occur only once during pro-524

gressive learning, because a second surprise of large amplitude cannot occur unless525

expectation moves away from the true value, i.e. unless we are engaged in negative526

learning. In other words, one cannot be surprised twice without being wrong at527

least once.528

Once we allow for the possibility of negative learning, though, successive sur-529

prises — progressive and negative — become possible, causing the repetition in530

time or the lengthening of disconcerting learning episodes. While this was beyond531

our scope here, studying how uncertainty will evolve when taking negative learning532

into account is both interesting and relevant. As Fig. 4 shows, the model intro-533

duced in Section 4 is capable of exhibiting such behavior; it may thus be a good534
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starting point to investigate the more complex learning dynamics that can occur535

when negative learning is a possibility.536

Finally, we have considered in Section 4 a situation in which climate sensitivity537

is the only uncertain quantity at stake in the evolution of climate, and in which538

learning is driven by the mere observation of global temperature. It turns out that539

surprises may occur in the future evolution of our assessment of climate sensitivity,540

even in such a simple situation of linear deviations from a radiative equilibrium.541

This being said, the framework applied in Section 4 here for illustration pur-542

poses only can be made more realistic. Indeed, in more detailed climate models543

there are various uncertain parameters and processes that are either independent544

of climate sensitivity — e.g., ocean heat take-up or aerosol forcing — but do in-545

fluence the climate response, or actually determine climate sensitivity itself, e.g.546

cloud-radiative feedbacks.547

On the other hand, global temperature is certainly not the only variable one can548

use to constrain climate sensitivity and additional observations should be added549

into the learning-process analysis. It would therefore be of interest to investigate550

in a probabilistic framework, like that of Section 4 here, how the combined and551

possibly nonlinear effect of simultaneous learning on these various uncertain quan-552

tities, by means of multiple observations, plays out. It is quite possible that the553

results of such studies might affect our conclusions with respect to the uncertain554

future of climate uncertainty, as well as lead to more definitive policy implications,555

as discussed in Section 5.556
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Fig. 1 Schematic diagram of the four different learning situations that result from the defi-
nitions introduced in Oppenheimer et al. [2008] — i.e., negative vs. progressive — and in the
present article — i.e., disconcerting vs. reassuring. These four situations are mapped here with
respect to the evolution of the bias and of the uncertainty in the probability density function
(PDF), as they reflect the state of knowledge, according to Eqns. (2) and (3).
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Fig. 2 Evolution of the PDF p(x) for three typical shapes of the initial PDF p0(x) — shown
in panels (a, d, g) — to final convergence, when the spread vanishes. The spread σ of p(x) is
normalized in panels (b, e, h) to its initial value σ0 as learning occurs. For a given initial PDF,
each trajectory is associated with a different true value towards which the progressive learning
model of Eq. (SM3) converges; one hundred trajectories are thus plotted for each initial PDF,
using its percentiles as true values. (a, b) Gamma PDF, asymmetric, with exponential tail; (d,
e) Gaussian PDF, symmetric, with thin tails; and (g, h) Cauchy PDF, symmetric, with heavy
tails. Evolution of the PDF parameters is plotted for the initial PDFs of Frame [2005] (c, f, i):
percentile range 5%–95% (solid line) and median (gray line) of the climate sensitivity ∆T , for
three different true values ∆T ∗: (c) ∆T ∗ = 8◦C, (f) ∆T ∗ = 5.5◦C, and (i) ∆T ∗ = 3◦C.
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Fig. 3 (a) Nine PDFs of climate sensitivity reported by [AR4], obtained by different teams
and using diverse data and methods: (1 through 5) PDFs constrained by the transient evolution
of the atmospheric temperature, radiative forcing and ocean heat uptake; (6,7) constrained by
present-day climatology; and (8, 9) unweighted or fitted distributions from different models
or from perturbing parameters in a single model; see text for details. Evolution of the PDFs
p(x) for the nine initial PDFs p0(x); same treatment as in Fig. 2. For a given initial PDF,
each trajectory is associated to a different true value towards which the progressive learning
model of Eq. (SM3) converges. One hundred trajectories are plotted for each initial pdf using
its percentiles as true values. (b, 1) [Forster and Gregory (2006)], (c, 2) [Gregory et al. (2002)],
(d, 3) [Frame et al. (2005)], (e, 4) [Hegerl et al. (2006)], (f, 5) [Andronova and Schlesinger
(2001)], (g, 6) [Forest et al. (2006)], (h, 7) [Roe and Baker (2007)], (i, 8) [Knutti et al. (2002)],
(9) [Raisanen (2005)].
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Fig. 4 (a) Trajectories of Earth’s global temperature anomaly: smooth component T t simu-
lated by the energy balance model of Eq. (7) over the time interval 1980–2150, for ∆T = 2◦C,
3.2◦C and 6◦C (green lines); and observations Tt simulated over the interval 1980–2012 for
∆T = 3.2◦C (black line). (b) Same as (a) zoomed on the time period 1980-2025, with three
possible new observations added in 2013: strong warming (red line and circle, disconcerting
learning), moderate warming (dark line and circle, reassuring learning), moderate cooling (blue
line and circle, reassuring learning). (c) Posterior PDFs of climate sensitivity after updating
based on each of the three new 2013 observations. (d) Trajectory of the uncertainty on climate
sensitivity σt over the observational interval 1990–2012 (black line), and new uncertainty value,
after updating based on each of the three new 2013 observations.


