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Abstract

Minkowski sums are of theoretical interest and have applications in fields related to industrial back-
grounds. In this paper we focus on the specific case of summing polytopes as we want to solve the
tolerance analysis problem described in [1]. Our approach is based on the use of linear programming and
is solvable in polynomial time. The algorithm we developped can be implemented and parallelized in a
very easy way.
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1 Introduction

Tolerance analysis is the branch of mechanical design dedicated to studying the impact of the manufacturing
tolerances on the functional constraints of any mechanical system. Minkowski sums of polytopes are useful
to model the cumulative stack-up of the pieces and thus, to check whether the final assembly respects such
constraints or not, see [2] and [3]. We are aware of the algorithms presented in [4], [5], [6] and [7] but we
believe that neither the list of all edges nor facets are mandatory to perform the operation. So we only
rely on the set of vertices to describe both polytope operands. In a first part we deal with a “natural way”
to solve this problem based on the use of the convex hulls. Then we introduce an algorithm able to take
advantage of the properties of the sums of polytopes to speed-up the process. We finally conclude with
optimization hints and a geometric interpretation.

2 Basic properties

2.1 Minkowski sums

Given two sets A and B, let C be the Minkowski sum of A and B

C = A+B = {c ∈ R
n, ∃a ∈ A, ∃b ∈ B/c = a+ b}

2.2 Polytopes

A polytope is defined as the convex hull of a finite set of points, called the V-representation, or as the bounded
intersection of a finite set of half-spaces, called the H-representation. The Minkowski-Weyl theorem states
that both definitions are equivalent.
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3 Sum of V-polytopes

In this paper we deal with V-polytopes i.e. defined as the convex hull of a finite number of points. We note
VA, VB and VC the list of vertices of the polytopes A, B and C = A+B. We call VC the list of Minkowski

vertices. We note k = Card(VA) and l = Card(VB).

3.1 Uniqueness of the Minkowski vertices decomposition

Let A and B be two R
n-polytopes and VA, VB their respective lists of vertices. Let C = A+B and c = a+ b

where a ∈ VA and b ∈ VB .

c ∈ VC ⇔ the decomposition of c as a sum of elements of A and B is unique (1)

We recall that in [4], we see that the vertex c of C, as a face, can be written as the Minkowski sum of a
face from A and a face from B. For obvious reasons of dimension, c is necessarily the sum of a vertex of A
and a vertex of B. Moreover, in the same article, Fukuda shows that its decomposition is unique.

Reciprocally let a ∈ VA and b ∈ VB be vertices from polytopes A and B such that c = a + b is unique.
Let c1 ∈ C and c2 ∈ C such as c = 1

2
(c1 + c2) = 1

2
(a1 + b1 + a2 + b2) = 1

2
(a1 + a2) +

1

2
(b1 + b2) = a + b

with a = 1

2
(a1 + a2) and b = 1

2
(b1 + b2) because the decomposition of c in elements from A and B is unique.

Given that a and b are two vertices, we have a1 = a2 and b1 = b2 which implies c1 = c2. As a consequence c
is a vertex of C.

3.2 Summing two lists of vertices

Let A and B be two R
n-polytopes and VA, VB their lists of vertices, let C = A+B.

C = Conv({a+ b, a ∈ VA, b ∈ VB}) (2)

We know that VC ⊂ VA + VB because a Minkowski vertex has to be the sum of vertices from A and B
so C = Conv(VC) ⊂ Conv({a+ b, a ∈ VA, b ∈ VB}).

The reciprocal is obvious as Conv({a + b, a ∈ VA, b ∈ VB}) ⊂ Conv({a + b, a ∈ A, b ∈ B}) = C as
C = A+B is a convex set.

At this step an algorithm removing all points which are not vertices of C from VA +VB could be applied
to compute VC . The basic idea is the following: if we can build a hyperplane separating (au + bv) from the
other points of VA + VB then we have a Minkowski vertex, otherwise (au + bv) is not an extreme point of
the polytope C. The process trying to split the cloud of points is illustrated in Figure 1.

To perform such a task, a popular technique given in [8] solves the following linear programming system.
In the case of summing polytopes, testing whether the point (au + bv) is a Minkowski vertex or not, means
finding (γ, γuv) ∈ R

n × R from a system of k × l inequalities:







< γ, ai + bj > −γuv ≤ 0 ; ∀(i, j) ∈ {1, .., k} × {1, .., l} ; (i, j) 6= (u, v)
< γ, au + bv > −γuv ≤ 1
f∗ = max(< γ, au + bv > −γuv)

So if we define the matrix Γ =











a1,1 + b1,1 · · · a1,n + b1,n −1
...

. . .
...

...
ak,1 + bl,1 · · · ak,n + bl,n −1
au,1 + bv,1 · · · au,n + bv,n −1











then Γ

(

γ
γuv

)

≤











0
...
0
1
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Figure 1: Computing the vertices of the sum of two V-polytopes through a convex hull algorithm

The corresponding method is detailed in Algorithm 1. Now we would like to find a way to reduce the
size of the main matrix Γ as it is function of the product k × l.

Algorithm 1 Compute C = A+B with A and B two R
n-polytopes

Require: A V-representation: list of vertices VA

Require: B V-representation: list of vertices VB

for all au ∈ VA and bv ∈ VB do

Compute f∗ = max(< γ, au + bv > −γuv) with Γ

(

γ
γuv

)

≤









0
...
0
1









, Γ ∈ R
k×l × R

n+1

if f∗ > 0 then

(au + bv) ∈ VC

else

(au + bv) /∈ VC

end if

end for

3.3 Constructing the new algorithm

In this section we want to use the basic property 1 characterizing a Minkowski vertex. Then the algorithm
computes, as done before, all sums of pairs (au, bv) ∈ VA × VB and checks whether there exists a pair
(a′, b′) 6= (au, bv) with a′ ∈ A, b′ ∈ B such as (a′ + b′) = (au + bv). If it is the case then (au + bv) /∈ VC ,
otherwise (au + bv) ∈ VC .

a′ =

k
∑

i=1

αiai with ∀i, αi ≥ 0 and

k
∑

i=1

αi = 1
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b′ =

l
∑

j=1

βjbj with ∀j, βj ≥ 0 and

l
∑

j=1

βj = 1.

We get the following system:






























































k
∑

i=1

αiai +

l
∑

j=1

βjbj = au + bv

k
∑

i=1

αi = 1

l
∑

j=1

βj = 1

∀i, αi ≥ 0
∀j, βj ≥ 0

That is to say with matrices and under the hypothesis of positivity for both vectors α and β:


















a1,1 a2,1 · · · ak,1 b1,1 b2,1 · · · bl,1
a1,2 a2,2 · · · ak,2 b1,2 b2,2 · · · bl,2
...

...
. . .

...
...

...
. . .

...
a1,n a2,n · · · ak,n b1,n b2,n · · · bl,n
1 1 · · · 1 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1







































α1

...
αk

β1

...
βl





















=



















au,1 + bv,1
au,2 + bv,2

...
au,n + bv,n

1
1



















We are not in the case of the linear feasibility problem as there is at least one obvious solution:
pu,v = (α1, · · · , αk, β1, · · · , βl) = (0, · · · , 0, αu = 1, 0, · · · , 0, 0, · · · , 0, βv = 1, 0, · · · , 0)
The question is to know whether it is unique or not. This first solution is a vertex pu,v of a polyhedron

in R
k+l that verifies (n + 2) equality constraints with positive coefficients. The algorithm tries to build

another solution making use of linear programming techniques. We can note that the polyhedron is in fact
a polytope because it is bounded. The reason is that, by hypothesis, the set in R

k of convex combinations
of the vertices ai is bounded as it defines the polytope A. Same thing for B in R

l. So in R
k+l the set of

points verifying both constraints simultaneously is bounded too.
So we can write it in a more general form:

P

(

α
β

)

=





au + bv
1
1



 , P ∈ R
n+2 × R

k+l, α ∈ R
k
+, β ∈ R

l
+, au ∈ R

n, bv ∈ R
n

where only the second member is function of u and v.
It gives the linear programming system:































P

(

α
β

)

=





au + bv
1
1





(

α
β

)

≥ 0

f∗ = max(2− αu − βv)

(3)

Thanks to this system we have now the basic property the algorithm relies on:

au ∈ VA, bv ∈ VB , (au + bv) ∈ VC ⇔ f∗ = 0 (4)

f∗ = 0 ⇔ there exists only one pair (αu, βv) = (1, 1) to reach the maximum f∗ as
∑k

i=1
αi = 1 and

∑l

j=1
βj = 1 ⇔ the decomposition of c = (au + bv) is unique ⇔ c ∈ VC

It is also interesting to note that when the maximum f∗ has been reached:
αu = 1 ⇔ βv = 1 ⇔ f∗ = 0
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Algorithm 2 Compute C = A+B with A and B two R
n-polytopes

Require: A V-representation: list of vertices VA

Require: B V-representation: list of vertices VB

for all ai ∈ VA and bj ∈ VB do

Compute f∗ = max(2− αi − βj) with P

(

α
β

)

=





ai + bj
1
1





P ∈ R
n+2 × R

k+l and

(

α
β

)

≥ 0

if f∗ = 0 then

(ai + bj) ∈ VC

else

(ai + bj) /∈ VC

end if

end for

3.4 Optimizing the new algorithm and geometric interpretation

The current state of the art runs k×l linear programming algorithms and thus is solvable in polynomial time.
We presented the data such that the matrix P is invariant and the parametrization is stored in both the
second member and the objective function, so one can take advantage of this structure to save computation
time. A straight idea could be using the classical sensitivity analysis techniques to test whether (au + bv) is
a Minkowski vertex or not from the previous steps, instead of restarting the computations from scratch at
each iteration.

Let’s switch now to the geometric interpretation, given a ∈ VA, let’s consider the cone generated by all
the edges attached to a and pointing towards its neighbour vertices. After translating its apex to the origin
O, we call this cone CO(a) and we call CO(b) the cone created by the same technique with the vertex b in
the polytope B.

The method tries to build a pair, if it exists, (a′, b′) with a′ ∈ A, b′ ∈ B such that (a + b) = (a′ + b′).
Let’s introduce the variable δ = a′ − a = b− b′, and the straight line ∆ = {x ∈ R

n : x = tδ, t ∈ R}.
So the question about (a+ b) being or not a Minkowski vertex can be presented this way:

a ∈ VA, b ∈ VB , (a+ b) /∈ VC ⇔ ∃∆ = {x ∈ R
n : x = tδ, t ∈ R} ⊂ CO(a) ∪ CO(b) (5)

The existence of a straight line inside the reunion of the cones is equivalent to the existence of a pair
(a′, b′) such that (a+ b) = (a′ + b′) which is equivalent to the fact that (a′ + b′) is not a Minkowski vertex.
This is illustrated in Figure 2. The property becomes obvious when we understand that if (a′, b′) exists in
A × B then (a′ − a) and (b′ − b) are symmetric with respect to the origin. Once a straight line has been
found inside the reunion of two cones, we can test this inclusion with the same straight line for another pair
of cones, here is the geometric interpretation of an improved version of the algorithm making use of what
has been computed in the previous steps.

We can resume the property writing it as an intersection introducing the cone−CO(b) being the symmetric
of CO(b) with respect to the origin.

a ∈ VA, b ∈ VB , (a+ b) ∈ VC ⇔ CO(a) ∩ −CO(b) = {O} (6)

4 Conclusion

In this paper, our algorithm goes beyond the scope of simply finding the vertices of a cloud of points.
That’s why we have characterized the Minkowski vertices. However, among all the properties, some of them
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Figure 2: (a2 + b4) is not a vertex of C=A+B as ∆ ⊂ CO(a2) ∪ CO(b4)

are not easily exploitable in an algorithm. In all the cases we have worked directly in the polytopes A
and B, i.e. in the primal spaces and only with the polytopes V-descriptions. Other approaches use dual
objects such as normal fans and dual cones. References can be found in [6], [7] and [9] but they need more
than the V-description for the polytopes they handle. This can be problematic as obtaining the double
description can turn out to be impossible in high dimensions, see [4] where Fukuda uses both vertices and
edges. Reference [6] works in R

3 in a dual space where it intersects dual cones attached to the vertices, and
it can be considered as the dual version of property 6 where the intersection is computed with primal cones.
It actually implements Weibel’s approach described in [9]. Such a method has been recently extended to any
dimension for HV-polytopes in [7].

5 Special thanks
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