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Abstract

Minkowski sums cover a wide range of applica-
tions in many different fields like algebra, morphing,
robotics, mechanical CAD/CAM systems ... This
paper deals with sums of polytopes in a n dimen-
sional space provided that both H-representation
and V-representation are available i.e. the poly-
topes are described by both their half-spaces and ver-
tices. The first method uses the polytope normal fans
and relies on the ability to intersect dual polyhedral
cones. Then we introduce another way of consider-
ing Minkowski sums of polytopes based on the primal
polyhedral cones attached to each vertex.

keywords: Computational Geometry, Convex
Polytope, Minkowski Sum, Normal Fan, Polyhedri-
cal Cone.

1 Introduction

In mechanical design, tolerancing analysis consists in
simulating the geometric variations due to the man-
ufacturing process. A common way to simulate the
variations of an over-constrained mechanical system
is to manipulate sets of constraints in R

6, to limit the
6 degrees of freedom (3 translations and 3 rotations),
see [1]. In order to compute the cumulative stack-up
of variations we need to calculate the Minkowski sums
[2] and intersections of sets of contraints modelled by
polytopes in R

6. Two algorithms were developped in
this direction in [3] and [4] but only in R

3. In [5] and
[6], Delos and Fukuda introduce other methods sum-
ming polytopes in R

n but they only work with the
polytopes V-description and in tolerancing analysis,

the polytopes are first defined by half-spaces. We can
take advantage of this important property in order to
set up the following algorithm. Moreover, making use
of the H-representation can speed up the algorithm
and is a key element in computing intersections fur-
ther on. And finally, as we are in small dimensions,
computing the double description is not a problem as
stated in [6] we can find cases where: “the number of
facets of the convex hull of a set of k points in Eu-
clidean n-space can be of order O(k⌊n/2⌋) even when
n is considered fixed”.
The goal of this paper is to describe two ways of

computing Minkowski sums of polytopes, whether we
choose to work in the primal or dual spaces. The
dual space approach has come to an algorithm im-
plemented and tested in C++ while the other one is
still under investigation. We finally introduce some
promising perspectives to reach the objective of hav-
ing a stable algorithm in the field of tolerancing anal-
ysis.

2 Basic properties

2.1 Minkowski sums

Given two sets A and B, let C be the Minkowski sum
of A and B

C = A+B = {c ∈ R
n, ∃a ∈ A, ∃b ∈ B/c = a+ b}.

(1)

2.2 Polytopes

A polytope is defined as the convex hull of a finite
set of points, called the V-representation, or as the
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Figure 1: Sums of two polytopes step by step: a) polygons, b) normal fans, c) common refinement, d) sum.

bounded intersection of a finite number of half-spaces,
called the H-representation. The Minkowski-Weyl
theorem states that both definitions are equivalent.

2.3 Normal fans

For each vertex v of a polytope, we define the set E of
its edges oriented towards its neighbours. With E =
{e1, ..., el} we build a polyhedral cone C(v) named
the primal cone of v:

C(v) = {u1e1 + ...+ ulel, ∀uj ≥ 0}. (2)

We can note that a polytope can be written as the
intersection of all the primal cones attached to its
vertices. Let A be a R

n-polytope and VA the list of
its vertices such as card(VA) = m:

A =

m
⋂

i=1

C(vi). (3)

For each vertex v of a polytope, we define the set
N of the outer normals of its corresponding facets.
With N = {n1, ..., nk} we build a polyhedral cone
CD(v) named the dual cone of v:

CD(v) = {t1n1 + ...+ tknk, ∀ti ≥ 0}. (4)

It is also the set of hyperplane outer normals which
find their maximum on this specific vertex:

CD(v) = {y ∈ R
n : 〈v, y〉 = supx∈A〈x, y〉}. (5)

N(A) is defined as the set of all the dual cones of a
given polytope, it forms a partition of the whole space
R

n which is called the normal fan of the polytope.

3 Dual algorithm

As stated in [7] by Weibel “The normal fan of poly-
topes contains all of their combinatorial organization.
It is therefore enough to compute the normal fan of a
Minkowski sum to have its combinatorial properties.
We can then easily deduce the polytope itself by com-
bining these informations with the summand poly-
topes. We know that the normal fan of a Minkowski
sum is the common refinement of the normal fans of
its summands.” This is why we developped such an
approach in a previous article named Algorithm to
calculate the Minkowski sums of 3-polytopes based on
normal fans in R

n. To extend the results in R
n we

need some theoritical results.

3.1 Main properties

Ziegler and Gritzmann give the normal fan of the sum
of two R

n-polytopes in [8] and [9]. Let A and B with
their respective lists of vertices VA and VB :

N(A+B) = N(A) ∧N(B). (6)

whereN(A)∧N(B) = {CD(ai)∩CD(bj) : CD(ai) ∈
N(A) ∀ai ∈ VA, CD(bj) ∈ N(B) ∀bj ∈ VB} is called
the common refinement. So it is clear that comput-
ing the sum of two polytopes can be performed by
intersecting polyhedral cones. This is illustrated in
Fig. 1.
In the following we will emphasize on how finding

the Minkowski vertices i.e. the vertices of the two
operands sum.

3.2 Minkowski vertices

Let A, B and C be three R
n-polytopes such as C =

A + B, let VA, VB and VC be their lists of vertices.
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Let c ∈ VC , from [6] we know that the vertex c can
only be the sum of a face from A and a face from B.
For reasons of dimension, c is necessarily the sum of
two vertices a ∈ VA and b ∈ VB . Let’s characterize
now the dual cone of c.

c = (a+ b) ∈ VC ⇒ CD(c) = CD(a) ∩ CD(b). (7)

Let u ∈ CD(a) ∩ CD(b) then 〈u, a〉 = supx∈A〈u, x〉
and 〈u, b〉 = supy∈B〈u, y〉. So 〈u, a+ b〉 =
supx∈A,y∈B〈u, x+ y〉 which means that 〈u, c〉 =
supz∈C〈u, z〉 i.e. u ∈ CD(c).
On the other side let u ∈ CD(c), by definition

〈u, c〉 = supz∈C〈u, z〉. If we decompose c in a sum of
vertices a and b we get 〈u, a〉+〈u, b〉 = supx∈A〈u, x〉+
supy∈B〈u, y〉, but we know that in general 〈u, a〉 ≤
supx∈A〈u, x〉 and 〈u, b〉 ≤ supy∈B〈u, y〉 so for com-
patibility reasons with the formula of decomposi-
tion of c, the inequalities must be equalities. It
gives 〈u, a〉 = supx∈A〈u, x〉 and 〈u, b〉 = supy∈B〈u, y〉
which means u ∈ CD(a) ∩ CD(b).
Now we have to ask ourselves what are the con-

ditions to get a Minkowski vertex when we compute
the intersection CD(a) ∩ CD(b)?
Let A and B be R

n-polytopes of full dimension n,
VA and VB be their vertices lists. Let a ∈ VA, and
b ∈ VB :

c = (a+ b) ∈ VC ⇔ dim(CD(a) ∩ CD(b)) = n. (8)

In [10], Fukuda and Weibel indicate that “Faces of
a polytope and their normal cones have dual proper-
ties. In particular, if F is a i-dimensional face of A,
then the normal cone CD(F ) is a (n− i)-dimensional
cone of R

n.” So ∃a ∈ VA, ∃b ∈ VB/c = (a + b) ∈
VC ⇒ dim(CD(a) ∩ CD(b)) = n as c is a 0-face.
Reciprocally if dim(CD(a)∩CD(b)) = n then ∃u ∈

Int(CD(a)) ∩ Int(CD(b)) such as ∀x ∈ A, 〈u, a〉 >
〈u, x〉 and ∀y ∈ B, 〈u, b〉 > 〈u, y〉. So 〈u, a〉+ 〈u, b〉 =
〈u, c〉 > 〈u, x+ y〉, ∀(x+ y) ∈ C. Hence dim(CD(a)∩
CD(b)) = n ⇒ c ∈ VC .
Following the same idea we can find the facets of

the polytope C from N(C) edges. We now have all
the tools to build Minkowski vertices and facets.

3.3 A first dual algorithm

3.4 Complexity and implementation

To perform such an operation, in [11] Fukuda gives
interesting insights and efficient-to-use strategies de-

Algorithm 1 Calculate C = A + B with A and B,
two R

n-polytopes of full dimension n

Require: List of dual cones of A {CD(ai), ai ∈ VA}
Require: List of dual cones of B {CD(bj), bj ∈ VB}

for all ai ∈ VA and bj ∈ VB do

Compute CD(ai) ∩ CD(bj)
if dim(CD(ai) ∩ CD(bj)) = n then

(ai + bj) ∈ VC

Get the half-spaces passing through (ai + bj)
from CD(ai) ∩ CD(bj) edges

end if

end for

spite the fact, as the author says, ”that we can hardly
state any interesting theorems on its time and space
complexities”. The underlying physical problem we
designed this algorithm for, is in low dimension so
obtaining the polytopes double description is not a
problem. In tolerancing analysis, it can even be done
in an analytical way but beware that the number of
vertices and facets can be exponential according to
the dimension of the space we work in. As a example
a tetraedon in R

n has only (n+1) vertices and (n+1)
facets but a cube has 2n facets and 2n vertices. In
[12] one can find an optimum algorithm, when n is
constant, to compute convex hulls that runs in time
O(k⌈n/2⌉) for n ≥ 4, k being the number of vertices.
Such an upper bound cannot be reduced as it is of the
order of the larger output. So in high dimensions the
kind of polytopes you handle can have a very strong
impact on the performances of the Minkowski sum
algorithm. In [13] we can find a good introduction
on families of polytopes and the way they behave in
algorithmic contexts.
This algorithm has been coded in C++ and is

available under the Gnu General Public Licence v3.0
at http://i2m.u-bordeaux.fr/politopix. It has
been tested and is now fully operational in R

6 in the
frame of tolerance analysis in mechanical engineering,
as well as it is in any dimension given the limitations
we previously described.

3.5 An optimized dual algorithm

The basic idea behind this algorithm is quite sim-
ple. As soon as we get CD(ai) and CD(bj) such as
dim(CD(ai)∩CD(bj)) = n, we do not pick dual cones
from A in a random way but we rather select the list
of CD(ai) neighbours to intersect them with CD(bj).
While we find intersections of dimension n, we keep
on picking up the neighbours of the neighbours and
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so on.
Let’s assume that the two dual cones CD(ai) and

CD(bj) intersects with each other such as, at least one
half-space hyperplane H̄ of CD(ai) separates CD(bj).
Then it is obvious that the neighbour dual cone
CD(ak) that shares H̄ with CD(ai) has also a non
empty intersection with CD(bj). We can take advan-
tage of this neighbourdhood property to speed up the
algorithm.
So we introduce the notion of polyhedral cap. Let

A, B and C = A+B be Rn-polytopes and VA, VB , VC

their respective lists of vertices. For a given vertex
a ∈ VA we want to find the list of all the vertices of
B that will give a Minkowski vertex in C. We define
the polyhedral cap of the vertex ai in the polytope
B this way V+

B (ai) = {bj ∈ VB/(ai + bj) ∈ VC}, its
complementary list in VB is V−

B (ai) = {bj ∈ VB/(ai+
bj) /∈ VC} .
Let A et B be two R

n-polytopes, ai ∈ VA :

∀i,VB = V+
B (ai) ∪ V−

B (ai) (9)

∀i,V+
B (ai) 6= ∅,V+

B (ai) is connected. (10)

We want to show that ∀i,V+
B (ai) 6= ∅. By definition

ai ∈ VA so dim(CD(ai)) = n, let l be Card(VB), so
∀j ∈ {1, ..., l} we have dim(CD(bj)) = n. Let’s admit
that for the l − 1 first dual cones of B we have ∀j ∈
{1, ..., l−1} dim(CD(ai)∩CD(bj)) < n, which means
that they do not intersect with CD(ai) or only with

its frontier. Given that
⋃l

j=1 CD(bj) = R
n it must

only be the last dual cone in N(B) that intersects
with CD(ai) interior. As a consequence dim(CD(ai)∩
CD(bl)) = n so ai + bl ∈ VC . In all the cases we have
at least one vertex in B that verifies this property so
V+
B (ai) 6= ∅.
We shall proove now that V+

B (a) is connected. Let
c1 = a+b1 ∈ VC and c2 = a+b2 ∈ VC i.e. b1 ∈ V+

B (a)
and b2 ∈ V+

B (a). Is there a path of vertices of B, lead-
ing from b1 to b2 in V+

B (a)? We know that CD(c1) =
CD(a) ∩ CD(b1) and CD(c2) = CD(a) ∩ CD(b2). We
choose in the interiors u1 ∈ Int(CD(a)∩CD(b1)) and
u2 ∈ Int(CD(a) ∩ CD(b2)) so [u1, u2] ⊂ Int(CD(a)).
We build the list L of dual cones in N(B) whose
intersection is not empty with the segment [u1, u2]
and that verify the following property: once we leave
one of the bounding half-spaces of the current cone
CD(bj), we add to L its neighbour cone that shares
with CD(bj) the frontier of this current half-space.
We can note that once we leave a cone, we will never
process it again, as we remain on the segment [u1, u2]
we can never re-enter a bounding half-space we pre-
viously left. So L is a finite ordered list. We can

Algorithm 2 Calculate C = A + B with A and B,
two R

n-polytopes of full dimension n

Require: List of dual cones of A {CD(ai), ai ∈ VA}
Require: List of dual cones of B {CD(bj), bj ∈ VB}

for all ai ∈ VA do

findMinkV ertex = false
while bj ∈ VB and findMinkV ertex == false
do

Compute CD(cij) = CD(ai) ∩ CD(bj)
if dim(CD(cij)) = n then

findMinkV ertex = true
cij = (ai + bj) ∈ VC

// Now find ai polyhedral cap.
ProcessNeighbours(CD(ai), CD(bj), CD(cij))

end if

end while

end for

also say that if [u1, u2] passes through the interior of
CD(bj) then (a+ bj) is a Minkowski vertex in C. On
the other side if [u1, u2] intersects CD(bj) only with
its frontier then as [u1, u2] ⊂ Int(CD(a)) it is easy
to build a point still inside CD(a) that will also be
in the interior of CD(bj), we only have to shift away
from [u1, u2] by a very small quantity. In all the cases
(a + bj) ∈ VC , moreover two consecutive dual cones
in L are connected, so are their corresponding ver-
tices in B. So L is a list having for first and last
elements b1 and b2 connected through neighbour ver-
tices {bj , bj ∈ VB} such that (a+ bj) ∈ VC . So V+

B (a)
is connected.

// Find neighbours through common facets
PROCEDURE
ProcessNeighbours(CD(ai), CD(bj), CD(cij))
Mark CD(bj) as processed
for all CD(bk) ∈ N(B), Fl facet of CD(cij) such
that Fl = CD(bk) ∩ CD(cij) do

// At this step bj and bk are neighbours in B
if CD(bk) is not marked as processed then

Compute CD(cik) = CD(ai) ∩ CD(bk)
if dim(CD(cik)) = n then

cik = (ai + bk) ∈ VC

ProcessNeighbours(CD(ai), CD(bk), CD(cik))
end if

end if

end for

END PROCEDURE
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4 Minkowski sum of polytopes

with primal cones

We will now consider the primal cones of the poly-
topes we handle that is to say, for each vertex a ∈ VA,
the cones defined by the intersection of the half-
spaces {H̄+

u (a)} attached to this current vertex. In
an equivalent manner, we can say that, given a ∈ VA,
such cones can be generated by all the edges attached
to a and pointing towards its neighbour vertices {ai}.
Let’s write VA(a) the set of the vertices of VA adja-
cent to a, with αi ∈ R

+, ai ∈ VA(a)

C(a) = a+
∑

i

αi(ai − a) =
⋂

u

H̄+
u (a). (11)

4.1 Main properties

Let C1 and C2 be two cones attached to the origin:

C1 + C2 = Conv(C1, C2). (12)

Let x ∈ C1 + C2 then ∃y ∈ C1, ∃z ∈ C2 such as
x = y + z = 1

22y + 1
22z. Yet 2y ∈ C1 and 2z ∈ C2

which means that any point in C1+C2 can be written
as a point included in the convex hull of C1 and C2

hence C1 + C2 ⊂ Conv(C1, C2).
Let x ∈ Conv(C1, C2) then ∃y ∈ C1, ∃z ∈ C2 and

θ ∈ [0, 1] such as x = θy + (1 − θ)z. Yet θ ≥ 0 so
θy ∈ C1, 1− θ ≥ 0 hence (1− θ)z ∈ C2 which means
that x can be written as the sum of two elements from
A and B so Conv(C1, C2) ⊂ C1 + C2.
It is easy to transpose this property to the case

of two cones attached to the vertices a and b in the
polytopes A and B provided that we translate them
first in a+ b and hereafter compute the convex hull:

C(a) + C(b) = Conv
(

b+ C(a), a+ C(b)
)

. (13)

If c = a + b is a Minkowski vertex of C = A + B
then:

C(c) = Conv
(

b+ C(a), a+ C(b)
)

. (14)

From [6] if c and c′ are two adjacent vertices in
C with their given decomposition in elements of A
and B, c = a + b et c′ = a′ + b′ then a et a′ are
either equal or adjacent (respectively b and b′). We
deduce that the list of edges defining C(c) is a sublist
of L(C(a), C(b)), defined as the list of edges of both
C(a) and C(b) translated in c. So C(c) ⊂ Conv(b +

C(a), a + C(b)) because Conv(b + C(a), a + C(b)) is
entirely defined by L(C(a), C(b)).

For the reciprocal we use the dual, we know that
CD(c) = CD(a) ∩ CD(b) so

{

CD(c) ⊂ CD(a)

CD(c) ⊂ CD(b).

These relations are reversed in the primal space:

{

b+ C(a) ⊂ C(c)

a+ C(b) ⊂ C(c).

Hence Conv(b + C(a), a + C(b)) ⊂ C(c) because
C(c) is convex. Now we can give the property linking
primal and dual cones respectively attached to the
vertices ai ∈ VA and bj ∈ VB when their sum provide
a Minkowski vertex:
c ∈ VC ⇒
(

CD(a) ∩ CD(b)
)

D
= Conv

(

b+ C(a), a+ C(b)
)

.

(15)
The proof is quite straightforward, as c is a

Minkowski vertex then CD(c) = CD(a) ∩ CD(b) and
the dual of the dual is the primal so (CD(c))D =
C(c) = Conv(b+ C(a), a+ C(b)).
This property is fundamental in the sense that it

can make the connection between a polyhedra inter-
section problem on one side, and a polyhedra convex
hull computation on the other. In the context of the
sums of polytopes we’re aware that if c = a + b is
a Minkowski vertex of C = A + B then computing
the convex hull of the two primal cones C(a) and
C(b) is equivalent to computing the intersection be-
tween their corresponding duals CD(a) and CD(b),
see Fig. 2. As a consequence we can compute C(c)
∀c ∈ VC - which means we can find all facets of
C - with data coming only from the primal space.
Given that a polytope is entirely determined by its
vertices or facets we can write the following prop-
erty for A and B two R

n-polytopes with respectively
k and l vertices. Let’s note K the set of indices
that provide a Minkowski vertex in C = A + B i.e.
(i, j) ∈ KA+B ⇔ (ai + bj) ∈ VC .

A+B =

k
⋂

i=1

C(ai)+

l
⋂

j=1

C(bj) =
⋂

(i,j)∈K

C(ai)+C(bj)

(16)
We can generalize this property to all the sums of

vertices as it is easy to proove that whatever ai ∈ VA
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Figure 2: On the left two primal cones on the bottom with their duals on top of the drawing, on the right
the primal cones convex hull and the duals intersection.

and bj ∈ VB , A+B ⊂ C(ai)+C(bj) because we know
that A ⊂ C(ai) and B ⊂ C(bj). So it is clear that:

A+B =

k,l
⋂

i=1,j=1

(

C(ai) + C(bj)
)

. (17)

4.2 A primal algorithm

With the property 14, it is quite easy to set up an
algorithm computing the polytope C = A+B.

Algorithm 3 Calculate C = A + B with A and B,
two R

n-polytopes of full dimension n

Require: List of primal cones of A {C(ai), ai ∈ VA}
Require: List of primal cones of B {C(bj), bj ∈ VB}
Require: au ∈ VA and bv ∈ VB such as au+bv ∈ VC

ProcessCones(C(au), C(bv))

Starting from a first Minkowski vertex c1 = a1+ b1
we just need to compute its edges making sure they
belong to the convex hull of the cone C(c1). Follow-
ing such edges will leed to c1 neighbours where we
will compute their corresponding convex hulls. At
this step it is important to note that, to identify
Minkowski vertices, if c2 = a2 + b2 is a neighbour
if c1 then a1 and a2 are either equal or adjacent in
A, b1 and b2 are either equal or adjacent in B. The
edges of C are either parallel to an edge of A or an
edge of B.

PROCEDURE
ProcessCones(C(ai), C(bj))
Mark cij = (ai + bj) ∈ VC as processed
Find facets, edges of C(cij) = Conv(C(ai), C(bj))
for all edges of C(cij) leading to cuv ∈ VC do

if cuv is not marked as processed then

ProcessCones(C(au), C(bv))
end if

end for

END PROCEDURE

4.3 Complexity

We have reduced our problem to a convex hull algo-
rithm. However as stated in [14] “we are still very
far from knowing the best ways to compute the con-
vex hull for general dimensions” and the author adds
“in the general case, there is no known polynomial
algorithm”. Despite the current state-of-the-art we
believe we do not have only a theoritical achievement
with property 17. The reason is due to the fact that it
is not just about computing the convex hull of a set of
edges coming from cones C1 and C2 but rather com-
puting the convex hull of two sets of edges, each one
of them being already convex. As building a convex
set from two convex sets is easier, we plan to explore
this track in the future.
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5 Conclusion

We have developped and implemented a dual algo-
rithm based on the intersection of dual cones used in
the field of tolerance analysis where it behaves very
well in terms of robustness and computation time.
However the fact that we handle the double descrip-
tion to sum polytopes could possibly be a limitation if
one needs to work in high dimensions. In the second
part, we introduced new properties to remain in the
primal space and proposed another way to perform
the operation. Now we plan to work on a parallel ver-
sion of the first as well as improving the theoritical
background of the second.
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