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Abstract. Helicopter Ground Resonance (GR) is a dynamic
instability involving the coupling of the blades motion in the
rotational plane (i.e. the lag motion) and the motion of the
fuselage. This paper presents a study of the ability of a Nonlin-
ear Energy Sink (NES) to control a GR. A model of helicopter
having a minimum number of degrees of freedom and being
able to reproduce GR instability is obtained using successively
Coleman transformation and binormal transformation. A theo-
retical/numerical analysis of the steady-state responses of this
model is performed when a NES is attached on the fuselage in
an ungrounded configuration. The analytic approach is based
on complexification-averaging method together with geometric
singular perturbation theory. Four steady-state responses are
highlighted and explained analytically: complete suppression,
partial suppression through strongly modulated response, partial
suppression through periodic response and no suppression of the
GR. A systematic method based on simple analytical criterions
is proposed to predict these steady-state response regimes. The
method is finally validated numerically.

Keywords. Helicopter ground resonance, Passive control, Non
linear energy sink, Relaxation oscillations, Strongly modulated
response

1. Introcuction

Ground Resonance (GR) is a potential destructive mechanical
instability that can occur when a helicopter is on the ground and
the rotor rotates. The phenomenon of GR involves a coupling
between the fuselage motion on its landing gear and the blades
motion in the rotational plane (i.e. the lag motion). It can be
investigated without taking into account the aerodynamical ef-
fects. The standard reference of the GR analysis is the paper by
Coleman and Feingold [1] where it is established that GR is due
to a frequency coalescence between a lag mode and the fuselage
mode. The range of rotors speeds Q for which this frequency
coalescence occurs is predicted analytically. More references
can be found in [2, 3, 4] and a recent analysis of helicopter GR
with asymmetric blades can be found in [5]. Traditionally, GR
instability is prevented by two passive methods: increasing the
damping [6] and modify the stiffness of the rotor blade lag mode
or the fuselage mode. Active control of GR has been also studied
in [4].

The Targeted Energy Transfer (TET) concept consists in con-
trolling resonance by using an additional essentially nonlinear

attachment also named Nonlinear Energy Sink (NES) to an ex-
isting primary linear system. TET has been extensively studied
numerically, theoretically and expermentally, the results prove
that the NES is very efficient for vibration mitigation [7] and
noise reduction [8]. Impulsive loading was theoretically ana-
lyzed for example in [9] where TET is investigated in terms of
resonance capture. In [10], harmonic forcing was considered
where response regimes are characterized in terms of periodic
and strongly modulated responses using an asymptotic analysis
(multi scale approach) of the averaged flow obtained using the
complexification-averaging method [11]. In [12] a NES is used
to reduce chatter vibration in turning process. An application
of NES as a nonlinear vibration absorber in rotor dynamics can
be found in [13] where the efficiency of a collection of NES is
analyzed for vibration mitigation of a rotating system under mass
eccentricity force.

NESs are also used to control dynamic instabilities. The pos-
sible suppression of the limit cycle oscillations of a Van der Pol
oscillator is demonstrated numerically in [14]. In [15], the self-
excitation response regimes of a Van der Pol oscillator coupled
to a NES are investigated. An asymptotic analysis of the system
related to slow/super-slow decomposition of the averaged flow
reveals periodic responses, global bifurcations of different types
and basins of attraction of various self-excitation regimes.

A series of papers [16, 17, 18] demonstrated that a NES cou-
pled to a rigid wing in subsonic flow can partially or even com-
pletely suppress aeroelastic instability. In [16], the suppression
mechanisms are investigated numerically. Several aspects of the
suppression mechanisms are validated expermentally in [17]. Fi-
nally an asymptotic analysis is reported in [18] demonstrating the
existence of the three passive suppression mechanisms based on
TET. Suppression of aeroelastic instability of a general nonlinear
multi degree of freedom system has also be considered in [19].

In this context, the use of a NES appears to be an interesting
alternative way to control GR instability which contrats with the
use of linear lag dampers having high damping value in order
to suppress completely the dynamic instability. For its part, a
NES attachment with a relatively small linear damping and a
pure nonlinear stiffness, is able to prevent destructive amplitude
of oscillations even if GR instability persists. This situations
are hereafter referred as partial suppression mechanisms. The
goal of the paper is therefore to study the effect of attaching an
ungrounded NES on the fuselage of the helicopter for controlling
GR instability. We focus on the characterization of the steady-
state response regimes of a helicopter ground resonance model
including a ungrounded NES attachment.
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Figure 1: Descriptive diagram of the used helicopter system. (a)
Overview of the system. (b) View from the top.

The paper is organized as follows. In Sect. 2, the simplest
helicopter model reproducing GR phenomenon is presented. It
involves only lag motion of the four blades and one direction of
the fuselage motion. Then, a NES is attached to the fuselage in
an ungrounded configuration leading to the Simplest Helicopter
Model including a NES (hereafter referred as SHM+NES). Pre-
liminary results are presented in Sect. 3 including the linear
stability analysis of the trivial solution of the SHM+NES. More-
over, using numerical simulations, the section presents also some
steady-state response regimes which result from the NES at-
tachment. We count four regimes classified into two categories
depending on the fact that the trivial solution of the SHM+NES
is stable or not. In Sect. 4, an analytical procedure based on
complexification-averaging method together with geometric sin-
gular perturbation theory [20] is developed to analyze situations
for which trivial solution of the SHM+NES is unstable. Finally
Sect. 5 is dedicated to the prediction of the steady-state response
regimes and numerical validation.

2. The Simplest Helicopter Model including a Non
Linear Energy Sink (SHM+NES)

2.1. Simplest Helicopter Model (SHM) that can describe
ground resonance

To carry out the analytical approach presented in this work (in
Sect. 4) we need to obtain a helicopter model which can repro-
duce the ground resonance phenomenon which has the minimum

number of degrees of freedom (DOF). For that, a reference he-
licopter model, with 10 DOF in state-space, is simplified using
successively Coleman transformation [1] and binormal transfor-
mation [6] leading to the SHM which has 4 DOF in state-space.

2.1.1. Reference model

The reference model is very similar to that described for example
in [2, 3, 4]. Here, it describes an idealized helicopter which
consists of a fuselage on which a 4-blades rotor rotates at a
constant speed Q. Moreover, only lag motions are taken into
account.

To obtain the equations of motion a earth-fixed system of coor-
dinates (O, x, Yo, 2o) is considered where the origin O coincides
with the center of inertia G of the fuselage at rest (see Fig. 1).
At rest, the center of inertia of the rotor G, is also located on the
axis (0, z0).

The fuselage is a simple damped mass-spring system with
only one translational DOF y(#). Each blade is assumed to be a
mass point G; (with i € [1,4]) placed at a distance L from the
axis (0, zo). The position the ith blade in the plan (O, xo, yo) is
therefore given by

{ xg,(1) = Leos (&§(1) + 6,(1)) (1a)
y6,(1) = y(1) + Lsin (&(1) + 6:(1)) , (1b)

where 0;(?) is the lagging angle of the ith blade. The lagging
angle is the angle between the current position of the blade and
its equilibrium position &;(r) = Qt — 5(i — 1) (see Fig. 1(b)).

The equations of motion which govern the time evolution of
the five degrees of freedom of the system (the fuselage displace-
ment y(¢) and the four lagging angles §;(¢)) are then derived using
Lagrange method. This leads to the reference model

(my + 4m5)j> +oy+ky +
4
o N2 .
M; Z {5_,- cos (& +6;) - (Q+8;) sin(&; + 5.,-)} = ((2a)
Jj=1
1(551' + Cg&‘ + k56i + M(;j}COS (é:l + 5,) = O, I = 1,4 (Zb)

where """ denotes the derivative with respect to time 7, m,
is the fuselage mass, m; is the one blade mass, Ms = msL and
Is = mgsL?* are the static moment and the moment of inertia of
one blade respectively, ¢y, cs are damping coefficients of the
the fuselage and of a blade respectively and k, and ks are linear
stiffness coefficients.

To apply Coleman transformation in next section, the reference
model (2) must be linearized. To achieve that, assuming small
lagging angle motion (6;(f) << 1) around the trivial equilibrium
position of the system, Eqs. (2) are expanded in a first-order
Taylor series to give the following linear system with periodic
coeflicients



(my + 4m5)j} + ¢y + ky +
4

M5 )" {(8; - 926;) cos (&) - 206;sin (¢))} = 0 (3a)
j=1

158; + cs6; + ksd; + Msycos (§) =0, i=1,4.  (3b)

2.1.2. Coleman transformation

The Coleman transformation' [1] is used to obtain time-invariant
system of equations. It consists in a change of variables which
transforms individual motions of the blades (described by the
lagging angles) into collective motions described by the so-called
Coleman coordinates. For a 4-blades rotor there are four Coleman
coordinates o, 01, 015 and o, defined by

I
I

8o(t) 5,(t) (4a)
j=1
1 4

G1et) = 5 )80 cos((0) (4b)
j=1
1 4

Gis) = 5 ) 50sin(E;(0) (40)
j=1
I,

Sp(t) = 5 ) V0. (4d)

~
I
—_

Considering small lagging angles, it can be shown that the
variables ;. and 01, are linked to the position of the center of
inertia of the rotor G, in the plan (O, x, yo) through

L
xg, (1) = _E‘slx(t) (5a)
L
¥, (1) = §5lc(l‘). (5b)

Using the change of variable (4), Egs. (3a) and (3b) become
respectively

(rmy +4ms) 5+ oy + kyy + 2Ms1 = 0, (6)
and,

I500 + c500 + ksbp = 0 (72)
Is01c + cs610 + 21,061, +

(ks = 15Q7) 61 + ¢sQ01, + M55 = 0 (7b)
I5015 + cs015 — 21,Q6,. +

(ks = 15Q7) 61, = ¢5Q61c = 0 (7c)

Is0cp + C50cp + ksbep = 0. (7d)

Egs. (7a) and (7d) show that the variables 6 and 6., are uncou-
pled and can be discarded. The reason of the decoupling is the

Coleman transformation is sometimes also called multi-blade coordinate trans-
formation.

fact that the collective motions ¢ and 6., leave the rotor center
of inertia motionless. As a result, a system of equations with
three DOF, namely y, d;. and 6, is obtained.

Introducing the following notations

Wy = ky/ (my + 4m5), wj = ks/Is;
Ay =¢y/ (my + 4m5) , A5 = cs/15 ®)
S =2Ms/(my+4m;), S.=Ms/l;=1/L.

where, w, and ws are the natural frequency of the fuselage and of

one blade respectively, S, and S, are the coupling coefficients,
equations of motion are finally written in matrix form

MX + (C+G)X +KX = 0, )

with,
X= [y O1c 6ls]t- (10)

M, K, C and G, are mass matrix, stiffness matrix, damping
matrix and gyroscopic matrix of the system respectively, they are
defined by

(1 S, 0 [w? 0 0

M=[S. 1 0], K=[0 w}-Q> 2,Q [, (D
|0 0 1 0 -4Q -7
(2, 0 0 0 0 0

c=|0 A; 0|, G=[0 0 20 (12)
10 0 s 0 —2Q 0

Note that §; and S . characterize the fuselage/rotor coupling.

Helicopter ground resonance. The phenomenon is analyzed
making a stability analysis of the previous linear system (9). For
that, the equations of motion are written using a state—space form

U =AU, (13)
with,
. . t
U=y 61 61,9 61 614 (14)
and, ‘
0 I
A= [ "MK | -M(C+G). } (15)

Then the set of eigenvalues a; (with i € [1, 6]) of the matrix A
are computed.

If the fuselage/rotor coupling is suppressed (i.e. stating S. =
S 4 = 0), the eigenvalues of the system correspond to the natural
eigenvalues of the fuselage, denoted a/; (with i € [1,2]), and of
the rotor, denoted a,; (with i € [1,4]). In Fig. 2(a), the typical
behavior of the imaginary part of these eigenvalues is reported
with respect to the rotor speed Q for w, < w;. We can notice
that there are two values of Q for which an interaction between
the fuselage mode and the regressive rotor mode is possible:
Q= |wy — wsl and Q ~ w,, + ws*.

In Figs. 2(b) and 2(c), the comparison between eigenvalues of
the uncoupled systems a; and «,; and the eigenvalues «; of the

2If undamped system would be considered (i.e. if Ay = A5 = 0), we would get
exact equalities: Q = |wy — ws| and Q = wy + ws, see [2] for more details.
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Figure 2: Eigenvalues of the uncoupled system and coupled system (9) for w, < ws. (a) Imaginary parts of the natural eigenvalues o of the fuselage
(dashed blue line) and a, of the rotor (solid red line). Comparison between the eigenvalues of the uncoupled systems (i.e. @ and ;) and
the eigenvalues « of the coupled system (black circles): (b) imaginary parts and (c) real parts. Parameters used: w, = 1, ws = 2, ;ly =0.09,
A5 =0.03,5,. = 0.6 and §; = 0.3. The parameters 1,, 15, S and S, are chosen to obtain readable figures, no for their realism.

coupled system shows that:

e For Q =~ |w,—ws|, a phenomenon of “curve veering” [21, 22]
appears, the real part of the eigenvalues « stay negative and
there is no instability.

e For Q ~ w, + w;, a phenomenon of frequency coalescence
is observed, the real part of one of the eigenvalues a be-
comes positive and a dynamic instability occurs; this is the
helicopter ground resonance.

Fig. 2 shows also that the progressive rotor mode does not
interact with the fuselage mode.

A situation with w, > w; can also be encountered leading
to a possible interaction between the fuselage mode and the
progressive rotor mode at Q = |w, — w;|. However, a similar plot
to that of Fig. 2 with w, > ws shows that this interaction produces
a "curve veering" phenomenon. Consequently, in both situations
(wy < ws and wy > ws) the progressive rotor mode does not
contribute to the creation of the GR instability. Therefore, the last
step to obtain the simplest model for helicopter ground resonance
is to eliminate the progressive rotor mode from the equations of
motion. This is achieved in the following section using bi-normal
transformation.

2.1.3. Diagonalization of the rotor equations of motion:
binormal transformation

Equations of motion of the rotor alone are

M,X, + (C; + GpX, + X, K, = 0, (16)
with,

X; = [01c 6ls]t s an

and,
1o 10
Ml‘_ |:0 1:|7 (L)(%—QZ:|7 (18)
B 0 G |0 20
0 | T2 0

2 2
_|ws - Q
Kr—[ 23,0

C: =[ 19)

Due to the presence of the gyroscopic matrix Gy, the diago-
nalization of the system of Eqs. (16) must necessarily be carried
out in state-space using binormal transformation. The general
procedure of the binormal transformation is provided for example
in [23, 24]. In the context of the helicopter modeling the binor-
mal transformation was introduced by Done [6]. The method is
briefly recalled in this section.

In state—space form, equations of motion (16) are written as
follows

Ur = ArUr’ (20)
with,
. . t
U, = [61(‘ 015 O1¢ 613] P 2D
and,
0 | I
A = = = . 22
f [ _MrlKl‘ ‘ _Mrl(Cr +Gy) ] 22)
The following eigenvalue problems:
Arr=a,r and All=ql (23)
where Al denotes the transpose of A,, are solved giving:
e two pairs of complex conjugates eigenvalues: a@,.1, @} |, &2

and a;, (the " * " is the usual notation for the complex
conjugate),

e two pairs of complex conjugates eigenvectors of Ay, rj,
called right eigenvectors of A;: ry, rj, rz and r3.



e two pairs of complex conjugates eigenvectors of AL, I;,
called left eigenvectors of A;: 1y, Ii, 1> and 1.

The right and left eigenvectors satisfy the biorthogonality
properties: L'R and L'A.R are diagonal matrices where R =
[ry1ryrzr;]and L = [l 1] I I]. It is convenient to normalize
the two set of eigenvectors r; and l; in order to obtain

L'R=1 (24
In this case, we have:
a1 0 0 0
0 a1+ O 0
t _ rl _
L'AR = 0 0 an 0 |= D,. (25)

0 0 0 a.

The binormal transformation consists in introducing the binor-
mal coordinates which are constituted of two pairs of complex
conjugates, (¢q1,4;) and (g2, g5), and defined by the following
relation

U,=RQ & Q=L'U,, with Q=[q1q, q24]. (26)

From Egs. (5), the binormal coordinates can be interpreted as
linear combinations, with complex coefficients, of the position
and the velocity of the center of inertia of the rotor G,. Introduc-
ing Eq. (26) in Eq. (20), the equations of motion of the rotor take
the form of the following diagonal system

Q =D,Q. 27)

One of the couples (g1, g7) and (g2, g3) is relative to the pro-
gressive rotor mode and the other the regressive one. The couple
(g2, q5) is arbitrary chosen to be relative to the progressive rotor
mode and since this mode does not destabilize the system, the
variables g; and ¢ can be removed from the analysis.

Consequently, using the vector Uy, equations of motion of the
whole coupled system, i.e. Egs (9), become

F+ 4y +wy+SUe3 =0 (28a)
0
U =AU, +]| 0 (28b)
r — rvr SNcy .
0

Then using Eq. (27) (ignoring variables g and g3) and the
following relations

@ =@, R3; =R}, L3 = L3, (29)

Egs. (28) become finally

(30a)

y + ;lyy + wiy + Sd<R31ql + R;qu) =0
(30b)

g —arniqr + S L3y =0.

Eqgs. (30) define the Simplest Helicopter Model (the SHM with
4 DOF in state-space) that can describe GR phenomenon.

7
’
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Figure 3: Descriptive diagram of the used helicopter system coupled to
an ungrounded NES. View from the top.

2.2. The Simplest Helicopter Model including a Non Linear
Energy Sink (SHM+NES)

The simplified model (30) is used to study the effect of attaching
a NES on the fuselage of the helicopter. For that, a NES with
a mass my, a damping coeflicient ¢, and a cubic stiffness k3,
is attached on the fuselage in an ungrounded configuration (see
Fig. 3). Taking into account the NES displacement A(¢), the
equations of motion become

y + ;lyy + wiy + Sd(R3lq1 + R;qu) +

p-h)+ao-m=0 (Gl
eh+fi(h-3)+as(h-y) =0 (31b)
1 —arniqr + S L3y =0, (31¢)

where € = my,/ (my + 4m5) is the mass ratio, fi = ¢/ (my + 4m5)
and @3 = k3;/ (my + 4m5).

System of Eqgs. (31) is the Simplest Helicopter Model includ-
ing a Non Linear Energy Sink (SHM+NES). The remaining of
the paper is devoted to the analysis of its steady-state regimes.

3. Steady-state response regimes of the SHM+NES:
preliminary results

3.1. Fixed points of the SHM+NES and their stability

It is easy to show that the only fixed point of the SHM+NES
(Egs (31)) is the trivial solution y = h = g; = 0. To find its
stability, the 6 eigenvalues of the Jacobian matrix of the state-
space representation of the system Eqs (31) have to be computed.
The trivial solution is unstable is one of the eigenvalues have
positive real part.

3.2. Some steady-state response regimes

The aim of this section is first to present the steady-state re-
sponse regimes which may result from the NES attachment and
its relevance. For that, the time series y(¢), resulting from the
numerical integration of the SHM+NES, Eqs. (31), and the ref-
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erence model®, Egs. (3), are compared in Fig. 4. In both cases,
same initial conditions are used, chosen as small perturbation of
the trivial solution: y(0) = 0.1, 4(0) = y(0) = 2(0) = ¢;(0) = 0
Observing the fuselage displacement y(¢) (solid black line in
Fig. 4) of the SHM+NES, the four different types of response

3The reference model does not include NES attachment but saturation mecha-
nisms can appear due to the nonlinear nature of this model.

regimes which may be generated when a NES is attached on the
fuselage are highlighted selecting different values of the blade
damping 5. They are classified into two categories depending
on the fact that the trivial solution of the SHM+NES is stable or
not:

e The trivial solution of the SHM+NES is stable:

— Complete suppression (see. Fig. 4(a)). In this case,
the additional damping due to the NES attachment sta-
bilizes the system and the GR instability is completely
suppressed.

e The trivial solution of the SHM+NES is unstable:

— Partial suppression through Periodic Response (PR)
(see. Fig. 4(b)). In this case, the steady-state response

regime is periodic with frequency close to w,*.

— Partial suppression through Strongly Modulated Re-
sponse (SMR) (see. Fig. 4(c)). In this case, the steady-
state response regime is a quasiperiodic regime which
exhibits a "fast" component with frequency close to
wy and a "slow" component corresponding to the en-
velope of the signal. The term "Strongly modulated
response” has been introduced by Starosvetsky and
Gendelman [10] for the study of a forced linear sys-
tem coupled to a NES.

— No suppression of GR (see. Fig. 4(d)). The NES is
not able to maintain stable steady-state regimes. We
observe exponential growth of the fuselage displace-
ment.

These four responses are also observed by Lee et al. [16] and
study theoretically by Gendelman et al. [18] in the context of
the control of aeroelastic instabilities of a rigid wing in subsonic
flow by means of a NES.

In the following section an analytical procedure based on
complexification-averaging method together with geometric sin-
gular perturbation theory is developed to analyze situations for
which trivial solution of the SHM+NES is unstable.

4. Steady-state response regimes of the SHM+NES:
theoretical study

4.1. The complexified-averaged model

The analytical study proposed is based on complexification-
averaging method first introduced by Manevitch [11] and dis-
cussed in detail by Vakakis et al. [7].

First, to simplify the following calculations, it is convenient to
introduce barycentric coordinates v(¢) and w(t)

v=y+eh and w=y—h, (32)

and reciprocally,

4This can be shown for example by computing the power spectrum of the steady
part of the signal.



v+ ew V—w
and h= .
e+1 e+1

y= (33)

Using Egs. (32) and (33), Egs. (31) are written as follow

. ~ V+ew 2V+EW & . * ex) _
i+ A, - o +Sd(R3lql+Rslq1)—(B4a)
. ~ V+ew 2V+€W =~ . * .
Wt e+l Derd +Sd(R31q1 +R31q1)+
TN SL LN (34b)
~ V+ew
g1 — ar1q1 + S L3 = (34c)

e+1

Secondly, the complexification® consists in introducing the
following change of variable

Y1 =7+ jwyw and o =W+ joyw, (35)

with j2 = —1. Then, the variable v and w are expressed in term
of the new variables ¢; as:

A L oy .
= Dy v=— and ¥ =y 2 (W1 +y1),
(36)

e 2 L Jwy .
w= 2oy W= 5 and W =yn > (W2 +¥3).

(37

Previous numerical and theoretical results (see Sect. 3.2) mo-
tive us to introduce the assumption that the variable v, w and ¢,
may be broken down into fast and slow components. For that,
the following representation is introduced

Yo = el q1 = p3el’, (38)

Y1 = ¢re!",

where ¢; (with i € [1, 3]) is the complex slow modulated ampli-
tude of the fast component ¢/®’,

Substituting Eqgs. (36) and (37) into Eqgs. (34) an equivalent
complex system of differential equations is obtained. Substituting
next Eq. (38) in this complex system and performing an averaging
over one period of the frequency w, yield to a system of equations
describing the behavior of the slow complex amplitudes ¢;

SThis step is not necessary for the variable g1 (f) because it is already a complex
variable.

‘ : Ay — jw,
¢1+j%¢1+2y(1—_:‘:;(¢1+6¢2)+

SRy (§3 + jrds) =0 (392)

. w A, — jw,
$ +17y¢z + 2= (B + epr) +

2(1 +¢€)
SuRay (¢3 + jwys) +
al+e 3az1+e€

2 €

¢ — j=—=——¢2lpl =0 (39b)
8wy €

¢3 + (jwy — @nr) 3 +
S,

1+e€

. . Wy
Lt |(81 + eda) + /2 @1 + )| = 0. (39)

Egs. (39) define the complexified-averaged system.

4.2. Approximation of the periodic solutions of the SHM+NES
and their stability

The fixed point of the complexified-averaged system (39) (de-
fined as ¢; = 0 for i € [1,3]) only characterizes periodic so-
lutions of Eqgs. (34) if the frequency of the periodic solutions
is equal to wy, the frequency used to defined the complex vari-
ables (35). However, using the polar coordinates n;(¢) and 6;(¢)
(with i € [1, 3]), defined by

¢i(t) = ni(t)e’™, (40)

and considering not the arguments 6;(¢) directly but the argument
differences 6;; = 6;(¢) — 0;(¢), the periodic solutions of the system
of Egs. (34) (and consequently of the SHM+NES (31)) may
be defined from the complexified-averaged system (39) as the
fixed points of the system of differential equations describing the
dynamic of the variables n, ny, n3, 651 and d3;. See A for more
details.

To obtain this system, Eqgs. (39) are first re-written using matrix
form

® = CD + ¢,|¢|*H, (41)

where the constant complex matrices C and H are not specified
(and easy obtained from Egs. (39)).

Next introducing the polar coordinates (40) and separating real



and imaginary parts of each equation, Eq. (41) take the form

n = ane [C]l] + I’ZQRC [Clzej'j“] +

n3Re [C13ej‘53‘] + ngRe [Hlej52‘] (42a)
m0; = n;Im[Cy;] + npIm [Clzejézl] +
n3Im [Clgej‘sﬂ] + ngIm [Hlej‘;”] (42b)

o = ane [C21€_j521] +
mRe [Cy] + m3Re [Co3e/® =] + niRe [Hy]  (42¢)
n292 =nIm [C2]€7j62':| +

mIm [Coo] + m3Im [Co3e =] 4+ n3Im [Hy] (42d)

n3 = niRe [C316_j631] + nyRe [C326j(521—531)] +
n3Re [C33] + myRe [H3ej(521‘531)]
n36; = niIm [C3le_j631] + npIm [C3zej(521—531)] +

n3Im [Css] + nglm [H3e.i(521—631)] )

(42¢e)

(42f)

Note that the right hand sides of Egs. (42) do not depend on 6,
but on 6 and 3.

Finally, combining Eqs. (42b) and (42d) as (n;(42d) —
n(42b))/nin, and Eqs. (42b) and (42f) as (n;(42f) —
n3(42b))/nin3 and grouping with Eqgs. (42a), (42c) and (42e),
we obtained the close form differential equations

A= F(A), with A =[ny ny n3 6y 631][. 43)

Fixed points A® = [ni ng n§ 65, 6gl]t of Egs. (43) are com-
puted by solving F (A®) = 0 and associated stability property are
found by looking the sign of the real parts of the eigenvalues A;
(with i € [1,5]) of the Jacobian matrix of F evaluated at A®.

This analysis permits to predict the existence of stable periodic
response regimes which correspond to the case where the real
parts of all the eigenvalues are negative. In the following section,
an asymptotic analysis of the complexified-averaged model is
developed to characterize response regimes when stable property
is not satisfied.

4.3. Asymptotic analysis of the complexified-averaged model

In this section we assume that € < 1 (i.e the mass of the NES is
small with respect to the total mass of the fuselage and the blades)
and that the parameters /~ly, .545,, fi and @3 are of order € (i.e
Ay, 25,8 4, S o i, @ ~ O(€)). These parameters are rescaling as

; (44a)

e M=
S

(44b)

NERYE

with Ay, A5, S 4, S ¢, u, @3 ~ O(1).
Moreover, we focus the analysis for  around w, + ws intro-

ducing the detuning term a, defined as
Q= wy + ws + ae, 45)

with a ~ O(1).
Using the rescaled parameters, the terms Rs;, L3; and a,.; can
be expanded in a first-order Taylor series around € = 0 giving

Ry = j+0(€) (46)
Ly = —Sﬁ—a‘;e + j(w);l:):e) +0(&) 47)
) = —%6 + j(a)y + ae) + 0(62). (48)

Introducing Eqgs. (46), (47) and (48) (neglecting the 0(62)
terms) and the rescaled parameters (44), Egs. (39) becomes

b+ E(/ly + jwy

2 s =0 (49
3 ¢1—J7¢2— dwy¢3)— (49a)

. €d, Wy
¢+ 7‘1’1 —is (@1 —¢2) (1 — €) — eSqwyp3 +

u 3a
da(1 + f>(§ g |¢2|2) =0 (49b)
) 1 S w?
g3+ e[(;‘* - ja) s - Sw;qsl] =0, (49¢)

Eqgs. (49) define a simplified version of the complexified-
averaged system which is called full slow-flow system and can be
written as follow:

$2 = fo(¢1, 02,03, €) (50a)
¢1 = €fi (¢1, P2, P3) (50b)
#3 = €fs ($1, 2,43, (50c)

which highlights the "slow/fast" nature of the system. Here we
prefer to use the terminology introduced by Gendelman and
Bar [15] for which the terms fast and slow are replaced by slow
and super-slow respectively, whereby the term fast is reserved
for the fast component e/“»'. Therefore, system (50) consists of
one slow complex variable ¢, and two super-slow variables ¢,
and ¢s.

Egs. (50) can be reformulated by switching from the slow time
scale ¢ to the super-slow time scale 7 = et as

€ D) = (D1, 02, D3, €) (51a)
D} = fi (@1, D2, D3) (51b)
D% = f3 (01, @y, D3), (51c)

where ' = d% and O;(1) = ¢; (t = f) Solutions of the super-
slow/slow system (50) (or (51)) can exhibit slow and super-slow

epochs characterized by the speed at which the solution advances.

Stating € = 0, the following subsystems are derived from (50)
and (51) respectively:



¢2 = fo($1.6¢2.¢3,0) (52a)

$1=0 (52b)

$3 =0, (52¢)
which are the slow subsystem, and

0 = f2 (D, D,,D3,0) (53a)

] = fi (@1, D2, D3) (53b)

D5 = f3 (01, Dy, D3), (53c)

which are the super-slow subsystem.

In the following sections the geometric singular perturbation
theory (GSPT) [20, 25, 26] is used to describe the dynamics of
the full system (50) (and (51)) for 0 < € < 1 from the analysis
of the slow and super-slow subsystems (52) and (53) (which are
defined for € = 0). More precisely, we use the following result
of the GSPT: if 0 < € <« 1, the dynamics of the full system (50)
(or (51)) during slow (resp. super-slow) epoch is given by the
dynamic of the slow (resp. super-slow) subsystem (52) (resp.

(53))

4.3.1. The Critical Manifold and its stability

The algebraic equation (53a) of the super-slow subsystem defines
the so-called Critical Manifold (CM) [25]

CM = {1,2,5) € C | o@1,22,5,00 = 0f. (54)

Because they annul ¢, in (52), the points of the CM are fixed
points for the slow subsystem. From Eq. (53a) the CM can take
the following form

@, (7) = D2(D)F (|D2(7)]), VD3, (35

where the complex function F is defined by

3
F(x) = Fr) + jF0) = 1 - =2 — j 2 (56)
4a)y y

The form of the CM given by Egs. (55-56) as been introduced
by Starosvetsky and Gendelman [10]° to study harmonic forced
linear system with NES and it is also found in studies of non-
linear self-excitated system with NES, see for example [18, 15].
Previous cited references study system involving only the two
variables ¢, and ¢, (there is a unique primary system coupled to
a NES), therefore the CM is defined in C2. The distinctive feature
of this work is the fact that the CM is defined in C?, keeping the
same form in the (¢, ¢,)-space.

It is convenient to characterize the CM in R. To achieve this,
again polar coordinates are introduced

®;(7) = Ni(1)e’®® for i = 1,2 and 3, (57

and we compute successively the module and the argument
of (55), that lies to

SIn the reference [10] the critical manifolds is called Slow Invariant Manifold.
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Figure 5: Slow Invariant Manifold (CM). Following parameters are
used: w, = 1, a3 = 2 and u = 0.2. (a) In the (N, N>)-plan
and (b) In the (N, N,, N3)-space.

N} = N3 [Fr(No)’ + Fi(N2)| = H(N2), VN5 (58a)

Fi(N>)

58b
Fr(N>) (58b)

0, =0, + arctan( ), VOs.

The local extrema of the function H(x) are given by the positive
roots of its derivative H'(x). An easy calculus shows that the
local extrema occur at
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as
2+ 135
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a3
1
wy (61)

n{ n§ n§ 63, 05 " with n§ < Ny is reached, (b) a stable fixed point M¢ = [”1

10

1 . " .
i n§ng 65, 6;’1] with n§ > N,,, is reached, (c) relax-

Stability of the Critical Manifold. To determine the stability
of the CM, we must know if the CM attract or repel the slow
dynamics. For that, using the polar coordinates ¢;(f) = n;(t)e/%®,
we rewrite the slow subsystem (52) as follow

% =0 (62a)
% = % (n) sin 8y + naFr(ny)) (62b)
% h (62¢)
% =2 Z—;cos 821 = Fr(na) (62d)
% - (62¢)




where (as in Sect. 4.2) the argument difference 6,; = 6, — 6, and
031 = 63 — 0 have been introduced. Stability range of the CM
is then determined by examining the sign of the eigenvalues real
parts of the Jacobian matrix of differential system (62b-62d) on
the CM. It can be shown that the condition of stability of the CM
is equivalent to

H (N;) >0 (63)

and the stability range of the CM is characterized by the points
(N2.m> N1.m) and (N2 a1, N1 yp) where Ny = \H (Noy), Niw =
VH (N2,,), which are therefore called fold points [27]. A typical
Slow Invariant Manifold and it stability range are depicted (see
Fig. 5(a)) in (N2, N;)-plan where N, 4 and N, , are solutions of

H(Nyy)=H(Npq) = Nog=

(64)
and
1+ J1-3&
242 P
H(Nay) =H(N2,) = Noy= w? y

@3

(65)

respectively. In the (N;, N2, N3)-space, each fold point defines a
folded line (L), and L,,) co-linear to the N3-axis (see Fig. 5(b)).

The shape and the stability property of the CM (i.e. the exis-
tence of folded lines on which the stability of the CM changes)
shown in Fig. 5 allow to define three steady-state regimes of the
full slow-flow system (49) that can explain the three steady-state
regimes of the SHM+NES observed in Figs. 4(b)-4(d).

To describe the steady regimes of the slow flow we consider
situations on which, after an transient regime, the trajectory of
the system arrives at a point M, on the CM. After that, three
steady-state regimes may be considered (see Fig. 6):

A fixed point of the slow-flow is reached. In this case two
scenarios must be considered which are depicted in Figs. 6(a)
and 6(b). In the first scenario, a super-slow evolution, described
by Egs. (53), brings the slow-flow system from M, to a stable

fixed point’ M°¢ = [nf ng n§ 65, 6gl]t and the folded line Ly,
is not reached (i.e. n5 < Ny, see Fig. 6(a)). In the second
scenario, the folded line L, is reached at S and the system
jumps to Py (the jump corresponds to a slow epoch described
by Egs. (52)), which is followed by a super-slow evolution (i.e.
a new super-slow epoch described again by Eqs. (53)) of the
trajectory of the system, in the stable domain of the CM, until it
reaches a stable fixed point M* characterized by nf > Na,. These
situations corresponds to a periodic solution of the SHM+NES

(see Sect. 4.2 and Fig. 4(b)).

7As in Sect. 4.2, fixed point of the slow-flow must be understand as the fixed
points of the real system deduced from full slow flow system (49) using
polar coordinates ¢;(f) = n;(t)e/%? and considering argument differences
6i1 = 6i(1) = 01(0).

Relaxation oscillations.  As for the second scenario described
above, a super-slow evolution brings the slow-flow system from
My to So € Ly (see Fig. 6(c)) but after Py a scenario of relaxation
oscillations [28] is observed: after the first jump the super-slow
evolution brings the system from Py to S| € L,,. After another
jump from S| to P; and a super-slow evolution, the trajectory re-
turns to S and so on (see Fig. 5(b)). Such scenario of relaxation
oscillations for the slow-flow system can explain the existence of
Strongly Modulated Responses [18, 15, 10] for the SHM+NES
(as observed Fig. 4(c)).

Explosion.  Until P; the slow-flow evolves the same way as for
relaxation oscillations mechanism. However, instead of moving
toward a stable fixed point or the folded line L,,, the trajectory
of the system follows the CM to the infinity (see Fig. 6(d)). This
scenario explains no suppression regime for the SHM+NES (as
observed Fig. 4(d)).

The existence of one of the three steady-state regimes de-
scribed above or an other depends of the position and the stability
of the fixed points of the full slow-flow system (49). Indeed,
a stable fixed point of the full slow flow placed on the stable
part of the CM is a necessary condition to obtain PRs of the
SHM+NES (31). On the other hand, the relaxation oscillations
of the slow flow (or SRMs for the SHM+NES) can exist if both
folded lines Ly, and L, have attractive parts. Position and stabil-
ity of the fixed points of the full slow-flow system and attractivity
(or repulsively) of the folded lines are determined in the next
section through the study of the super-slow subsystem (53).

4.3.2. Fixed points (and their stability) and folded singularities
of the slow-flow

Introducing the CM Eq. (55) in Egs. (53b) and (53c¢), the super-
slow subsystem is written only with respect to the variables @,
and O3

O [D2F(|D2))]

= “@F@D
or _22(2

Wy
J7 @2 (F(®2) = 1) + S g @3 (662)

2
cWy
s DO,F(|D,]).  (66b)
[09F

oo A .
(b

Using the polar coordinates (57) and separating real and imag-
inary parts, Egs. (66) takes the following form
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Figure 7: Phase portraits of the desingularized super-slow subsystem (76) for constant value of N3. To take into account that the desingularization

reverses the direction of time on the repelling part of the CM, the direction of the flow is reversed (i.e. the arrows are reversed) between L,
and L,,. Parameters used: wy = 1,3 =2, 4 =0.2,5.=2,8,=1,4, =0.3, 1; = 0.2 and a = —0.4. For this set of parameters we have:

NY,, = 0.121 and N¢, = 0.426. () N3 = 0.02 < N&,,, (b) N, < Ny = 0.3 < N, and (¢) Ns =

AN, 90, N,
F -N Fi+Ny—Fp =
Ror ~"For ot
pl
—ENQFR + 7N2F1 + deyNg cos (Azp) (673)
0@2 6N2 a]\/2
Ny——Fg+ —F; + Ny—F} =
27 TRY e ot
pl
~5NaFi = 7’1\72 (Fr — 1) + S 4w,N5 sin (Azy) (67b)
AN; Pl
—Z =__N
or 2
w2
< Y Ny(Fg cos (Asy) + Fysin(Asy)) (67¢)
wWs
40
8_‘1'3 = aN3 +
Sca)§ .
Se0n Na(Fjcos(Azp) — Frsin(As)), (67d)

involving the argument difference Az, = @3 — ®,. Combining
Eqgs (67a-67d), system of Eqs. (67) can be finally reduced (after

some ca

where

Iculation steps) to the following form

ON.
g(Nz)—2 = fn, (N2, N3, A3))

(68a)

(Nz)% = fua, (N2, N3, Agp) (68b)
ON

e — = fv, (N2, N3, Ap), (68¢)

s =T 69)

12

0.7 > N¢.,.

Sy (N2, N3, Azp) = ayy cos Az + app sinAzp — ¢y,
Sy, (N2, N3, Azp) = ap; cos Azy + anp sin Az — ¢,

vy, (N2, N3, Azp) = azj cos Az + azp sin Asp — c3,

aiy = NaN3S qwy Fr,
ap = N2N3de)F1,
NS ¢
ay = g(Ny) Nzgj; Fi+ NaS ey (F1 + FiNo),
ay = —g(Nz) N38w’ Fr+ N3S qwy(Fr + FiN2),
NoS .
as = Zgw:)y Fg,
N>S cw?
asp = Zgw:)y Fy,
and,
¢ = 72( y(F2+ F3) = Fiw,),
c2 =-No% (F} + FiF)N, + (Fg = 1) (Fr + FiN,))
—/lyNz (FiFy — FjFr)+2ag(Ny),
c3 = N3/1—26.

(70)
(71)
(72)

(73)

(74)

From Egs. (68), it is possible to detect fixed points and folded

singularities.

Fixed points.
{Ne N5, AS } are defined by:

32/
f, (N5, N5, A%,) = 0,

faw (N5 N5, 8%) = 0,

fvy (N3, N5, A5,) = 0
g(N3) # 0.

The (regular) fixed points of Egs.

(68),

(75a)
(75b)
(75¢)
(75d)

If € < 1, fixed points computed from Egs. (75) corresponds to
fixed points of the system (43) obtained in Sect. 4.2. As usual,
stability of the fixed points are found by looking the sign of



the eigenvalues real parts of the Jacobian matrix of the vector
function Fy = (fi,/8, fa,,/8. fi,) evaluated at {Ns, N5, AS, .

Folded singularities. The folded singularities {Nz,m /M> N3, Agz}
(where N, denotes indistinctly N,y or N,,,) are points of
the folded lines Ly, and L,, at which the attractivity of the folded
lines changes. Folded singularities are defined as the fixed points
of the desingularized super-slow subsystem, which is obtained
introducing the time rescaling 7 — 7' g(N;) [26]

ON.
T = S, (N2 Na. Aso) (762)
0A
67’3’2 = fas, (N2, N3, As) (76b)
ON.
87’3 = 8(N2) [y (N2, N3, Azp) . (76¢)

Note that because g (N,2) < 0 between the N s and N, ,,, the
previous time rescaling reverses the direction of time on the re-
pelling part of the CM. Since g (N2,n/m) = 0, folded singularities
are defined from (76) by

I, (Nz,m/M,N»_f,A§2> =0,
Jas, (N2,m/M, Ngs, A§2> =0.

(77a)
(77b)

The folded singularities are obtained first solving the (lin-

ear) system of Egs. (77) with respect to (cos Aj,,sin A},) (see

Egs. (70) and (71)). The associated determinant of this linear
system satisfies:

aiaxn — ax)apn = —S§w§N32 g (Noywm) =0 (78)

showing that one of the two equations (77a) and (77b) can be
removed. Therefore, the folded singularities can be only defined
by

i (Nz,m/M, N3, Aéz) =0. (79)

Eq. (79) reads as (using Egs. (70) and (73))

ar (NZ,m/M,Ng) CcOS A;Z + ajn (N2,m/M,N§) sin A§2 =
c1 (Nawm N3, (80)

which can be solved with respect to Aj, giving the following four
solutions (2 for each folded line)

ap (Nz,m/M,Ng)

A /= Arcsin

ap (Nz,m/M,N§)2 +ap (Nz,m/M,N§)2

ci (Nz,m/M,Ng)
+ arccos =

ai <N2,m/M, N§)2 +an (Ng,m/M,Ng)

81
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if the conditions

ci (N2,m/MaN3S)

<1, (82)

\/all <N2,m/M7N§)2 +an (Nz,m/M, N‘;)Z

are satisfied.

Conditions (82) show that the folded singularities exist for val-
ues of N; defined through Egs. (73) and (74) by the inequalities

N; > Ngf,n/M (83)
with the lower bounds, named critical values, are given by
N3C,rm/M =
N2,m/M (/1y (FR (]\]2,'11/M)2 + FI (NZ,m/M)Z) - wyFI (N2,m/M))

284 \/FR (N2,m/M)2 + Fp (Nz,m/M)2
(84)

Phase portraits of the desingularized super-slow subsys-
tem (76) are plotted in Fig. 7. Note that, to take into account
that the desingularization reverses the direction of time on the
repelling part of the CM, the direction of the flow is reversed (i.e.
the arrows are reversed) between Ly, and L,,. A complete phase
portrait must take into account the whole dynamics, including
the variable N3. However, to facilitate the interpretation of the
phase portraits and understand the role of the folded singularities,
the phase portraits are computed for constant values of N3 and
plotted in the plan (As;, N>). Three representative values of N3
are chosen: N3 < N;’M, Ng”M < N3 <Ny, and N3 > Ng’m If
N3 < Nng (see Fig. 7(a)), there are no folded singularities, and
we notice that the folded line L, is repulsive and the folded line
L, is attractive. The repulsivity of Ly, prevents jumps from S to
Py (see Fig. 6) and therefore sustained relaxation oscillations and
explosion are not possible. If N;rM < N3 < Ng’m (see Fig. 7(b)),
there are folded singularities A;;’ y on the folded line Ly which
becomes attractive between them. Since the attractivity of L,
in unchanged, this situation allows the existence of sustained
relaxation oscillations or explosion. Finally, if N3 > N§’m (see
Fig. 7(c)), there are also folded singularities Agjm on the folded
line L,, which becomes repulsive between them. As long as L,,
have attractive part, this situation allows also the existence of
sustained relaxation oscillations or explosion.

Finally, inequalities (83) can be therefore interpreted as a nec-
essary condition to relaxation oscillations occur. Relaxation os-
cillations can be possible if during transient regime N3(¢) reaches
at least N;’, > allowing N(7) to reach the folded line Ly be-
tween Ag;  and Ag;’ ) obtained from Eq. (81) evaluated with
N3 = N3(t). Unfortunately, this scenario cannot be predicted a
priori. From these results, it seems to be difficult for example
to develop a tool to predict stability of relaxation oscillations as
done in [10] with the 1D mapping tool. In the sequel we will
only verify if the senario is satisfied when the response regimes
of Egs. (34) is not periodic.



5. Prediction of the steady-state response regimes of
the SHM+NES

The prediction of the steady-state response regimes of the
SHM+NES (31) is obtained checking first the local stability prop-
erty of the trivial equilibrium point of Egs. (31) (see Sect. 3.1) and
using the asymptotic analysis of the full slow-flow system (49)
to characterize the response regimes when the trivial equilibrium
point of Eqgs. (31) is unstable. From the asymptotic analysis of
slow-flow system (49) performed in Sect. 4.3, we characterize

e the CM (55) and its the fold points N,y and N,, (see
Egs. (59) and (60)) and the points N, and N, defined in
Eqgs (64) and (65) respectively,

o the stable periodic regimes of Egs. (31) as the stable fixed
points of Egs. (68),

e the non periodic response regimes (SMRs or no suppression)
of Egs. (31) from the unstable fixed points of Egs. (68).

The study is restricted to the prediction of steady-state re-
sponse regimes resulting from initial conditions not too far from
the trivial equilibrium position of Eqs (34). Moreover, in the
remaining of the section, analytical and numerical results are
computed using the following set of parameters

Sc=2,
€ =0.01.

w5=2,
az =12,

wy =1,

Sqa=1,

A,=03,

=02 (85)

For this set of parameters the characteristic points of the CM
are: Noy = 0.486, Ny, = 0.808, Ny, = 0.928, N, = 0.166,
and the critical values with respect to N3 are: Ny, = 0.121 and
Ng,’m = (0.426. Moreover, Egs. (68) admits 0, 1 or 2 fixed points.

The nature of the steady-response regimes is studied with
respect to the damping coefficient of a blade As and the detuning
parameter a (defined in Eq. (45)).

The steady-state response regimes are classified in five domain:

Domain 0 Complete suppression

Domain 1 Partial suppression through PR
Domain 2 Partial suppression through PR or SMR
Domain 3 Partial suppression through SMR

Domain 4 No suppresion

The diagram of the Fig. 9 summarizes the algorithm used to
determine the response regimes domains. Results are plotted
in Fig. 10 in which each domain is represented by an area of
the plane (4s, a@). Finally, for each domain (expect for Domain
0 which characterizes the Complete suppression) one or two
examples are selected and studied deeply. Results are presented
in Figs. 11 to 17. The values of A5 and a used for these examples
and the corresponded coordinates N¢, N3 and N3 of the fixed
points of (68) are indicated in Tab. 1.
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Figure 8: A5y, and A;ywon as a function of a. Parameters used: see
Eq. (85).

5.1. Domain 0: Complete suppression

Analytical prediction of the complete suppression is performed
in Sect. 3.1. However, it is interesting to compare the region of
linear stability of the system with and without NES. To achieve
that, the values of A; that annul one of the eigenvalues of Egs. (30)
and Egs. (31), denoted respectively Aswon and Aswy, are computed
with respect to the parameter a and plotted in Fig. 8. For each
curve Aswon(a@) and Aswn(a), the area upper the curve corresponds
to stable trivial solution and in the area under the curve the trivial
solution in unstable. One can notice that for approximatively
—0.65 < a < 0.65, the NES attachment favors the linear stability
of the trivial solution. This is the opposite for a < —0.65 and
a 2 0.65 but to a lesser extent.

The area upper the curve Aswn(a) defined the Domain 0, it is
depicted in gray in Fig. 10.

5.2. Local stability of one of the fixed point of the slow-flow
system: Domain 1 and 2

Fixed points of the slow-flow system correspond to periodic solu-
tions of the SHM+NES. Therefore, the domain of existence the
Partial suppression through Periodic Response may correspond
to the domain of local stability of one of the fixed point. However,
as in Sect. 4.3.1 (§ A fixed point of the slow-flow is reached), the
two following situations must be considered: N5 < Ny and
N5 > N, ,,, where N3 is the Np-coordinate of a stable fixed point.
The two situations correspond to domain 1 and 2 respectively.

5.2.1. Domain 1: partial suppression through PR

This domain is represented by gray dots ("e") in Fig. 10. For
N; < Napy, the stable fixed point is reached before the folded
line L);. This corresponds to the scenario depicted in Fig. 6(a).
In this situation, relaxation oscillations or explosion of the
slow-flow system and therefore SMR or no suppression regimes
for the SHM+NES are avoided. Therefore, domain 1 corresponds



Table 1: Values of A5 and a used in Examples 1, 2a, 2b, 3a, 3b, 4a and 4b. Coordinates Ny, N5 and N7 of the corresponding fixed points of (68) are

also indicated. S = stable and U = unstable.

Example A a D;‘;fleze;ff Fixed Pt. 1: {N¢, N3, V¢ Fixed Pt. 2: {N{, N3, N§}
1 035  -04 2 {0.323,0.433,0.157} S {1.18,1.15,0.494) U
2 0.08 0 2 {0.187,0.853,0.494} S {1.19,1.16,1.04} U
2b 006 05 1 {0.203,0.865,0.581} S -
3a 0.2 0.4 1 {0.223,0.712,0.269} U -
3b 0.2 -04 2 {0.316,0.564,0.242} U {0.853,1.08,0.532} U
4a 0.1 -0.7 2 {0.293,0.614,0.356} U {0.181,0.847,0.438} U
4b 0035  -04 0 - -

Trivial solution of

the SHM+NES (Egs. (31))

If unstable

Number of Fixed Points (FP)

of the
super-slow subsystem (Egs. (75))

/

If stable

/
/\

Ny <New N3 >Nom

/
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Not
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~

If stable
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1 unstable

}
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Both
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unstable
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For the largest

Stable FP unstable FP: Max[Ng]
NS <Noy N5 >Nop Max[N5] > Na Max[N5] < Nay

SN/

N

Figure 9: Algorithm for the determination of the domain of existence of the steady-state regimes of the SHM+NES (34). Each domain is described

precisely in Sects. 5.1 to 5.4.

to Partial suppression through Periodic Response. Fig. 11 shows
an example of this situation.

5.2.2. Domain 2: partial suppression through PR or SMR

This domain is represented by black crosses ("x") in Fig. 10.
The case of one stable fixed point which satisfies the condition
N3 > Ny, highlights the limit of the local stability study. Indeed,
in this case, a least one jump from N, s to N, is needed to reach
the fixed point. After that, the fixed point can be really reached
(as depicted in Fig. 6(b)) or sustained relaxation oscillations of
the the slow-flow system are observed (as depicted in Fig. 6(c)).

Examples of the two possible situations are shown in Figs. 12
(PR, Example 2a) and 13 (SMR, Example 2b).

To better understand the behavior of the system in these two
situations, phase portraits of the desingularized super-slow sub-
system (76) is compared to the trajectory of the full slow-flow
system (49) in the (Asy, N>, N3)-space in Figs. 12(c) and 12(d)
for example 2a and in Figs. 13(c) and 13(d) for example 2b. For
both examples 2a and 2b a top view and an "optimized" view are
presented. Only the end of the trajectory of the full slow-flow
system (49) is plotted (see details in figures captions).

In Fig. 12(d) we can see that during its transient regimes
the full slow-flow system reaches streamlines which bring it
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Figure 10: Prediction, in the plane (4, a), of the domains of existence of the four steady-regimes: Complete suppression (the gray area outside the
curve Aswn(a)), Partial suppression through Periodic Response (), Partial suppression through Strongly Modulated Response ("0") and

no suppression ("O"). Parameters used: see Eq. (85).

to the stable fixed point (green disk marker in Figs 12(d) and
fig:Examplelbc). On the contrary, in Fig. 13(d), we can see
that the full slow-flow system never reach these streamlines and
sustained relaxation oscillations are observed.

To know what situation will actually be observed, global stabil-
ity of the SMR should be investigated. To achieve this, Starosvet-
sky and Gendelman [10] propose the method of /1D mapping.
Unfortunately, the lack of information on the amplitude of N3
when SMR are observed makes this method unsuitable here.

5.3. Domain 3: partial suppression through SMR

This domain is represented by squares ("0") in Fig. 10 and corre-
sponds to two situations. In the first situation, it exists one fixed
point and it is unstable. In the second situation, there are two
unstable fixed points and the larger of them should satisfied the
following condition: N5 > N,,. Example 3a and Example 3b
illustrate these two situations respectively (see Figs. 14 and 15).
One can see in Figs. 14(b) and 15(b) that, in these situations, the
fold points are reached by the system giving rise to relaxation
oscillations of the slow-flow system which correspond to SMR
for the SHM+NES.
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5.4. Domain 4: no suppression

This domain is represented by dotted circles ("©") in Fig. 10 and
corresponds to two situations. The first situation corresponds to
the case of two unstable fixed points and for both fixed points
we have: Moy < Nj < Moy, (see Example 4a in Fig. 16). In
the second situation, the slow-flow system has no fixed points.
Therefore, there exists only the trivial solution of the SHM+NES,
and it is unstable (see Example 4b in Fig. 17). In the case of
no suppression, the GR instability is to strong to be suppressed
by the NES attachment through PRs or SMRs and after a tran-
sient regime an explosion of the slow-flow in finally observed (a
depicted in 6(d)).

6. Conclusion

In the framework of NES properties exploration , we studied
the steady-state response regimes of a ground resonance heli-
copter model including a ungrounded NES on the fuselage. An
helicopter model involving blade and fuselage dynamics was
reduced applying successively Coleman and binormal transfor-
mations and coupled to an ungrounded cubic NES defining the
SHM+NES (Simplest Helicopter Model + Non Linear Energy
Sink) model. This model reproduces the Ground Resonance



(GR) instability corresponding to frequency coalescence of the
fuselage mode and the regressive rotor mode. Selecting dif-
ferent values of the blade damping, four steady-state response
regimes were highlighted: complete suppression, partial suppres-
sion throug