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Fluid–structure interaction of a square cylinder
at different angles of attack

Jisheng Zhao1,†, Justin S. Leontini1,2, David Lo Jacono1,3 and
John Sheridan1

1Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and
Aerospace Engineering, Monash University, Melbourne, Vic 3800, Australia

2Department of Mechanical Engineering and Product Design Engineering, Swinburne University of
Technology, John St Hawthorn, 3162, Australia

3Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS, Université de Toulouse,
Allée Camille Soula, F-31400 Toulouse, France

This study investigates the free transverse flow-induced vibration (FIV) of an
elastically mounted low-mass-ratio square cylinder in a free stream, at three different
incidence angles: α= 0◦, 20◦ and 45◦. This geometric setup presents a body with an
angle of attack, sharp corners and some afterbody, and therefore is a generic body
that can be used to investigate a wide range of FIV phenomena. A recent study by
Nemes et al. (J. Fluid Mech., vol. 710, 2012, pp. 102–130) provided a broad overview
of the flow regimes present as a function of both the angle of attack α and reduced
flow velocity U∗. Here, the focus is on the three aforementioned representative angles
of attack: α= 0◦, where the FIV is dominated by transverse galloping; α= 45◦, where
the FIV is dominated by vortex-induced vibration (VIV); and an intermediate value
of α = 20◦, where the underlying FIV phenomenon has previously been difficult to
determine. For the α = 0◦ case, the amplitude of oscillation increases linearly with
the flow speed except for a series of regimes that occur when the vortex shedding
frequency is in the vicinity of an odd-integer multiple of the galloping oscillation
frequency, and the vortex shedding synchronizes to this multiple of the oscillation
frequency. It is shown that only odd-integer multiple synchronizations should occur.
These synchronizations explain the ‘kinks’ in the galloping amplitude response
for light bodies first observed by Bearman et al. (J. Fluids Struct., vol. 1, 1987,
pp. 19–34). For the α=45◦ case, the VIV response consists of a number of subtle, but
distinctly different regimes, with five regimes of high-amplitude oscillations, compared
to two found in the classic VIV studies of a circular cylinder. For the intermediate
α = 20◦ case, a typical VIV ‘upper branch’ occurs followed by a ‘higher branch’
of very large-amplitude response. The higher branch is caused by a subharmonic
synchronization between the vortex shedding and the body oscillation frequency,
where two cycles of vortex shedding occur over one cycle of oscillation. It appears
that this subharmonic synchronization is a direct result of the asymmetric body.
Overall, the FIV of the square cylinder is shown to be very rich, with a number of
distinct regimes, controlled by both α and U∗. Importantly, α controls the underlying
FIV phenomenon, as well as controlling the types of possible synchronization between
the oscillation and vortex shedding.
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1. Introduction

This study presents the results of experiments on the flow past an elastically
mounted square-cross-section cylinder, where the flow is perpendicular to the long
axis of the cylinder, and the cylinder is constrained to oscillate across the flow. As
such, this setup falls under the broader class of investigations of the fluid–structure
interaction of bluff, slender structures in cross-flow. This particular geometry is
susceptible to two main flow-induced vibration (FIV) phenomena: vortex-induced
vibration (VIV) where the frequency of periodic vortex shedding and the frequency
of the body oscillation synchronize; and transverse galloping, an aeroelastic instability,
caused by changes in the relative angle of attack induced by the body motion
resulting in aerodynamic forces in the same direction as the motion. The prevalence
and importance of FIV of such structures in practical engineering applications has
motivated extensive investigations in the past half-century that aim to characterize,
predict, and suppress FIV of bluff bodies. Comprehensive reviews of this large body
of research work have been given by Blevins (1990), Naudascher & Rockwell (2005)
and Païdoussis, Price & De Langre (2010).

The FIV of an elastically mounted body constrained to oscillate across the stream
is dependent on the body mass in oscillation m, the mechanical damping c and
the spring stiffness k (both assumed here to be constant), the fluid density ρ, the
kinematic viscosity ν, and the inflow speed U. A number of dimensionless groups
can be defined, but typically for VIV studies the following independent parameters
are used: the mass ratio, m∗ =m/md, where md is the mass of the fluid displaced by
the body; the structural damping ratio with consideration of the added mass,

ζ = c/
(
2
√

k(m+mA)
)
, (1.1)

in which mA is the added mass, which can be estimated from potential flow or
measured directly through its influence on the natural frequency of the body in
still fluid; the reduced velocity, U∗ = U/

√
k(m+mA)H = U/fNH; and the Reynolds

number, Re = UH/ν. The displaced fluid mass is defined as md = ρCL, where C is
the geometry’s cross-sectional area, and L is the length of the body immersed in the
fluid. Here, U is the free-stream velocity and H is the length of the cross-section
perpendicular to the flow. For this particular study, the angle of attack of the square
cross-section with respect to the flow, α, is also a variable.

A number of dependent variables are also presented non-dimensionally. The body
displacement yb can be normalized by H. Forces, such as the lift force, are presented
as non-dimensional coefficients, Cy= Fy/0.5ρU2HL. Throughout this paper, measured
frequencies are presented normalized by the natural frequency in water, f /fN . The
frequency of the body oscillation f ∗yb

, the frequency of the total lift f ∗Cy
, the frequency

of the vortex lift f ∗Cvortex
and the frequency of the drag f ∗Cd

, are all non-dimensionalized
in this manner. It should be noted that the vortex lift is defined as the component
of the lift force that remains after subtracting the potential-flow added mass lift,
following the method of Lighthill (1986).

A circular cross-section is not susceptible to galloping. Galloping relies on the
aerodynamic forces being a function of the angle of attack of the body. Due to its
symmetry, a cylinder does not have an angle of attack. A cylinder is therefore only
susceptible to VIV, and has served as an ideal model for fundamental research on
this phenomenon. Many of the previous results can be found in a series of review
articles (Bearman 1984; Sarpkaya 2004; Williamson & Govardhan 2004).



The result of these studies most pertinent to the current study is that the flow
response for light cylinders (m∗ 6 10) can be broken down into four distinct regimes
as a function of increasing U∗, typically referred to as branches (Khalak & Williamson
1996; Govardhan & Williamson 2000). First is the initial branch, where the amplitude
of oscillation increases with U∗ and the oscillation is modulated due to the influence
of both the body natural frequency and the Strouhal frequency (the vortex shedding
frequency of a stationary cylinder). Second is the upper branch, characterized by
oscillations of large amplitude at a frequency around the body natural frequency,
that appear to be unstable and chaotic (Hover, Techet & Triantafyllou 1998; Morse
& Williamson 2009). The wake configuration in the upper branch consists of two
oppositely signed pairs of vortices per oscillation cycle, where one vortex in the pair
is much stronger than the other, and so is designated 2Po, following the naming
convention of Williamson & Roshko (1988). Third is the lower branch, consisting
of very periodic and stable oscillations at amplitudes around 0.6D, where D is the
cylinder diameter, and a frequency around the natural frequency of the body. The
vortex shedding and body oscillation are synchronized at the same frequency. The
wake again consists of two pairs of oppositely signed vortices, but this time more
even in strength, and so it is designated 2P. Finally, the synchronization is lost and
a desynchronized regime takes over, consisting of small oscillations at a fluctuating
frequency around the Strouhal frequency.

Moving to the phenomenon of galloping, square-cross-sectional cylinders oriented
with a flat face normal to the flow have been widely adopted as the canonical
experiment. While Den Hartog (1932) first proposed a criterion for the onset
of galloping of ice-covered cables, Parkinson & Smith (1964) developed a very
successful quasi-steady theory to predict the amplitude response of a square cylinder
undergoing galloping. The theory is especially successful for relatively heavy and
highly damped bodies, such as typically occurs in air, where the galloping oscillation
frequency is much lower than the vortex shedding frequency.

For relatively light and lightly damped bodies, such as occur in water, the oscillation
frequency and vortex shedding frequency are not necessarily as well separated, and the
impact of the vortex shedding is more directly felt. Bearman et al. (1987) conducted
experiments in a wind tunnel using a system with low damping, and found that,
while the overall picture is similar to that described by the theory of Parkinson &
Smith (1964), a ‘kink’ region in the amplitude response occurred at U∗ ≈ 6π, with a
strong third-harmonic frequency of the body oscillation present in the transverse lift
frequency components. Theoretical efforts to capture the effect of the vortex shedding
on the galloping response have been made by Bokaian & Geoola (1984), and a
combined model for galloping and VIV developed by Corless & Parkinson (1988,
1993), with limited success.

Much less attention has been paid to FIV of a square cylinder with variation of
angle of attack. A definition sketch for this case is given in figure 1. A recent paper
by Nemes et al. (2012) experimentally investigated the influence of angle of attack of
a square cylinder with low mass-damping ratio on the body’s FIV response in the
same water channel facility as used for this study. An overall picture of the flow
regimes that occur as a function of α and U∗ was presented. It was observed that
a higher branch (HB) of amplitude response occurred over a range of angle of attack,
10◦ < α < 22.5◦, where the body oscillation amplitudes are considerably higher than
those seen in the upper branch associated with VIV, but with an oscillation frequency
locked onto approximately half of the Strouhal frequency. A numerical study from
Zhao, Cheng & Zhou (2013), which allowed motion in both the cross-stream and
streamwise directions, found a similar high-amplitude response regime.
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FIGURE 1. A definition sketch of the problem studied: a square cross-sectional cylinder
with variable angle of attack α, constrained to oscillate across the stream.

The present study aims to provide a precise and systematic description of the
dynamics and response regimes of this system. As such, it significantly extends and
refines the findings of Nemes et al. (2012). Careful experiments, at a fine resolution
in terms of the independent parameters, allows different flow regimes to be clearly
characterized and demarcated. As well as this, particle image velocimetry (PIV)
and phase-averaging techniques have been employed for cases representing each
of the identified flow regimes, to show the vorticity production and vortex wake
configurations.

Three representative values of α have been chosen. The first, α=0◦, is the canonical
test case for transverse galloping, and so the findings can be compared directly with
the results in the literature. The second, α= 45◦, results in FIV that is VIV dominated.
As such, the results from this setup can be compared to the canonical results of VIV
of a circular cylinder, and provide some insight into the generality of the circular
cylinder results. The third, α= 20◦, presents the unique higher branch, and shows the
impact of a geometry that breaks the reflection symmetry.

The experimental method, including the experimental apparatus, measurement
techniques and experimental validation, is detailed in § 2. The following section, § 3,
presents the obtained experimental results and discussion on the dynamic responses
and wake modes of a freely vibrating square cylinder at α = 0◦, 45◦ and 20◦. Lastly,
conclusions of the present study are given in § 4.

2. Experimental method
2.1. Experimental apparatus

The experiments were conducted in the free-surface recirculating water channel of
the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Monash
University. More details of this water channel facility can be found in Sherry, Lo
Jacono & Sheridan (2010). The free-stream velocity in the present experiments was
varied continuously in a range of U = 48–456 mm s−1.

The experimental setup is shown in figure 2. The rigid square cylinder model used
in the present study was made from aluminium square-cross-sectional tubing with a
side width of 24.6 mm and an immersed length of L=620 mm, giving an aspect ratio
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FIGURE 2. (Colour online) A schematic showing the experimental setup in the test section
of the water channel: (a) top view; (b) side view.

range of 17.8 6 AR = L/H 6 25.2. The displaced mass of water was md = 373.2 g,
giving a minimum achievable mass ratio of m∗ = 2.64 for the square cylinder
model. In order to allow optical access the body was fitted with a 20 mm long
Perspex section sitting 110 mm from the bottom end. The model was coupled with
a force balance sting which was vertically mounted on an air bearing system. More
details of this air bearing system can be found in Nemes et al. (2012). To promote
parallel vortex shedding, an end conditioning platform technique used by Khalak &
Williamson (1997) was adopted in the present experiments. The present platform had
a height of 165 mm and a top plate with dimensions of 600 × 400 × 5 mm, giving
a small gap of approximately 1 mm (4 %H) between the cylinder free end and the
water channel floor.

The natural frequencies of the system in both air and water were measured by
conducting free decay tests individually in air and in quiescent water. The natural



frequency in air was measured and assumed to be the natural frequency of the system
in vacuum, while the natural frequency in water was also measured, for each angle of
attack tested. The test results showed that the natural frequencies of the system for the
three angles of attack were highly repeatable at fNa = 0.803 Hz and fNw = 0.648 Hz.
Thus, the structural damping ratio, defined as ζ = c/(2

√
k(m+mA))= 2.58× 10−3 was

determined, in which mA = ((fNa/fNw)
2 − 1)m.

2.2. Measurements
The displacement of the cylinder was measured using a non-contact magnetostrictive
linear variable differential transformer (LVDT). The accuracy of the LVDT was within
±0.01 % of the 250 mm linear range available, giving a displacement measurement
precision of 0.001H (see Nemes et al. 2012). The lift and drag forces acting on the
cylinder were measured simultaneously along with the cylinder displacement using
a two-component force balance based on strain gauges configured in a Wheatstone
bridge circuit. For the transverse lift measurement, the inertial force due to the
cylinder’s acceleration was taken into account to recover the instantaneous Fy acting
on the body using the following equation:

Fy = FSG +mBÿb, (2.1)

where FSG is the calibrated force output from the strain gauges of the lift measurement
channel, mB is the bottom part of the system’s mass consisting of half the force
balance sting and the entire cylinder model, and ÿb is the body acceleration in the
transverse direction.

Further insight can also be gained by decomposing this measured force into a
component due to potential flow, and a component due to vorticity, which can be
associated with the vortex shedding, according to the method proposed by Lighthill
(1986), and employed by a number of studies of VIV (Govardhan & Williamson
2000; Carberry, Sheridan & Rockwell 2001, 2005). This gives two important time
series of force: the total lift force Fy and the vortex lift force Fvortex. The instantaneous
relative phases between these two forces and the body displacement, φtotal and φvortex,
were calculated using the Hilbert transform (HT) (see Hahn 1996).

The vorticity fields in the near wake of the cylinder was measured using the
PIV technique. The PIV system detailed in Nemes et al. (2012) was used for
this purpose. The flow was seeded with hollow micro-spheres (model: Sphericel
110P8, Potters Industries Inc.) having a normal diameter of 13 µm and a specific
weight of 1.1 g m−3. Illumination was provided by two miniature Ng:YAG pulse
lasers (Continuum Minilite II Q-Switched lasers) which produced a 2 mm thick
horizontal planar sheet. Imaging was performed using a PCO 2000 (PCO, Germany)
camera with a resolution of 2048 × 2048 pixel. The camera was equipped with a
50 mm lens (Nikon Corporation, Japan), giving a magnification of approximately
9.73 pixel mm−1 for the field of view of interest. In the present study, two
phase-averaging methods were used. Where the body oscillations are highly periodic
and sinusoidal (i.e. in the lock-in region of α = 45◦), the PIV measurements were
triggered using a real-time control system at eight specified phases of the body’s
oscillations, giving 250 image pairs for each phase for phase-locked averaging. When
the oscillations were periodic but not sinusoidal (i.e. in the cases of α = 0 and
20◦), the PIV measurements were sampled at 4 Hz(more than eight times the body
oscillation frequency for all U∗) initially at a random phase of the body motion.
The cylinder’s location at each PIV imaging trigger was determined by analysing



the transistor–transistor logic (TTL) pulses and the LVDT signals, and then the PIV
images were sorted into 12 different phase regions (or time intervals) with respect to
the body oscillation period. To achieve high-quality phase-region-averaged PIV results,
a large number of 5000 PIV image pairs were recorded for each reduced velocity of
interest, yielding at least 400 image pairs for each of the 12 phase regions, which
allowed much finer time intervals for phase-averaging compared to the method used
previously in Nemes et al. (2012). The PIV image data were analysed with validated
in-house PIV software developed by Fouras, Lo Jacono & Hourigan (2008), using
32× 32 pixel interrogation windows in a grid layout with 50 % window overlap.

2.3. Experimental validation
The methodologies used are validated here against the published results of Khalak &
Williamson (1997) for VIV of a circular cylinder. The present circular cylinder had
a diameter of D= 40 mm and an immersed length of L= 620 mm, giving an aspect
ratio of AR=L/D= 15.5 and a displaced water mass of md= 780.1 g. The total mass
of the oscillating system was m = 1872.2 g, resulting in a mass ratio of m∗ = 2.40.
Free decay tests were conducted individually in air and water to determine the
natural frequency in air, fNa = 0.572 Hz, and in water, fNw = 0.477 Hz. The structural
damping ratio was measured at ζ = 2.43× 10−3, resulting in a mass-damping ratio of
m∗ζ = 5.83× 10−3, which was comparable to the case study with m∗ζ = 11.3× 10−3

(in which m∗ = 2.4 and ζ = 4.5 × 10−3) by Khalak & Williamson (1997). The
end condition was also controlled using the platform end control technique as
described previously. The Strouhal number of the cylinder at rest of the present case
is St= 0.208 which is in excellent agreement with St≈ 0.21 for 1000< Re< 10 000
consistently reported in the literature (see Norberg 2001).

The dynamic response of VIV was investigated over a reduced velocity of 2.75<
U∗< 17, corresponding to a flow velocity range of 49.5 mm s−1<U∞< 32.4 mm s−1

and a Reynolds number range of 2000 < Re < 13 000. The response amplitude and
frequency of the present work are compared directly to the results of Khalak &
Williamson (1997) at the same mass ratio in figure 3. It should be noted that the
results of Khalak & Williamson (1997) include data of both increasing and decreasing
reduced velocities for hysteresis and intermittency, while the present results include
only data of increasing reduced velocities since the phenomena of hysteresis and
intermittency are not focused on in this comparison. The comparison shows that
the overall agreement is remarkable in terms of the three-branch amplitude response
pattern, the amplitude peak value, the lock-in region, and the frequency response.

2.3.1. The transverse lift force measurement
As the transverse lift force is a crucial parameter in FIV studies, it is of importance

to validate the lift measurement in experiments. However, very few such experimental
validations can be found in the literature. For validation purposes, measurements of
the lift acting on a circular cylinder undergoing VIV were also conducted.

The test cylinder used had a diameter of 25 mm and an immersed length of
620 mm, resulting in a mass ratio of m∗ = 2.64. In particular, this diameter size
was selected to validate that the force balance could measure the lift accurately for
low force magnitudes. Figure 4 shows the results of the measured transverse lift
forces Fy(measured), determined by (2.1), compared with their calculated counterparts
Fy(calculated), determined by the left-hand side of the equation of motion of the body,

mÿb + cÿb + kyb = Fy(calculated), (2.2)
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FIGURE 3. (Colour online) A comparison of experimental results shows excellent
agreement between the present study and Khalak & Williamson (1997) in (a) the
amplitude and (b) the frequency responses of a circular cylinder with m∗ = 2.4. In (a)
open circles represent the normalized amplitude peaks, A∗max, of the present results, solid
circles represent the present A∗10 values, the mean of the top 10 % of the oscillation
amplitudes, and open squares represent the results of Khalak & Williamson (1997). In
(b) solid circles represent the present results, while open squares represent the results of
Khalak & Williamson (1997).

at different reduced velocities corresponding to the initial, the upper, and the lower
branches. Note that in the figure, the two curves lie almost on top of each other,
verifying that Fy(measured) agreed well with Fy(calculated) in a wide typical VIV range,
indicating that the force balance could accurately measure the fluctuating Fy at
magnitudes as low as 0.005 N.

3. Results
3.1. Galloping-dominated response at α = 0◦

The results presented in this section significantly expand upon previous results from
Bearman et al. (1987) and Nemes et al. (2012). Using very fine increments of flow
speed, represented by U∗, the previously reported kink is shown to be a region
of harmonic resonance between the body oscillation and three cycles of the vortex
shedding. Following the lead of Bearman et al. (1987), it is also shown that a similar
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FIGURE 4. (Colour online) Time traces of the transverse lift force of a circular cylinder
in the three typical response branches: (a) U∗ = 4.4, in the initial branch, (b) U∗ = 5.0,
in the upper branch, and (c) U∗ = 8.0, in the lower branch. The solid lines represent
the calculated values (Fy(calculated)) using the left-hand side of (2.2), while the dashed lines
represent the measurement values (Fy(measured)).

process occurs between the body oscillation and five cycles of vortex shedding. These
synchronized regimes are clearly shown in the trend of the oscillation amplitude
versus U∗, as well as in the dependence of the frequency content of the oscillation,
lift force and drag force, on U∗. Establishing that the kink is due to resonance, as
well as finding a series of synchronizations between the body oscillation frequency
and odd numbers of vortex shedding cycles, appears to be a novel result.

Further, a novel explanation for the synchronization to odd numbers of vortex
shedding cycles, while even numbers appear to have no special effect, is also provided.

3.1.1. Amplitude and frequency response
Figure 5(a) shows A∗ as a function of U∗ for the α = 0◦ case. Also shown

(figure 5b–e) are contours of energy as a function of frequency and U∗ for four
different sets of time series: the body oscillation, the total lift (transverse) force, the
lift force attributable to the vortex shedding, and the total drag force. The contours
were formed by taking the Fourier transform of the time series at a given value of
U∗, then normalizing the resulting spectrum by the maximum energy, then ‘stacking’
the resulting normalized spectrum next to that obtained at the previous value of U∗.
This normalization process means that the dominant frequencies at any value of U∗
are clearly visible on the plot, as are changes in the frequency response as a function
of U∗. This process has been employed successfully previously by Assi, Bearman
& Meneghini (2010), Leontini, Lo Jacono & Thompson (2011, 2013), Leontini &
Thompson (2013) and Tudball-Smith et al. (2012), the latter providing further details
of how these plots are constructed.
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),

transverse vortex force (f ∗Cvortex
), and the drag (f ∗Cd

), respectively. Note that the frequency
components are normalized by fNw, e.g. f ∗yb

= fyb/fNw. The dashed line represents the value
of St.



While the general trend of classical galloping is shown in figure 5 (A∗ increasing
approximately linearly with U∗ once U∗ is beyond some threshold value), a number
of features that diverge from the classical picture are immediately apparent. The most
obvious are the steps or kinks in the amplitude response, that have been marked by
the shaded background of figure 5(a).

The first of these kinks with increasing U∗ occurs around U∗ = 6. This coincides
with a non-dimensional natural frequency f ∗N = 1/U∗ ' 0.167. The Strouhal number
for this system (the non-dimensional vortex shedding frequency from a rigidly
mounted square) is St = 0.131. Therefore, this kink represents a small regime of
VIV-dominated response, where the body motion frequency and vortex shedding
frequency synchronize, and the motion is essentially periodic and regular. The
motion in this regime is driven by the unsteady vortex shedding, as opposed to
the long-time-average aerodynamic forces that dictate the motion during typical
galloping. The synchronization between the oscillation frequency f ∗yb

and the vortex
shedding f ∗Cvortex

can be confirmed by comparing the spectra shown in figures 5(b) and
5(d). Both show the same single dominant frequency at U∗= 6. The presence of only
a single frequency also confirms the periodicity of the motion. As the frequency of
the oscillation and the vortex shedding is the same, this is a 1:1 synchronization.

The second of these kinks, that occurs over a much larger range of U∗ than the
first, is focused around U∗ = 14. This regime begins around U∗ = 11, and is marked
by a small, but distinct plateau in the amplitude of oscillation. The regime ends
around U∗ = 16, where there is a small but distinct increase in the amplitude of
oscillation. Throughout this regime, the flow is periodic, with only a single dominant
frequency occurring in the body oscillation f ∗yb

. This frequency increases very slowly,
but essentially linearly, with U∗.

A key feature of this regime is the difference in the contribution of the frequency
component at three times the body oscillation frequency, 3f ∗yb

, to the body oscillation
and the lift force. For the body oscillation, the contribution of 3f ∗yb

is relatively weak,
whereas for the total lift force and the vortex lift force, both f ∗yb

and 3f ∗yb
make

significant contributions. In fact, for the vortex lift force, the component at 3f ∗yb
is

the strongest component for U∗ > 14. This is indicative of the fact that the vortex
shedding is synchronized to 3f ∗yb

in this regime, or a 1:3 synchronization. It appears
that this regime is the same as the kink observed by Bearman et al. (1987).

The third of these kinks is focused around U∗= 22. The regime is delineated by a
region where the amplitude appears to be constant with increasing U∗. Similarly to the
1:1 synchronization and the 1:3 synchronization, this regime appears to have a single
dominant frequency of oscillation f ∗yb

. However, the total and vortex lift spectra show
a significant component at 5f ∗yb

, indicating that this regime is a 1:5 synchronization
between the oscillation and the vortex shedding.

3.1.2. Synchronization regimes
As a whole, figure 5 shows that the FIV of a square cylinder generally follows

the trends predicted by the quasi-static theory of transverse galloping developed by
Parkinson & Smith (1964), punctuated by a series of synchronization regimes between
the body oscillation and the vortex shedding. Three key questions arise out of this
picture: Why do the synchronization regimes occur at these particular values of U∗?
Why do only ‘odd’ synchronizations occur, while ‘even’ ones do not (such as 1:2, 1:4,
etc.)? What controls the extent of each of the synchronization regions?

The location of the first 1:1 synchronization can be understood by considering
the interaction between the vortex shedding and the natural frequency of the body



structure. When the vortex shedding frequency fCvortex is close to the body natural
frequency fN , the body can respond favourably to the forcing provided. This response
can then entrain the vortex shedding. This leads to oscillations where the body
oscillation is synchronized with the vortex shedding to a frequency close to fN , which
is VIV. Therefore, this regime is expected near where St' 1/U∗.

The location of the other synchronization regimes can also be understood by
considering the behaviour of the body oscillation frequency and the vortex shedding
frequency with increasing U∗. Figure 5(b) shows that over the entire range of U∗
tested, the primary body oscillation frequency fyb remains essentially constant. Only
in the synchronization regimes does it vary noticeably, and even then only by a small
amount. However, when the Strouhal number remains constant the vortex shedding
frequency fCvortex is a linearly increasing function of the flow speed. Therefore, it
would be expected that the vortex shedding frequency fCvortex will be an integer
multiple of the body oscillation fyb at equi-spaced increments of U∗. Figure 5 shows
the synchronization regimes occurring at around U∗= 6, U∗= 14, and U∗= 22, which
are indeed equi-spaced increments. Around these values, nonlinear synchronization
causes the body oscillation and the vortex shedding to move from their natural values
and synchronize at the values reported in figure 5.

Regardless of this synchronization, the relevant FIV phenomenon is still transverse
galloping. This fact can be used to explain why only odd synchronizations occur, if
it is assumed that the vortex shedding mode remains essentially the same as for the
Kármán vortex street, i.e. one vortex shed from one side of the body during one half-
cycle, followed by a vortex of opposite sign shed from the opposite side of the body
in the next half-cycle.

Transverse galloping relies on the body being driven by the average transverse force
over some time interval that is longer than the vortex shedding period. During the
upstroke, the mean lift force must also be up (positive); during the downstroke, the
mean lift must be down (negative). If a 1:2 resonance were to occur, one cycle of
vortex shedding would occur during one half-cycle of the body oscillation. One cycle
of vortex shedding from a nominally symmetric body gives a mean lift of zero, hence
the vortex shedding cannot have an appreciable impact on the aerodynamic forces, and
hence it cannot lead to a significant resonance (note that this is not necessarily the
case when the body is not symmetric, as the strength of each vortex on each side of
the wake can be different). On the other hand, during a 1:3 resonance, one and a half
vortex shedding cycles occur during one half-cycle of oscillation, which certainly will
have a mean lift, and hence this can have a significant impact on the forces and hence
the motion.

For small ratios such as 1:3, it is also likely that the mean lift force will be different
to that measured on a static body at an angle of attack, which is used in the quasi-
static theory of galloping. Hence it might be expected that even though the oscillation
is still driven by galloping, the response will differ from that of typical galloping, and
this is indeed what is observed in figure 5.

The discussion above highlights that each synchronization region consists of the
vortex shedding being locked to a multiple of the body oscillation frequency. This
means that as the multiple gets higher, the number of vortices involved in the
synchronization increases. Intuitively, it seems that as the number of vortices involved
increases, the tuning required to obtain a locked, synchronized state becomes finer,
and the range of U∗ over which the synchronization exists decreases. Indeed for
simple maps, Cvitanović, Shraiman & Söderberg (1985) showed theoretically that for
synchronizations of the form 1:N, the stability interval (here the range of U∗ over
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FIGURE 6. An example of the dynamics of the 1:3 synchronization for α= 0◦: time traces
(a) and normalized power spectra (b) of displacement (i), total lift (ii), vortex lift (iii) and
drag (iv). The reduced velocity of this case is U∗ = 14.26. A third-harmonic frequency
of the body oscillation is clearly seen in Cy and Cvortex. The frequency components are
normalized by fNw, i.e. f ∗ = f /fNw, and τ = tfNw.

which the synchronization exists) scales with N−3. Excluding the 1:1 synchronization
(which is controlled by VIV, not galloping), a significant reduction in the stability
interval is observed with increasing N, with the 1:3 synchronization occurring over a
much greater range of U∗ than the 1:5 synchronization.

It should also be noted that the same basic phenomena control the flow whether the
flow is synchronized or not. These are the body oscillation, and the vortex shedding.
Outside of the synchronization regimes, these two phenomena are uncorrelated, and
so both contribute to the spectral content of the response, resulting in a modulated
body oscillation. However, the two phenomena cannot be thought of as purely additive
due to the nonlinearity of the system, and it is this nonlinearity that allows the body
oscillation and vortex shedding to synchronize.

3.1.3. Further details of the 1:3 synchronization
This section presents details of the case at U∗ = 14.26, close to the centre of the

range over which the 1:3 synchronization occurs as shown in figure 5.
Figure 6 shows time traces and power spectra of the displacement and the fluid

forces for the case at U∗= 14.26. At this reduced velocity, the body’s oscillations are



highly periodic as shown in figure 6(ai), with a dominant frequency of f ∗yb
= 0.77 and

a third-harmonic frequency (3f ∗yb
= 2.31) with a much weaker power magnitude as

shown in figure 6(bi). The fluid forces (Cy, Cvortex, and Cd) are also highly periodic.
The drag is dominated by a frequency equal to the second-harmonic frequency of
the body motion, and also has a component at twice this frequency. The total lift
force fluctuates with the same frequency components as the body motion, however
its third-harmonic frequency is much stronger in power than that of the body motion.
This is reflected in the significant modulation of the time trace of the lift. If only
the vortex lift is considered, the force is dominated by its third-harmonic frequency
(while still possessing a significant component at the body-motion dominant galloping
frequency). This indicates that the vortex shedding frequency is three times the
galloping oscillation frequency.

For the 1:3 synchronization to be described as a modified galloping phenomenon,
the lift force and the body oscillation should be essentially in phase. However,
because of the reasonably complicated relationship between the lift force and the
body oscillation, defining a phase between the two signals can be difficult. What
is most important is the phase between the component of the lift force that is
synchronized to the body motion. Rather than decompose the signal using a Fourier
decomposition which assumes sinusoidal modes, the total lift and the vortex lift can
be decomposed using empirical mode decomposition (EMD) pioneered by Huang
et al. (1998). This results in mode shapes that are not sinusoidal, but they are
orthogonal.

Figure 7 shows that the leading EMD mode of both Cy and Cvortex, denoted
by Cy (EMD1) and Cvortex (EMD1) respectively, oscillate with a frequency similar to the
dominant frequency of the body motion. Therefore, the leading EMD modes of
Cy and Cvortex can be thought of as representing the body oscillation. The second
EMD modes of both Cy and Cvortex, denoted by Cy (EMD2) and Cvortex (EMD2) respectively,
oscillate with a frequency similar to the vortex shedding frequency, and can be thought
of as representing the influence of the vortex shedding. For a galloping-dominated
process, the long-time forces (over the period of body oscillation) are expected to be
in phase with the oscillation. Figure 7(c) shows that this is indeed the case, further
suggesting that the 1:3 synchronization is a galloping-dominated phenomenon.

Interestingly, figure 7(d) shows that the second EMD modes of the oscillation and
the vortex shedding are also in phase. Cvortex (EMD1) is in phase with Cy (EMD1), shown
in figure 7(c), and d). Thus, this EMD analysis of the lift and vortex forces further
suggests that the 1:3 synchronization is a galloping-dominated phenomenon.

Images of the wake show further evidence of this. Figure 8 shows a series of twelve
images of vorticity contours over one cycle of oscillation obtained from PIV. The
images were obtained by averaging a series of images obtained over a small time
period, as explained in § 2.2. The time period averaged over for each image is marked
on the time history plot in figure 8(a).

The images show very clearly the regular vortex shedding that occurs. The wake
mode is essentially the same as the classic Kármán vortex street, with vortices being
alternately shed from each side of the cylinder.

3.2. VIV dominated response α = 45◦

Like the case at α = 0◦, the case at α = 45◦ presents a body that is symmetric with
respect to the wake centreline. When the body is fixed, the vortex shedding proceeds
quite similarly to the canonical bluff body, the cylinder, resulting in a Kármán vortex
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and Cy (EMD2). The reduced velocity of this case is U∗ = 14.26.

street that is spatio-temporally symmetric, i.e. evolution forward in time by half a
period plus reflection about the wake centreline returns the original flow (it should
be noted that the flow is not exactly spatio-temporally symmetric, due to significant
three-dimensional effects, and some fluctuation in the frequency of the shedding over
time, but the basic configuration of the vortex shedding does not deviate from this
basic spatio-temporal picture significantly).

Unlike the case at α = 0◦, the case at α = 45◦ is not susceptible to galloping. As
explained by the quasi-static theory of Parkinson & Smith (1964), galloping should
only occur when ∂Cy/∂α > 0◦ at the base angle of attack (here 45◦). This does occur
for α = 0◦, but not for α = 45◦. However, the α = 45◦ case, like any bluff body that
causes alternate vortex shedding, is susceptible to VIV, and it is this phenomenon that
dominates the FIV of this case.

Nemes et al. (2012) showed that in some respects the response of the square
cylinder at α= 45◦ is similar to that of the circular cylinder, as described in § 2.3 and
shown in figure 3. The primary differences identified were a less distinct transition
between the initial and upper branches, and rather than a distinct periodic lower
branch that suddenly loses coherence beyond some critical U∗, a gradual increase in
disorder was observed, with significant amplitude oscillations still occurring for the
unsynchronized flow.
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The results presented here build on and clarify those results. Experiments at very
fine increments of U∗ have been performed in order to home in on the transitions
between the various response regimes present. The results presented below show
that, in addition to the results presented by previous studies, this upper branch in
fact consists of a number of regimes, each with distinct frequency, force, and phase
characteristics.

3.2.1. Amplitude and frequency responses
Figure 9(a) shows the variation of the amplitude of oscillation as a function of U∗

for a relatively light body at m∗ = 2.64, together with the variation of the frequency
content of the displacement and force time series (figure 9b–e). The frequency content
plots are constructed in the same manner as figure 5, described in § 3.1.1.

Figure 9 shows that the response type is quite varied, with large-amplitude
oscillations for 3 < U∗ < 7.5 (the region designated as the upper branch by Nemes
et al. 2012) consisting of five regimes, the boundaries of which are marked by the
dotted vertical lines on the figure. The characteristics of each of these regimes, as
well as the initial branch and desynchronization regions, are highlighted below, in
order of increasing U∗.

For U∗ < 3, the flow is on the initial branch. Here, the oscillations are small and
modulated, and figure 9 shows that the oscillation as well as the lift force consists of
frequency components at both the Strouhal and natural frequencies.

At U∗ = 3, the flow transits to the beginning of the upper branch, and the first of
a series of synchronized regimes, where the vortex shedding and the body oscillation
occur at the same frequency. In this first regime (i), the vortex shedding occurs in
the 2S mode, similar to the classic Kármán vortex street. The frequency of oscillation
is close to, but slightly below, the natural frequency of the body. The amplitude of
oscillation in this regime is almost a linear function of U∗. The onset of this regime
is also marked by a distinct increase in the magnitude of the lift force measured on
the body, as shown in figure 10.

At U∗ = 4.4, a change to a second distinct synchronized regime (ii) occurs. The
wake mode changes from the 2S mode to the 2P mode, as shown in figure 11. This
is accompanied by a small but distinct kink in the trend of amplitude as a function
of U∗. There is also a distinct change in the frequency response. The frequency of
oscillation and vortex shedding shifts to a value close to, but now slightly above, the
natural frequency of the body. This appears to be related to a change of the added
mass related to the redistribution of vorticity that occurs with the change of wake
mode (see Lighthill 1986). Figure 10 shows that with the onset of this regime and
the change in wake mode, there is also a switch in the vortex phase from φvortex= 0◦
to φvortex = 180◦, and a jump in the magnitude of the vortex lift.

At U∗=5, a third distinct synchronized regime (iii) begins. The onset of this regime
occurs close to the point where the body natural frequency is equal to the Strouhal
frequency. There is little discernible difference in the flow between this regime and the
previous one (ii); however, there is a distinct change in the frequency of response as
shown in figure 9. The frequency moves from a value close to the natural frequency,
to a value close to, but slightly above, the Strouhal frequency. The flow remains
synchronized; both the vortex shedding and the body oscillation occur at this value
close to the Strouhal frequency, and the governing FIV phenomenon appears to be
VIV. Regardless, the frequency is not set by the body natural frequency as it invariably
is during synchronized VIV of a circular cylinder.
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Figure 9 shows that the amplitude of oscillation first increases, then decreases
with increasing U∗ in this regime. Figure 10 shows that the onset of this mode is
accompanied by a sharp increase in the total lift force, which then linearly decreases
with U∗. The vortex force, on the other hand, increases with U∗.

A further interesting feature of this regime is the fact that the drag appears to
oscillate at a frequency that is the same as for the lift, rather than a frequency twice
that of the lift. A significant component is present at twice the primary frequency of
the lift; however, the strongest component is the same as that of the lift. One way
for this to occur is for the vortex shedding to be asymmetric, which should result in
a small non-zero mean lift and displacement. However, a non-zero mean lift is not
immediately apparent in the results of the current experiments. A subtle asymmetry
may exist that is the cause of the spectral characteristics of the drag, but further
experiments are required to fully understand this feature.

The reason why a non-zero mean displacement is difficult to measure is that the
exact equilibrium position of the body in the channel is unknown. The resting position
of the body while there is no flow in the channel could be used, but this assumes that
the inflow is perfectly aligned. The error in the actual resting position from making
this assumption is small, but it may be of the same order as the mean displacement
for a flow that is only weakly asymmetric. Strong asymmetries will be clear from the
shape of the time history, i.e. for a periodic flow, y(t + T/2) 6= −y(t). However, for
a weakly asymmetric flow, it is difficult to separate such inherent asymmetries from
fluctuations in the body position due to external disturbances.

U∗= 6 marks the beginning of a fourth regime (iv), distinct from the others in the
high-amplitude upper branch region as it is not periodic. Figure 9 shows that while the
frequency content of the body oscillation remains dominated by a single component at
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a value slightly above the Strouhal frequency, the lift force shows a more broadband
response, focused around harmonics of the oscillation frequency. This is indicative of
a vortex shedding process that is ‘almost’ periodic.

It is possible that this regime is not inherent, but is rather a response of the system
to the external noise in any experimental setup. Figure 10 shows that the onset
of this regime is also the point where the total phase switches from φtotal = 0◦ to
φtotal = 180◦. Along with this, the figure shows that the total lift force is close to
the minimum recorded. This is consistent, as the shift in φtotal is most likely driven
by a change in the balance of two opposing forces, as explained by Carberry et al.
(2005). This fine balance of forces may render the system more susceptible to noise
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than normal. Further evidence for this regime being a function of external forcing is
that the body oscillation frequency and amplitude are practically continuous across
regimes (iii), (iv), and (v), indicating there is little change in the wake configuration
across these regimes.

Regime (v) begins at U∗= 6.5 and continues to U∗= 7.5 where the body oscillation
and vortex shedding become desynchronized. Like regime (iii), regime (v) consists of
synchronized oscillations at a frequency slightly above the Strouhal frequency. Also
like regime (iii), the drag has a strong component at the same frequency as the lift
and the displacement; however the strongest component is at a frequency twice this
value. Any asymmetry present in regime (iii) may therefore still occur here.

Finally, at U∗ = 7.5, the body oscillation and the vortex shedding become
desynchronized. The vortex shedding occurs at a primary frequency close to, but
slightly below, the Strouhal frequency for the fixed body; however the spectra are
quite broadband indicating that the flow is not strictly periodic. The amplitude of
oscillation is only a weak negative function of U∗ as shown in figure 9, as is the lift
force as shown in figure 10.

3.2.2. Further details of the 2S↔ 2P wake mode transition
Figure 12 shows time traces of the oscillation and forces and frequency spectra for

two cases; one at U∗ = 3.28, in regime (i), and one at U∗ = 4.29, in regime (ii). The
periodicity of the oscillation in both regimes is clear from the time traces. The switch
in φvortex that occurs is also clear. Comparison of the spectra of the two cases also
shows very explicitly the switch from a frequency just below the natural frequency,
to a frequency just above the natural frequency.



Figure 11 above shows sequences of images of the wake, visualized using vorticity,
from phase-averaged PIV measurements. From left to right, the figure shows a column
of schematics indicating the point in the oscillation cycle at which each image is taken,
then a column of images of the wake in regime (i) at U∗ = 3.28, then a column of
images of the wake in regime (ii) at U∗ = 4.29.

The change in wake mode between the two cases is clear. Regime (i) displays a
2S mode, with alternating vortex shedding from each side of the body. Regime (ii)
displays a 2P mode, where during one half-cycle a positive vortex shed from the
bottom edge of the body is paired with a negative vortex shed from the rear edge
of the body. The inverse occurs in the following half-cycle, with a negative vortex
shed from the top edge paired with a positive vortex shed from the rear edge.

3.3. Modified VIV response α = 20◦

While the case at α=0◦ is clearly dominated by the phenomenon of galloping, and the
case at α= 45◦ is dominated by the phenomenon of VIV, the governing phenomenon
for the case at a resting angle of attack of α = 20◦ is not as clear. The complicated
regime map presented in Nemes et al. (2012) shows that there is at least one new
response regime present, labelled the ‘higher’ branch, as it consists of well-organized
oscillations at amplitudes larger than those present in the upper branch.

This section presents results of experiments at α = 20◦ at very fine increments of
U∗, so that the extent of the response regimes identified can be clearly identified. The
results show that there is indeed an upper and a higher branch of response, separated
on the U∗ axis by a region of chaos that appears to be driven by intermittency between
the two modes. In addition, the results presented here show the higher branch is a type
of subharmonic response, with two vortex shedding cycles occurring over one body
oscillation cycle. The vortex formation and shedding process, which for this branch
depends on vorticity created at different faces of the body, is also presented.

3.3.1. Amplitude and frequency responses
Figure 13 shows the amplitude of the body oscillation as a function of U∗, as well

as the frequency content of the displacement and various forces, for the α= 20◦ case.
Again, the plots are constructed in the same manner as those of figure 5 as explained
in § 3.1.1.

Observation of the amplitude response in figure 13(a) clearly shows four response
regimes: an initial branch (IB), an upper branch (UB), a higher branch (HB), and
a desynchronization region where the amplitude is approximately constant. Both the
upper and higher branches consist of ordered, periodic oscillations, hence both are
highlighted with dark shading in the figure. Outside of these two regimes, the flow
response can be more complicated. These various response regimes are outlined below.

The initial branch consists of small-amplitude oscillations. The oscillations are
modulated, as both the Strouhal frequency (the vortex shedding frequency from the
rigid body) and the body natural frequency play a role. This behaviour is similar to
the initial branch that occurs in VIV studies of a circular cylinder.

Increasing U∗ beyond U∗ = 4 sees the flow transit to the upper branch. With
the onset of the upper branch, the oscillations become regular and periodic with
amplitude increasing with U∗. Like the classic upper branch identified in flows past
a circular cylinder, here the frequency appears to lock on to a frequency close to
the natural frequency. This is clearly evident in the plots of frequency content shown
in figure 13(b–e), that show only a single line for the displacement and the lift
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force that remains close to the natural frequency. The range of U∗ over which this
synchronization occurs is below the value of U∗ at with the natural frequency is
equal to the Strouhal frequency, ending when U∗ is such that the Strouhal frequency
is approximately equal to the natural frequency.

At the point where the synchronization of the upper branch is lost, the flow becomes
chaotic, with a broadband frequency response focused around a frequency slightly
below the Strouhal frequency. The amplitude of oscillation is approximately constant
with further increases in U∗. Here, the flow is desynchronized, and this regime is
similar to the desynchronized regime found at high U∗ for the α = 45◦ case.

Unlike the α= 45◦ case, this desynchronization region does not then persist for all
higher U∗. Instead, just prior to U∗ = 8, the flow reorganizes and the higher branch
regime begins, as first identified by Nemes et al. (2012), where it was hypothesized
that this regime was a type of interaction mode between VIV and transverse galloping,
based on the high amplitude of the response. However, the high fidelity of the data
presented in figure 13 shows that this mode is in fact a type of subharmonic VIV.
The frequency content of the displacement shown in figure 13 shows that throughout
the higher branch regime, the flow is very well-organized and periodic, with a single
dominant frequency, which remains very close to half of the Strouhal frequency (in
fact just slightly above it). The same frequency appears in the lift, along with a
significant component at twice this frequency, which becomes the dominant frequency
in the vortex lift. This indicates that this mode consists of two cycles of vortex
shedding per oscillation cycle, which is further discussed in § 3.3.3.

The onset of the higher branch occurs intermittently with increases in U∗. From
around U∗= 7.5, small periods of organized flow appear intermingled with periods of
disorder. These periods of organized flow persist longer and occur more rapidly as U∗

is increased, before the higher branch becomes ‘locked’ around U∗=8. This behaviour
indicates that this transition occurs through type-one intermittency, as described by
Pomeau & Manneville (1980). A similar process occurs at the other end of the range
of existence of the higher branch. Increasing U∗ beyond around U∗ = 9.5 sees the
organized flow interrupted by small periods of disorder, which become longer and
more prevalent at U∗ is further increased, until no evidence of the higher branch
remains beyond U∗ = 10.5.

Further increases in U∗ see no further qualitative changes in the flow. The frequency
response becomes quite broadband, though focused around a frequency slightly below
the Strouhal frequency. The vortex formation and shedding are desynchronized from
the oscillation, even so the amplitude remains quite high. Qualitatively, the flow is
similar to the desynchronized region that divides the upper and higher branches.

Figure 13 gives a good overview of the flow regimes present for the case at α= 20◦.
It shows that there are a number of regimes present, all with unique characteristics.
Further details of each of these flow regimes are presented in the following sections.

3.3.2. The upper branch
The upper branch is characterized by oscillation and vortex shedding close to

the Strouhal frequency. Figure 14 shows time traces and frequency spectra of the
displacement and forces for a representative case at U∗ = 5.1. The oscillations are
close to periodic, as is the lift force, and only a single predominant frequency is
present in the spectra.

Figure 15 shows twelve images of the wake, visualized as contours of vorticity,
over one oscillation cycle. The images were obtained by averaging a number of PIV
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images over a short time span. The time span for the averaging used for each period
is marked on the time history shown in figure 15(a).

One feature of note in figure 15 is that even though the total lift and the vortex
lift force are approximately sinusoidal, the timing of the vortex shedding is not the
same on either side of the wake. This is clear when the streamwise spacing between
consecutive vortices is compared. For instance, in the first image moving downstream
from left to right, the streamwise distance from the first positive (solid line) vortex on
the bottom side to the first negative (dashed line) vortex on the top side is much less
than the distance from that first negative vortex to the second positive vortex. This is
perhaps not surprising considering the asymmetry of the body.

The formation of the negative vortex on the top side of the body should also be
noted. This formation occurs primarily during the second half (the downstroke) of the
oscillation cycle, starting from image (vii) in the sequence shown in figure 15. These
images show that initially nascent vortices form, one from the leading edge and one
from the trailing edge of the body. It is hypothesized that the trailing-edge vortex is
actually formed during the upstroke of the body on the back face, as evidenced from
images (i)–(v) of the sequence. Even though it is formed, this trailing-edge vortex is
not shed into the wake. Rather, it is eventually amalgamated into the vortex that is
formed from the leading edge as shown in images (vii)–(x), and this final single vortex
is shed into the wake. This complex vorticity production and amalgamation may go
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FIGURE 15. (Colour online) Time-based phase-averaged vorticity fields in the upper
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grey long-dashed line represents Cd. (b) Images of vorticity from PIV averaged over the
intervals marked on the time history. The vorticity contour levels shown are normalized
by ω∗z = ωzH/U. The contours marked with solid lines represent positive values, and
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formed during the upstroke is amalgamated with the leading-edge vortex before shedding.

some way to explain the difference in timing of vortex shedding from the top and
bottom sides of the body.
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FIGURE 16. (a) Time traces, and (b) normalized power spectra, of (i) displacement,
(ii) total lift, (iii) vortex lift, and (iv) drag for the case at α = 20◦ and U∗ = 6.1.

The delicate vortex formation and shedding process is further highlighted by
observing a case that is very close to the upper limit of U∗ for the upper branch.
Figure 16 shows time histories and spectra for such a case at U∗ = 6.1. Some
similarities with the case at U∗ = 5.1 can be found: the primary frequency of
oscillation and the total lift force is close to the Strouhal frequency, and the oscillation
remains reasonably regular and close to sinusoidal. However, there is a large difference
in the vortex lift. While there is still significant energy at the Strouhal frequency, the
most energetic component is actually at twice this value, indicating that there has
been some kind of change in the vortex formation or timing of vortex shedding.

This change can be seen in the sequence of images of the wake for the U∗ =
6.1 case, shown in figure 17. Again, the images are of vorticity contours formed by
averaging the PIV images over a short time period, which is marked for each image
on the time history in figure 17(a).

Overall, the shedding process is very similar to the upper branch case at U∗ = 5.1
shown in figure 15. However, here, the negative trailing-edge vortex that is formed
from vorticity produced on the back face of the body during the upstroke of the body
is not simply amalgamated with the vortex forming from the vorticity on the upper
side. Instead, this initial trailing-edge vortex is shed into the wake, as shown in images
(vi)–(ix) in the sequence of figure 17. However, this vortex is quite weak, and images
(x)–(xii) indicate that it quickly dissipates (possibly due to three-dimensional effects)
as it travels away from the body. This complex formation–shedding–dissipation cycle
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goes some way to explaining why the synchronization between the body motion and
the vortex shedding is lost as U∗ is increased beyond this point.

3.3.3. The higher branch
The higher branch is characterized by oscillation at close to half of the Strouhal

frequency. The time trace of the oscillation for a representative case at U∗ = 8 is
shown in figure 18(ai). The asymmetry of the flow induced by the angle of attack is
clear in this figure. Unlike the upper branch, the vortex shedding in the higher branch
does not occur at the same frequency as the oscillation. Instead, it occurs at twice the
frequency of the oscillation. The influence of this higher harmonic is clear in the time
trace of the total lift force shown in figure 18(aii), and the presence of significant
energy at twice the oscillation frequency is shown in the corresponding spectrum of
figure 18(bii). This effect is even more pronounced in the vortex lift, where the energy
in the spectrum at twice the oscillation frequency is greater than the energy at the
oscillation frequency.

This subharmonic synchronization between the oscillation and the vortex shedding,
where the oscillation is synchronized to half the vortex shedding frequency, is clearly
shown in the images of figure 19. Here is shown a sequence of twelve images of the
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2(2S) mode.



wake over one cycle of oscillation, visualized using vorticity contours generated from
PIV. Again, the images were obtained by averaging a series of PIV images over a
short time. The time window used for the averaging for each image is marked on the
time history shown in figure 19(a).

Figure 19 shows that two cycles of ‘classic’ vortex shedding (where a vortex of one
sign is shed from the body in one half-cycle, then alternately a vortex of opposite sign
is shed in the next half-cycle as in the Kármán vortex street) occur per oscillation
cycle. Therefore, if this wake mode is to be named using the convention introduced
by Williamson & Roshko (1988), it should be designated 2(2S), meaning two cycles
of two single opposite-signed vortices are shed per oscillation cycle. However, these
two cycles of shedding are not identical, and there is no spatio-temporal symmetry
(the second cycle is not simply the same as the first cycle reflected). The two cycles
occur over different periods. This process is explained below.

As shown in figure 18, and the time history of a single cycle in figure 19(a), the
oscillation is far from sinusoidal. Instead, the body rapidly ascends over the first
quarter of a period, then spends around half an oscillation period with little variation
in amplitude, before rapidly descending over the last quarter of a period.

In the first ascent phase (images i–iii of figure 19), negative vorticity is produced
at the rear surface of the body, producing a negative (dashed line) vortex attached to
the trailing edge. Over this same period, the previously formed positive (solid line)
vortex is shed into the wake.

At the beginning of the slow variation phase, represented by images (iv) and (v),
this negative trailing-edge vortex is shed into the wake, and a new positive vortex
begins to form, being fed from vorticity on the bottom surface of the body. The
negative vortex shed from the trailing edge is relatively weak. Over the rest of this
slow variation phase, represented by images (vi)–(viii), this positive vortex is shed into
the wake, and a new negative vortex begins to form, this time fed by vorticity being
produced on the top surface on the body. This new negative vortex is much stronger
than the previous negative vortex that was fed by vorticity from the rear face.

During the descent phase represented by images (ix)–(xii), this negative vortex is
shed into the wake, and a new positive vortex forms, this time fed by positive vorticity
being generated on the rear side of the body.

In summary, the vortex shedding can be described as consisting of a pair of vortices
shed during the descent and ascent, where the vortices are fed by vorticity produced
at the rear surface of the body due to the acceleration of the body across the flow.
This is followed by the shedding of a second pair of vortices during the phase where
the body is almost stationary, the vortices this time being fed from vorticity produced
at the sides of the body due to the passing flow.

Nemes et al. (2012) showed that there is an upper limit to the angle of attack α
for the appearance of the higher branch, and consideration of the complex vorticity
production mechanisms described above seems to explain this. For the vorticity
production to occur at the rear surface, the surface needs to be approximately aligned
with the direction of the acceleration of the body. For higher values of α, this is not
the case, and the higher branch is not observed.

The results presented in § 3.1.2 indicated that when α = 0◦, only odd numbers of
vortex shedding cycles can be involved in synchronized modes. However here for α=
20◦, the higher branch consists of a synchronized mode involving two shedding cycles.
It is hypothesized here that this occurs due to the imbalance between the two cycles.
As pointed out above, every second negative vortex is fed by vorticity from the rear
face of the body and is relatively weak, whereas every other negative vortex is fed
from vorticity from the top surface and is relatively strong. This difference in strength



is enough to generate a forcing at half of the vortex shedding frequency that the body
can respond to. It seems this imbalance is driven by the breaking of the reflection
symmetry about the wake centreline. Here, this is done explicitly by having an angle
attack. However, similar subharmonic VIV modes were observed in the simulations of
a case at α = 45◦ performed by Leontini & Thompson (2013), where the symmetry
breaking was spontaneous.

4. Conclusions

For the case at α = 0◦, the canonical flow for the study of transverse galloping,
it has been shown that the general behaviour is similar for light bodies as for the
heavier bodies on which the quasi-steady theory of Parkinson & Smith (1964) is
based. However, the results of this paper for a square cylinder show that a series of
‘odd’ synchronizations exist, when the Strouhal frequency is in the vicinity of an odd
integer multiple of the oscillation frequency. During these synchronizations, the body
oscillation frequency is modified so that a multiple of the vortex shedding frequency
is synchronized to the body oscillation. If the vortex shedding process is to remain
similar to that of a fixed body, it has been shown that only synchronizations to odd
numbers of vortex shedding cycles can occur, as synchronizations to even numbers
of vortex shedding cycles do not lead to the imbalance of forces required to excite
galloping.

For the case at α = 45◦, the current results show that while the motion is due to
VIV, the flow response is more complicated than that of the canonical VIV case of
the circular cylinder. Multiple synchronized regimes are possible, with different wake
modes in each. A significant difference between the VIV of this square cylinder body
and the VIV of a circular cylinder is that this body has synchronized regimes that
are synchronized to the Strouhal frequency, rather than the natural frequency of the
body. A small range of U∗ was also found to produce chaotic flow, which at this
stage appears to be due to a very fine balance between competing forces resulting in
a system that is very sensitive to external disturbances, rather than being due to any
inherent chaotic dynamics.

Moving from these reflection-symmetric cases to the case at α=20◦ leads to another
set of responses. The higher branch, consisting of very high-amplitude oscillations
first identified in Nemes et al. (2012), has been shown by the results presented herein
to be a type of subharmonic mode, with two vortex shedding cycles per oscillation
cycle. During each vortex shedding cycle, a negative vortex is shed from one side,
and a positive vortex from the other, reminiscent of the classic Kármán vortex street.
However, every other pair of vortices is fed from vorticity formed on the back face
of the body, rather than the sides. The dependence on this back face vorticity means
that this mode is only accessible for a limited range of α. The occurrence of this
subharmonic response seems to only be possible when the spatio-temporal symmetry
is broken, meaning that the flow produces a non-zero mean lift. This symmetry
breaking in this case is explicit, due to the angle of attack of the body.
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