
HAL Id: hal-01091763
https://hal.science/hal-01091763v1

Preprint submitted on 6 Dec 2014 (v1), last revised 30 Dec 2017 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of steady-state response regimes of a helicopter
ground resonance model including a nonlinear energy

sink attachment
Baptiste Bergeot, Sergio Bellizzi, Bruno Cochelin

To cite this version:
Baptiste Bergeot, Sergio Bellizzi, Bruno Cochelin. Analysis of steady-state response regimes of a heli-
copter ground resonance model including a nonlinear energy sink attachment. 2014. �hal-01091763v1�

https://hal.science/hal-01091763v1
https://hal.archives-ouvertes.fr


Analysis of steady-state response regimes of a helicopter ground
resonance model including a nonlinear energy sink attachment

B. Bergeot∗ , S. Bellizzi and B. Cochelin

bLMA, CNRS UPR7051, Aix-Marseille Univ., Centrale Marseille, F-13402 Marseille Cedex 20, France

∗ Corresponding author, baptiste.bergeot@centrale-marseille.fr

Abstract. Helicopter Ground Resonance (GR) is a dynamic
instability involving the coupling of the blades motion in the
rotational plane (i.e. the lag motion) and the motion of the
fuselage. This paper presents a study of the ability of a Nonlin-
ear Energy Sink (NES) to control a GR. A model of helicopter
having a minimum number of degrees of freedom and being
able to reproduce GR instability is obtained using successively
Coleman transformation and binormal transformation. A theo-
retical/numerical analysis of the steady-state responses of this
model is performed when a NES is attached on the fuselage in
an ungrounded configuration. The analytic approach is based
on complexification-averaging method together with geometric
singular perturbation theory. Four steady-state responses are
highlighted and explained analytically: complete suppression,
partial suppression through strongly modulated response, partial
suppression through periodic response and no suppression of the
GR. A systematic method based on simple analytical criterions
is proposed to predict these steady-state response regimes. The
method is finally validated numerically.

Keywords. Helicopter ground resonance, Passive control, Non
linear energy sink, Relaxation oscillations, Strongly modulated
response

1. Introcuction

Ground Resonance (GR) is a potential destructive mechanical
instability that can occur when a helicopter is on the ground and
the rotor rotates. The phenomenon of GR involves a coupling
between the fuselage motion on its landing gear and the blades
motion in the rotational plane (i.e. the lag motion). It can be
investigated without taking into account the aerodynamical ef-
fects. The standard reference of the GR analysis is the paper by
Coleman and Feingold [1] where it is established that GR is due
to a frequency coalescence between a lag mode and the fuselage
mode. The range of rotors speeds Ω for which this frequency
coalescence occurs is predicted analytically. More references
can be found in [2, 3, 4] and a recent analysis of helicopter GR
with asymmetric blades can be found in [5]. Traditionally, GR
instability is prevented by two passive methods: increasing the
damping [6] and modify the stiffness of the rotor blade lag mode
or the fuselage mode. Active control of GR has been also studied
in [4].

The Targeted Energy Transfer (TET) concept consists in con-
trolling resonance by using an additional essentially nonlinear

attachment also named Nonlinear Energy Sink (NES) to an ex-
isting primary linear system. TET has been extensively studied
numerically, theoretically and expermentally, the results prove
that the NES is very efficient for vibration mitigation [7] and
noise reduction [8]. Impulsive loading was theoretically ana-
lyzed for example in [9] where TET is investigated in terms of
resonance capture. In [10], harmonic forcing was considered
where response regimes are characterized in terms of periodic
and strongly modulated responses using an asymptotic analysis
(multi scale approach) of the averaged flow obtained using the
complexification-averaging method [11]. In [12] a NES is used
to reduce chatter vibration in turning process. An application
of NES as a nonlinear vibration absorber in rotor dynamics can
be found in [13] where the efficiency of a collection of NES is
analyzed for vibration mitigation of a rotating system under mass
eccentricity force.

NESs are also used to control dynamic instabilities. The pos-
sible suppression of the limit cycle oscillations of a Van der Pol
oscillator is demonstrated numerically in [14]. In [15], the self-
excitation response regimes of a Van der Pol oscillator coupled
to a NES are investigated. An asymptotic analysis of the system
related to slow/super-slow decomposition of the averaged flow
reveals periodic responses, global bifurcations of different types
and basins of attraction of various self-excitation regimes.

A series of papers [16, 17, 18] demonstrated that a NES cou-
pled to a rigid wing in subsonic flow can partially or even com-
pletely suppress aeroelastic instability. In [16], the suppression
mechanisms are investigated numerically. Several aspects of the
suppression mechanisms are validated expermentally in [17]. Fi-
nally an asymptotic analysis is reported in [18] demonstrating the
existence of the three passive suppression mechanisms based on
TET. Suppression of aeroelastic instability of a general nonlinear
multi degree of freedom system has also be considered in [19].

In this context, the use of a NES appears to be an interesting
alternative way to control GR instability which contrats with the
use of linear lag dampers having high damping value in order
to suppress completely the dynamic instability. For its part, a
NES attachment with a relatively small linear damping and a
pure nonlinear stiffness, is able to prevent destructive amplitude
of oscillations even if GR instability persists. This situations
are hereafter referred as partial suppression mechanisms. The
goal of the paper is therefore to study the effect of attaching an
ungrounded NES on the fuselage of the helicopter for controlling
GR instability. We focus on the characterization of the steady-
state response regimes of a helicopter ground resonance model
including a ungrounded NES attachment.

1



Gr
G1

G2
G3

G4

x0

y0

z0

O ⌘ G f

R
otor

Fuselage

(a)

x0

y0

cy

ky

ΩO

••

••Gi

y(t)
ψi(t)

δi(t)

{kδ ; cδ}

(b)

Figure 1: Descriptive diagram of the used helicopter system. (a)
Overview of the system. (b) View from the top.

The paper is organized as follows. In Sect. 2, the simplest
helicopter model reproducing GR phenomenon is presented. It
involves only lag motion of the four blades and one direction of
the fuselage motion. Then, a NES is attached to the fuselage in
an ungrounded configuration leading to the Simplest Helicopter
Model including a NES (hereafter referred as SHM+NES). Pre-
liminary results are presented in Sect. 3 including the linear
stability analysis of the trivial solution of the SHM+NES. More-
over, using numerical simulations, the section presents also some
steady-state response regimes which result from the NES at-
tachment. We count four regimes classified into two categories
depending on the fact that the trivial solution of the SHM+NES
is stable or not. In Sect. 4, an analytical procedure based on
complexification-averaging method together with geometric sin-
gular perturbation theory [20] is developed to analyze situations
for which trivial solution of the SHM+NES is unstable. Finally
Sect. 5 is dedicated to the prediction of the steady-state response
regimes and numerical validation.

2. The Simplest Helicopter Model including a Non
Linear Energy Sink (SHM+NES)

2.1. Simplest Helicopter Model (SHM) that can describe
ground resonance

To carry out the analytical approach presented in this work (in
Sect. 4) we need to obtain a helicopter model which can repro-
duce the ground resonance phenomenon which has the minimum

number of degrees of freedom (DOF). For that, a reference he-
licopter model, with 10 DOF in state-space, is simplified using
successively Coleman transformation [1] and binormal transfor-
mation [6] leading to the SHM which has 4 DOF in state-space.

2.1.1. Reference model

The reference model is very similar to that described for example
in [2, 3, 4]. Here, it describes an idealized helicopter which
consists of a fuselage on which a 4-blades rotor rotates at a
constant speed Ω. Moreover, only lag motions are taken into
account.

To obtain the equations of motion a earth-fixed system of coor-
dinates (O, x0, y0, z0) is considered where the origin O coincides
with the center of inertia G f of the fuselage at rest (see Fig. 1).
At rest, the center of inertia of the rotor Gr is also located on the
axis (O, z0).

The fuselage is a simple damped mass-spring system with
only one translational DOF y(t). Each blade is assumed to be a
mass point Gi (with i ∈ [1, 4]) placed at a distance L from the
axis (O, z0). The position the ith blade in the plan (O, x0, y0) is
therefore given by

{
xGi (t) = L cos (ψi(t) + δi(t)) (1a)
yGi (t) = y(t) + L sin (ψi(t) + δi(t)) , (1b)

where δi(t) is the lagging angle of the ith blade. The lagging
angle is the angle between the current position of the blade and
its equilibrium position ξi(t) = Ωt − π

2 (i − 1) (see Fig. 1(b)).

The equations of motion which govern the time evolution of
the five degrees of freedom of the system (the fuselage displace-
ment y(t) and the four lagging angles δi(t)) are then derived using
Lagrange method. This leads to the reference model



(
my + 4mδ

)
ÿ + cyẏ + kyy +

Mδ

4∑
j=1

{
δ̈ j cos

(
ξ j + δ j

)
−

(
Ω + δ̇ j

)2
sin

(
ξ j + δ j

)}
= 0(2a)

Iδδ̈i + cδδ̇i + kδδi + Mδÿ cos (ξi + δi) = 0, i = 1, 4 (2b)

where " ˙ " denotes the derivative with respect to time t, my

is the fuselage mass, mδ is the one blade mass, Mδ = mδL and
Iδ = mδL2 are the static moment and the moment of inertia of
one blade respectively, cy, cδ are damping coefficients of the
the fuselage and of a blade respectively and ky and kδ are linear
stiffness coefficients.

To apply Coleman transformation in next section, the reference
model (2) must be linearized. To achieve that, assuming small
lagging angle motion (δi(t) << 1) around the trivial equilibrium
position of the system, Eqs. (2) are expanded in a first-order
Taylor series to give the following linear system with periodic
coefficients
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

(
my + 4mδ

)
ÿ + cyẏ + kyy +

Mδ

4∑
j=1

{(
δ̈ j −Ω2δ j

)
cos

(
ξ j

)
− 2Ωδ̇ j sin

(
ξ j

)}
= 0 (3a)

Iδδ̈i + cδδ̇i + kδδi + Mδÿ cos (ξi) = 0, i = 1, 4. (3b)

2.1.2. Coleman transformation

The Coleman transformation1 [1] is used to obtain time-invariant
system of equations. It consists in a change of variables which
transforms individual motions of the blades (described by the
lagging angles) into collective motions described by the so-called
Coleman coordinates. For a 4-blades rotor there are four Coleman
coordinates δ0, δ1c, δ1s and δcp defined by

δ0(t) =
1
4

4∑
j=1

δ j(t) (4a)

δ1c(t) =
1
2

4∑
j=1

δ j(t) cos(ξ j(t)) (4b)

δ1s(t) =
1
2

4∑
j=1

δ j(t) sin(ξ j(t)) (4c)

δcp(t) =
1
4

4∑
j=1

(−1) jδ j(t). (4d)

Considering small lagging angles, it can be shown that the
variables δ1c and δ1s are linked to the position of the center of
inertia of the rotor Gr in the plan (O, x0, y0) through


xGr (t) = −L

2
δ1s(t) (5a)

yGr (t) =
L
2
δ1c(t). (5b)

Using the change of variable (4), Eqs. (3a) and (3b) become
respectively (

my + 4mδ

)
ÿ + cyẏ + kyy + 2Mδδ̈1c = 0, (6)

and, 

Iδδ̈0 + cδδ̇0 + kδδ̇0 = 0 (7a)
Iδδ̈1c + cδδ̇1c + 2IδΩδ̇1s +(

kδ − IδΩ2
)
δ1c + cδΩδ1s + Mδÿ = 0 (7b)

Iδδ̈1s + cδδ̇1s − 2IδΩδ̇1c +(
kδ − IδΩ2

)
δ1s − cδΩδ1c = 0 (7c)

Iδδ̈cp + cδδ̇cp + kδδ̇cp = 0. (7d)

Eqs. (7a) and (7d) show that the variables δ0 and δcp are uncou-
pled and can be discarded. The reason of the decoupling is the

1Coleman transformation is sometimes also called multi-blade coordinate trans-
formation.

fact that the collective motions δ0 and δcp leave the rotor center
of inertia motionless. As a result, a system of equations with
three DOF, namely y, δ1c and δ1s, is obtained.

Introducing the following notations

ω2
y = ky/

(
my + 4mδ

)
, ω2

δ = kδ/Iδ;
λ̃y = cy/

(
my + 4mδ

)
, λ̃δ = cδ/Iδ

S̃ d = 2Mδ/
(
my + 4mδ

)
, S̃ c = Mδ/Iδ = 1/L.

(8)

where, ωy and ωδ are the natural frequency of the fuselage and of
one blade respectively, S̃ c and S̃ d are the coupling coefficients,
equations of motion are finally written in matrix form

MẌ + (C + G)Ẋ + KX = 0, (9)

with,
X =

[
y δ1c δ1s

]t . (10)

M, K, C and G, are mass matrix, stiffness matrix, damping
matrix and gyroscopic matrix of the system respectively, they are
defined by

M =

 1 S̃ d 0
S̃ c 1 0
0 0 1

 , K =

ω
2
y 0 0

0 ω2
δ −Ω2 λ̃δΩ

0 −λ̃δΩ ω2
δ −Ω2

 , (11)

C =

λ̃y 0 0
0 λ̃δ 0
0 0 λ̃δ

 , G =

0 0 0
0 0 2Ω

0 −2Ω 0

 . (12)

Note that S̃ d and S̃ c characterize the fuselage/rotor coupling.

Helicopter ground resonance. The phenomenon is analyzed
making a stability analysis of the previous linear system (9). For
that, the equations of motion are written using a state–space form

U̇ = AU, (13)

with,
U =

[
y δ1c δ1s ẏ δ̇1c δ̇1s

]t
, (14)

and,

A =

[
0 I

−M−1K −M−1(C + G).

]
. (15)

Then the set of eigenvalues αi (with i ∈ [1, 6]) of the matrix A
are computed.

If the fuselage/rotor coupling is suppressed (i.e. stating S̃ c =

S̃ d = 0), the eigenvalues of the system correspond to the natural
eigenvalues of the fuselage, denoted α f ,i (with i ∈ [1, 2]), and of
the rotor, denoted αr,i (with i ∈ [1, 4]). In Fig. 2(a), the typical
behavior of the imaginary part of these eigenvalues is reported
with respect to the rotor speed Ω for ωy < ωδ. We can notice
that there are two values of Ω for which an interaction between
the fuselage mode and the regressive rotor mode is possible:
Ω ≈ |ωy − ωδ| and Ω ≈ ωy + ωδ

2.
In Figs. 2(b) and 2(c), the comparison between eigenvalues of

the uncoupled systems α f ,i and αr,i and the eigenvalues αi of the

2If undamped system would be considered (i.e. if λy = λδ = 0), we would get
exact equalities: Ω = |ωy − ωδ | and Ω = ωy + ωδ, see [2] for more details.
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Figure 2: Eigenvalues of the uncoupled system and coupled system (9) for ωy < ωδ. (a) Imaginary parts of the natural eigenvalues α f of the fuselage
(dashed blue line) and αr of the rotor (solid red line). Comparison between the eigenvalues of the uncoupled systems (i.e. α f and αr) and
the eigenvalues α of the coupled system (black circles): (b) imaginary parts and (c) real parts. Parameters used: ωy = 1, ωδ = 2, λ̃y = 0.09,
λ̃δ = 0.03, S̃ c = 0.6 and S̃ d = 0.3. The parameters λ̃y, λ̃δ, S̃ c and S̃ d are chosen to obtain readable figures, no for their realism.

coupled system shows that:

• For Ω ≈ |ωy−ωδ|, a phenomenon of “curve veering” [21, 22]
appears, the real part of the eigenvalues α stay negative and
there is no instability.

• For Ω ≈ ωy + ωδ, a phenomenon of frequency coalescence
is observed, the real part of one of the eigenvalues α be-
comes positive and a dynamic instability occurs; this is the
helicopter ground resonance.

Fig. 2 shows also that the progressive rotor mode does not
interact with the fuselage mode.

A situation with ωy > ωδ can also be encountered leading
to a possible interaction between the fuselage mode and the
progressive rotor mode at Ω ≈ |ωy − ωδ|. However, a similar plot
to that of Fig. 2 with ωy > ωδ shows that this interaction produces
a "curve veering" phenomenon. Consequently, in both situations
(ωy < ωδ and ωy > ωδ) the progressive rotor mode does not
contribute to the creation of the GR instability. Therefore, the last
step to obtain the simplest model for helicopter ground resonance
is to eliminate the progressive rotor mode from the equations of
motion. This is achieved in the following section using bi-normal
transformation.

2.1.3. Diagonalization of the rotor equations of motion:
binormal transformation

Equations of motion of the rotor alone are

MrẌr + (Cr + Gr)Ẋr + XrKr = 0, (16)

with,
Xr = [δ1c δ1s]t , (17)

and,

Mr =

[
1 0
0 1

]
, Kr =

[
ω2
δ −Ω2 λ̃δΩ
−λ̃δΩ ω2

δ −Ω2

]
, (18)

Cr =

[
λ̃δ 0
0 λ̃δ

]
, Gr =

[
0 2Ω

−2Ω 0

]
. (19)

Due to the presence of the gyroscopic matrix Gr, the diago-
nalization of the system of Eqs. (16) must necessarily be carried
out in state-space using binormal transformation. The general
procedure of the binormal transformation is provided for example
in [23, 24]. In the context of the helicopter modeling the binor-
mal transformation was introduced by Done [6]. The method is
briefly recalled in this section.

In state–space form, equations of motion (16) are written as
follows

U̇r = ArUr, (20)

with,

Ur =
[
δ1c δ1s δ̇1c δ̇1s

]t
, (21)

and,

Ar =

[
0 I

−M−1
r Kr −M−1

r (Cr + Gr)

]
. (22)

The following eigenvalue problems:

Arr = αrr and At
rl = αrl (23)

where At
r denotes the transpose of Ar, are solved giving:

• two pairs of complex conjugates eigenvalues: αr,1, α∗r,1, αr,2
and α∗r,2 (the " ∗ " is the usual notation for the complex
conjugate),

• two pairs of complex conjugates eigenvectors of Ar, ri,
called right eigenvectors of Ar: r1, r∗1, r2 and r∗2.
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• two pairs of complex conjugates eigenvectors of At
r, li,

called left eigenvectors of Ar: l1, l∗1, l2 and l∗2.

The right and left eigenvectors satisfy the biorthogonality
properties: LtR and LtArR are diagonal matrices where R =

[r1 r∗1 r2 r∗2] and L = [l1 l∗1 l2 l∗2]. It is convenient to normalize
the two set of eigenvectors ri and li in order to obtain

LtR = I. (24)

In this case, we have:

LtArR =


αr,1 0 0 0
0 αr,1∗ 0 0
0 0 αr,2 0
0 0 0 αr,2∗

 = Dr. (25)

The binormal transformation consists in introducing the binor-
mal coordinates which are constituted of two pairs of complex
conjugates, (q1, q∗1) and (q2, q∗2), and defined by the following
relation

Ur = RQ ⇔ Q = LtUr, with Q =
[
q1 q∗1 q2 q∗2

]t . (26)

From Eqs. (5), the binormal coordinates can be interpreted as
linear combinations, with complex coefficients, of the position
and the velocity of the center of inertia of the rotor Gr. Introduc-
ing Eq. (26) in Eq. (20), the equations of motion of the rotor take
the form of the following diagonal system

Q̇ = DrQ. (27)

One of the couples (q1, q∗1) and (q2, q∗2) is relative to the pro-
gressive rotor mode and the other the regressive one. The couple
(q2, q∗2) is arbitrary chosen to be relative to the progressive rotor
mode and since this mode does not destabilize the system, the
variables q2 and q∗2 can be removed from the analysis.

Consequently, using the vector Ur, equations of motion of the
whole coupled system, i.e. Eqs (9), become



ÿ + λ̃yẏ + ω2
yy + S̃ dU̇r,3 = 0 (28a)

U̇r = ArUr +


0
0

S̃ cÿ
0

 . (28b)

Then using Eq. (27) (ignoring variables q2 and q∗2) and the
following relations

αr,2 = α∗r,1, R32 = R∗31, L32 = L∗31, (29)

Eqs. (28) become finally

 ÿ + λ̃yẏ + ω2
yy + S̃ d

(
R31q̇1 + R∗31q̇∗1

)
= 0 (30a)

q̇1 − αr,1q1 + S̃ cL31ÿ = 0. (30b)

Eqs. (30) define the Simplest Helicopter Model (the SHM with
4 DOF in state-space) that can describe GR phenomenon.

cy

ky

ch

k3h

h(t)

ΩO

••

••
y(t)

ψi(t)
δi(t)

{kδ ; cδ}

Figure 3: Descriptive diagram of the used helicopter system coupled to
an ungrounded NES. View from the top.

2.2. The Simplest Helicopter Model including a Non Linear
Energy Sink (SHM+NES)

The simplified model (30) is used to study the effect of attaching
a NES on the fuselage of the helicopter. For that, a NES with
a mass mh, a damping coefficient ch and a cubic stiffness k3h,
is attached on the fuselage in an ungrounded configuration (see
Fig. 3). Taking into account the NES displacement h(t), the
equations of motion become



ÿ + λ̃yẏ + ω2
yy + S̃ d

(
R31q̇1 + R∗31q̇∗1

)
+

µ̃
(
ẏ − ḣ

)
+ α̃3 (y − h)3 = 0 (31a)

εḧ + µ̃
(
ḣ − ẏ

)
+ α̃3 (h − y)3 = 0 (31b)

q̇1 − αr,1q1 + S̃ cL31ÿ = 0, (31c)

where ε = mh/
(
my + 4mδ

)
is the mass ratio, µ̃ = ch/

(
my + 4mδ

)
and α̃3 = k3h/

(
my + 4mδ

)
.

System of Eqs. (31) is the Simplest Helicopter Model includ-
ing a Non Linear Energy Sink (SHM+NES). The remaining of
the paper is devoted to the analysis of its steady-state regimes.

3. Steady-state response regimes of the SHM+NES:
preliminary results

3.1. Fixed points of the SHM+NES and their stability

It is easy to show that the only fixed point of the SHM+NES
(Eqs (31)) is the trivial solution y = h = q1 = 0. To find its
stability, the 6 eigenvalues of the Jacobian matrix of the state-
space representation of the system Eqs (31) have to be computed.
The trivial solution is unstable is one of the eigenvalues have
positive real part.

3.2. Some steady-state response regimes

The aim of this section is first to present the steady-state re-
sponse regimes which may result from the NES attachment and
its relevance. For that, the time series y(t), resulting from the
numerical integration of the SHM+NES, Eqs. (31), and the ref-
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Figure 4: Comparison between time series y(t) resulting from the nu-
merical integration of the system of Eqs. (31) (solid black
line) and y(t) result of the numerical integration of the refer-
ence model (Eqs. (3)) (solid gray line). The following set of
parameters is used: ωy = 1, ωδ = 2, Ω = ωy + ωδ, λ̃y = 0.02,
S̃ c = 0.1, S̃ d = 0.05, α3 = 0.1 and µ = 0.01 and ε = 0.05. (a)
λ̃δ = 0.045, (b) λ̃δ = 0.03, (c) λ̃δ = 0.015 and (d) λ̃δ = 0.0005.

erence model3, Eqs. (3), are compared in Fig. 4. In both cases,
same initial conditions are used, chosen as small perturbation of
the trivial solution: y(0) = 0.1, h(0) = ẏ(0) = ḣ(0) = q1(0) = 0.

Observing the fuselage displacement y(t) (solid black line in
Fig. 4) of the SHM+NES, the four different types of response

3The reference model does not include NES attachment but saturation mecha-
nisms can appear due to the nonlinear nature of this model.

regimes which may be generated when a NES is attached on the
fuselage are highlighted selecting different values of the blade
damping λ̃δ. They are classified into two categories depending
on the fact that the trivial solution of the SHM+NES is stable or
not:

• The trivial solution of the SHM+NES is stable:

– Complete suppression (see. Fig. 4(a)). In this case,
the additional damping due to the NES attachment sta-
bilizes the system and the GR instability is completely
suppressed.

• The trivial solution of the SHM+NES is unstable:

– Partial suppression through Periodic Response (PR)
(see. Fig. 4(b)). In this case, the steady-state response
regime is periodic with frequency close to ωy

4.

– Partial suppression through Strongly Modulated Re-
sponse (SMR) (see. Fig. 4(c)). In this case, the steady-
state response regime is a quasiperiodic regime which
exhibits a "fast" component with frequency close to
ωy and a "slow" component corresponding to the en-
velope of the signal. The term "Strongly modulated
response" has been introduced by Starosvetsky and
Gendelman [10] for the study of a forced linear sys-
tem coupled to a NES.

– No suppression of GR (see. Fig. 4(d)). The NES is
not able to maintain stable steady-state regimes. We
observe exponential growth of the fuselage displace-
ment.

These four responses are also observed by Lee et al. [16] and
study theoretically by Gendelman et al. [18] in the context of
the control of aeroelastic instabilities of a rigid wing in subsonic
flow by means of a NES.

In the following section an analytical procedure based on
complexification-averaging method together with geometric sin-
gular perturbation theory is developed to analyze situations for
which trivial solution of the SHM+NES is unstable.

4. Steady-state response regimes of the SHM+NES:
theoretical study

4.1. The complexified-averaged model

The analytical study proposed is based on complexification-
averaging method first introduced by Manevitch [11] and dis-
cussed in detail by Vakakis et al. [7].

First, to simplify the following calculations, it is convenient to
introduce barycentric coordinates v(t) and w(t)

v = y + εh and w = y − h, (32)

and reciprocally,

4This can be shown for example by computing the power spectrum of the steady
part of the signal.
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y =
v + εw
ε + 1

and h =
v − w
ε + 1

. (33)

Using Eqs. (32) and (33), Eqs. (31) are written as follow



v̈ + λ̃y
v̇ + εẇ
ε + 1

+ ω2
y

v + εw
ε + 1

+ S̃ d

(
R31q̇1 + R∗31q̇∗1

)
= 0(34a)

ẅ + λ̃y
v̇ + εẇ
ε + 1

+ ω2
y

v + εw
ε + 1

+ S̃ d

(
R31q̇1 + R∗31q̇∗1

)
+

µ̃
1 + ε

ε
ẇ + α̃3

1 + ε

ε
w3 = 0 (34b)

q̇1 − αr,1q1 + S̃ cL31
v̈ + εẅ
ε + 1

= 0. (34c)

Secondly, the complexification5 consists in introducing the
following change of variable

ψ1 = v̇ + jωyv and ψ2 = ẇ + jωyw, (35)

with j2 = −1. Then, the variable v and w are expressed in term
of the new variables ψi as:

v =
ψ1 − ψ∗1

2 jωy
, v̇ =

ψ1 + ψ∗1
2

and v̈ = ψ̇1 −
jωy

2
(
ψ1 + ψ∗1

)
,

(36)

w =
ψ2 − ψ∗2

2 jωy
, ẇ =

ψ2 + ψ∗2
2

and ẅ = ψ̇2 −
jωy

2
(
ψ2 + ψ∗2

)
.

(37)

Previous numerical and theoretical results (see Sect. 3.2) mo-
tive us to introduce the assumption that the variable v, w and q1
may be broken down into fast and slow components. For that,
the following representation is introduced

ψ1 = φ1e jωyt , ψ2 = φ2e jωyt , q1 = φ3e jωyt, (38)

where φi (with i ∈ [1, 3]) is the complex slow modulated ampli-
tude of the fast component e jωyt.

Substituting Eqs. (36) and (37) into Eqs. (34) an equivalent
complex system of differential equations is obtained. Substituting
next Eq. (38) in this complex system and performing an averaging
over one period of the frequencyωy yield to a system of equations
describing the behavior of the slow complex amplitudes φi

5This step is not necessary for the variable q1(t) because it is already a complex
variable.



φ̇1 + j
ωy

2
φ1 +

λ̃y − jωy

2(1 + ε)
(φ1 + εφ2) +

S̃ dR31

(
φ̇3 + jωyφ3

)
= 0 (39a)

φ̇2 + j
ωy

2
φ2 +

λ̃y − jωy

2(1 + ε)
(φ1 + εφ2) +

S̃ dR31

(
φ̇3 + jωyφ3

)
+

µ̃

2
1 + ε

ε
φ2 − j

3α̃3

8ω3
y

1 + ε

ε
φ2 |φ2|2 = 0 (39b)

φ̇3 +
(

jωy − αr,1

)
φ3 +

S̃ c

1 + ε
L31

[(
φ̇1 + εφ̇2

)
+ j

ωy

2
(φ1 + εφ2)

]
= 0. (39c)

Eqs. (39) define the complexified-averaged system.

4.2. Approximation of the periodic solutions of the SHM+NES
and their stability

The fixed point of the complexified-averaged system (39) (de-
fined as φ̇i = 0 for i ∈ [1, 3]) only characterizes periodic so-
lutions of Eqs. (34) if the frequency of the periodic solutions
is equal to ωy, the frequency used to defined the complex vari-
ables (35). However, using the polar coordinates ni(t) and θi(t)
(with i ∈ [1, 3]), defined by

φi(t) = ni(t)e jθi(t), (40)

and considering not the arguments θi(t) directly but the argument
differences δi1 = θi(t)− θ1(t), the periodic solutions of the system
of Eqs. (34) (and consequently of the SHM+NES (31)) may
be defined from the complexified-averaged system (39) as the
fixed points of the system of differential equations describing the
dynamic of the variables n1, n2, n3, δ21 and δ31. See A for more
details.

To obtain this system, Eqs. (39) are first re-written using matrix
form

Φ̇ = CΦ + φ2|φ2|2H, (41)

where the constant complex matrices C and H are not specified
(and easy obtained from Eqs. (39)).

Next introducing the polar coordinates (40) and separating real

7



and imaginary parts of each equation, Eq. (41) take the form

ṅ1 = n1Re [C11] + n2Re
[
C12e jδ21

]
+

n3Re
[
C13e jδ31

]
+ n3

2Re
[
H1e jδ21

]
(42a)

n1θ̇1 = n1Im [C11] + n2Im
[
C12e jδ21

]
+

n3Im
[
C13e jδ31

]
+ n3

2Im
[
H1e jδ21

]
(42b)

ṅ2 = n1Re
[
C21e− jδ21

]
+

n2Re [C22] + n3Re
[
C23e j(δ31−δ21)

]
+ n3

2Re [H2] (42c)

n2θ̇2 = n1Im
[
C21e− jδ21

]
+

n2Im [C22] + n3Im
[
C23e j(δ31−δ21)

]
+ n3

2Im [H2] (42d)

ṅ3 = n1Re
[
C31e− jδ31

]
+ n2Re

[
C32e j(δ21−δ31)

]
+

n3Re [C33] + n3
2Re

[
H3e j(δ21−δ31)

]
(42e)

n3θ̇3 = n1Im
[
C31e− jδ31

]
+ n2Im

[
C32e j(δ21−δ31)

]
+

n3Im [C33] + n3
2Im

[
H3e j(δ21−δ31)

]
. (42f)

Note that the right hand sides of Eqs. (42) do not depend on θ1
but on δ21 and δ31.

Finally, combining Eqs. (42b) and (42d) as (n1(42d) −
n2(42b))/n1n2 and Eqs. (42b) and (42f) as (n1(42f) −
n3(42b))/n1n3 and grouping with Eqs. (42a), (42c) and (42e),
we obtained the close form differential equations

Λ̇ = F (Λ), with Λ = [n1 n2 n3 δ21 δ31]t . (43)

Fixed points Λe =
[
ne

1 ne
2 ne

3 δe
21 δ

e
31

]t
of Eqs. (43) are com-

puted by solving F (Λe) = 0 and associated stability property are
found by looking the sign of the real parts of the eigenvalues λi

(with i ∈ [1, 5]) of the Jacobian matrix of F evaluated at Λe.
This analysis permits to predict the existence of stable periodic

response regimes which correspond to the case where the real
parts of all the eigenvalues are negative. In the following section,
an asymptotic analysis of the complexified-averaged model is
developed to characterize response regimes when stable property
is not satisfied.

4.3. Asymptotic analysis of the complexified-averaged model

In this section we assume that ε � 1 (i.e the mass of the NES is
small with respect to the total mass of the fuselage and the blades)
and that the parameters λ̃y, λ̃δ, S̃ d, S̃ c, µ̃ and α̃3 are of order ε (i.e
λ̃y, λ̃δ, S̃ d, S̃ c, µ̃, α̃3 ∼ O(ε)). These parameters are rescaling as

λy =
λ̃y

ε
; S d =

S̃ d

ε
; µ =

µ̃

ε
; (44a)

λδ; =
λ̃δ
ε

; S c =
S̃ c

ε
; α3 =

α̃3

ε
. (44b)

with λy, λδ, S d, S c, µ, α3 ∼ O(1).
Moreover, we focus the analysis for Ω around ωy + ωδ intro-

ducing the detuning term a, defined as

Ω = ωy + ωδ + aε, (45)

with a ∼ O(1).
Using the rescaled parameters, the terms R31, L31 and αr,1 can

be expanded in a first-order Taylor series around ε = 0 giving

R31 = j + O
(
ε2

)
(46)

L31 = − λδ
8ωδ

ε + j
(
ωy + aε

4ωδ

)
+ O

(
ε2

)
(47)

αr,1 = −λδ
2
ε + j

(
ωy + aε

)
+ O

(
ε2

)
. (48)

Introducing Eqs. (46), (47) and (48) (neglecting the O
(
ε2

)
terms) and the rescaled parameters (44), Eqs. (39) becomes



φ̇1 + ε

(
λy + jωy

2
φ1 − j

ωy

2
φ2 − S dωyφ3

)
= 0 (49a)

φ̇2 +
ελy

2
φ1 − j

ωy

2
(φ1 − φ2) (1 − ε) − εS dωyφ3 +

φ2(1 + ε)
µ2 − j

3α3

8ω3
y
|φ2|2

 = 0 (49b)

φ̇3 + ε

(λδ2 − ja
)
φ3 −

S cω
2
y

8ωδ
φ1

 = 0, (49c)

Eqs. (49) define a simplified version of the complexified-
averaged system which is called full slow-flow system and can be
written as follow:


φ̇2 = f2 (φ1, φ2, φ3, ε) (50a)
φ̇1 = ε f1 (φ1, φ2, φ3) (50b)
φ̇3 = ε f3 (φ1, φ2, φ3) , (50c)

which highlights the "slow/fast" nature of the system. Here we
prefer to use the terminology introduced by Gendelman and
Bar [15] for which the terms fast and slow are replaced by slow
and super-slow respectively, whereby the term fast is reserved
for the fast component e jωyt. Therefore, system (50) consists of
one slow complex variable φ2 and two super-slow variables φ1
and φ3.

Eqs. (50) can be reformulated by switching from the slow time
scale t to the super-slow time scale τ = εt as


ε Φ′2 = f2 (Φ1,Φ2,Φ3, ε) (51a)
Φ′1 = f1 (Φ1,Φ2,Φ3) (51b)
Φ′3 = f3 (Φ1,Φ2,Φ3) , (51c)

where ′ = d
dτ and Φi(τ) = φi

(
t = τ

ε

)
. Solutions of the super-

slow/slow system (50) (or (51)) can exhibit slow and super-slow
epochs characterized by the speed at which the solution advances.

Stating ε = 0, the following subsystems are derived from (50)
and (51) respectively:

8




φ̇2 = f2 (φ1, φ2, φ3, 0) (52a)
φ̇1 = 0 (52b)
φ̇3 = 0, (52c)

which are the slow subsystem, and


0 = f2 (Φ1,Φ2,Φ3, 0) (53a)
Φ′1 = f1 (Φ1,Φ2,Φ3) (53b)
Φ′3 = f3 (Φ1,Φ2,Φ3) , (53c)

which are the super-slow subsystem.
In the following sections the geometric singular perturbation

theory (GSPT) [20, 25, 26] is used to describe the dynamics of
the full system (50) (and (51)) for 0 < ε � 1 from the analysis
of the slow and super-slow subsystems (52) and (53) (which are
defined for ε = 0). More precisely, we use the following result
of the GSPT: if 0 < ε � 1, the dynamics of the full system (50)
(or (51)) during slow (resp. super-slow) epoch is given by the
dynamic of the slow (resp. super-slow) subsystem (52) (resp.
(53))

4.3.1. The Critical Manifold and its stability

The algebraic equation (53a) of the super-slow subsystem defines
the so-called Critical Manifold (CM) [25]

CM :=
{
(z1, z2, z3) ∈ C3

∣∣∣ f2 (z1, z2, z3, 0) = 0
}
. (54)

Because they annul φ̇2 in (52), the points of the CM are fixed
points for the slow subsystem. From Eq. (53a) the CM can take
the following form

Φ1(τ) = Φ2(τ)F (|Φ2(τ)|) , ∀Φ3, (55)

where the complex function F is defined by

F(x) = FR(x) + jFI(x) = 1 − 3α3

4ω4
y

x2 − j
µ

ωy
. (56)

The form of the CM given by Eqs. (55-56) as been introduced
by Starosvetsky and Gendelman [10]6 to study harmonic forced
linear system with NES and it is also found in studies of non-
linear self-excitated system with NES, see for example [18, 15].
Previous cited references study system involving only the two
variables φ1 and φ2 (there is a unique primary system coupled to
a NES), therefore the CM is defined in C2. The distinctive feature
of this work is the fact that the CM is defined in C3, keeping the
same form in the (φ1, φ2)-space.

It is convenient to characterize the CM in R. To achieve this,
again polar coordinates are introduced

Φi(τ) = Ni(τ)e jΘ j(τ) for i = 1, 2 and 3, (57)

and we compute successively the module and the argument
of (55), that lies to

6In the reference [10] the critical manifolds is called Slow Invariant Manifold.

(a)

LM Lm

CM stable CM unstable CM stable

(b)

Figure 5: Slow Invariant Manifold (CM). Following parameters are
used: ωy = 1, α3 = 2 and µ = 0.2. (a) In the (N1,N2)-plan
and (b) In the (N1,N2,N3)-space.


N2

1 = N2
2

[
FR(N2)2 + FI(N2)2

]
= H(N2), ∀N3 (58a)

Θ1 = Θ2 + arctan
(

FI(N2)
FR(N2)

)
, ∀Θ3. (58b)

The local extrema of the function H(x) are given by the positive
roots of its derivative H′(x). An easy calculus shows that the
local extrema occur at
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Stable!
Fixed Point

Super-slow!
epoch

Me

Lm
LM

M0

CM stable CM unstable CM stable

(a)

Stable!
Fixed Point

Me

S0
Super-slow!

epoch

CM stable CM unstable

P0

Super-slow!
epoch

Lm
LM

M0

CM stable

Slow epoch

(b)

Lm
LM

S1

S0
Super-slow!

epoch
Slow epoch

Slow epoch

Super-slow!
epoch

M0

P0

P1

CM stable CM unstable CM stable

(c)

S0
Super-slow!

epoch

Super-slow!
epoch

Explosion

M0

P0

Lm
LM

CM stable CM unstable CM stable

Slow epoch

(d)

Figure 6: Outline schematic showing the possible steady-state regimes of the full slow-flow system (49): (a) a stable fixed point Me =[
ne

1 ne
2 ne

3 δe
21 δ

e
31

]t
with ne

2 < N2,M is reached, (b) a stable fixed point Me =
[
ne

1 ne
2 ne

3 δe
21 δ

e
31

]t
with ne

2 > N2,m is reached, (c) relax-
ation oscillations and (d) explosion.

N2,M =
2
3
ω2

y

√√√
2 −

√
1 − 3 µ2

ω2
y

α3
(59)

N2,m =
2
3
ω2

y

√√√
2 +

√
1 − 3 µ2

ω2
y

α3
, (60)

if the following relation holds

µ <
1√
3
ωy (61)

and in this case N2,M < N2,m.

Stability of the Critical Manifold. To determine the stability
of the CM, we must know if the CM attract or repel the slow
dynamics. For that, using the polar coordinates φi(t) = ni(t)e jθi(t),
we rewrite the slow subsystem (52) as follow



∂n1

∂t
= 0 (62a)

∂n2

∂t
=
ωy

2
(n1 sin δ21 + n2FI(n2)) (62b)

∂n3

∂t
= 0 (62c)

∂δ21

∂t
=
ωy

2

(
n1

n2
cos δ21 − FR(n2)

)
(62d)

∂δ31

∂t
= 0. (62e)
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where (as in Sect. 4.2) the argument difference δ21 = θ2 − θ1 and
δ31 = θ3 − θ1 have been introduced. Stability range of the CM
is then determined by examining the sign of the eigenvalues real
parts of the Jacobian matrix of differential system (62b-62d) on
the CM. It can be shown that the condition of stability of the CM
is equivalent to

H′ (N2) > 0 (63)

and the stability range of the CM is characterized by the points
(N2,m,N1,m) and (N2,M ,N1,M) where N1,M =

√
H

(
N2,M

)
, N1,m =√

H
(
N2,m

)
, which are therefore called fold points [27]. A typical

Slow Invariant Manifold and it stability range are depicted (see
Fig. 5(a)) in (N2,N1)-plan where N2,d and N2,u are solutions of

H
(
N2,m

)
= H

(
N2,d

) ⇒ N2,d =
2
√

2
3

ω2
y

√√√
1 −

√
1 − 3 µ2

ω2
y

α3
,

(64)

and

H
(
N2,M

)
= H

(
N2,u

) ⇒ N2,u =
2
√

2
3

ω2
y

√√√
1 +

√
1 − 3 µ2

ω2
y

α3
,

(65)

respectively. In the (N1,N2,N3)-space, each fold point defines a
folded line (LM and Lm) co-linear to the N3-axis (see Fig. 5(b)).

The shape and the stability property of the CM (i.e. the exis-
tence of folded lines on which the stability of the CM changes)
shown in Fig. 5 allow to define three steady-state regimes of the
full slow-flow system (49) that can explain the three steady-state
regimes of the SHM+NES observed in Figs. 4(b)-4(d).

To describe the steady regimes of the slow flow we consider
situations on which, after an transient regime, the trajectory of
the system arrives at a point M0 on the CM. After that, three
steady-state regimes may be considered (see Fig. 6):

A fixed point of the slow-flow is reached. In this case two
scenarios must be considered which are depicted in Figs. 6(a)
and 6(b). In the first scenario, a super-slow evolution, described
by Eqs. (53), brings the slow-flow system from M0 to a stable
fixed point7 Me =

[
ne

1 ne
2 ne

3 δe
21 δ

e
31

]t
and the folded line LM

is not reached (i.e. ne
2 < N2,M , see Fig. 6(a)). In the second

scenario, the folded line LM is reached at S 0 and the system
jumps to P0 (the jump corresponds to a slow epoch described
by Eqs. (52)), which is followed by a super-slow evolution (i.e.
a new super-slow epoch described again by Eqs. (53)) of the
trajectory of the system, in the stable domain of the CM, until it
reaches a stable fixed point Me characterized by ne

2 > N2,m. These
situations corresponds to a periodic solution of the SHM+NES
(see Sect. 4.2 and Fig. 4(b)).

7As in Sect. 4.2, fixed point of the slow-flow must be understand as the fixed
points of the real system deduced from full slow flow system (49) using
polar coordinates φi(t) = ni(t)e jθi(t) and considering argument differences
δi1 = θi(t) − θ1(t).

Relaxation oscillations. As for the second scenario described
above, a super-slow evolution brings the slow-flow system from
M0 to S 0 ∈ LM (see Fig. 6(c)) but after P0 a scenario of relaxation
oscillations [28] is observed: after the first jump the super-slow
evolution brings the system from P0 to S 1 ∈ Lm. After another
jump from S 1 to P1 and a super-slow evolution, the trajectory re-
turns to S 0 and so on (see Fig. 5(b)). Such scenario of relaxation
oscillations for the slow-flow system can explain the existence of
Strongly Modulated Responses [18, 15, 10] for the SHM+NES
(as observed Fig. 4(c)).

Explosion. Until P1 the slow-flow evolves the same way as for
relaxation oscillations mechanism. However, instead of moving
toward a stable fixed point or the folded line Lm, the trajectory
of the system follows the CM to the infinity (see Fig. 6(d)). This
scenario explains no suppression regime for the SHM+NES (as
observed Fig. 4(d)).

The existence of one of the three steady-state regimes de-
scribed above or an other depends of the position and the stability
of the fixed points of the full slow-flow system (49). Indeed,
a stable fixed point of the full slow flow placed on the stable
part of the CM is a necessary condition to obtain PRs of the
SHM+NES (31). On the other hand, the relaxation oscillations
of the slow flow (or SRMs for the SHM+NES) can exist if both
folded lines LM and Lm have attractive parts. Position and stabil-
ity of the fixed points of the full slow-flow system and attractivity
(or repulsively) of the folded lines are determined in the next
section through the study of the super-slow subsystem (53).

4.3.2. Fixed points (and their stability) and folded singularities
of the slow-flow

Introducing the CM Eq. (55) in Eqs. (53b) and (53c), the super-
slow subsystem is written only with respect to the variables Φ2
and Φ3



∂ [Φ2F(|Φ2|)]
∂τ

= −λy

2
Φ2F(|Φ2|) −

j
ωy

2
Φ2 (F(|Φ2|) − 1) + S dωyΦ3 (66a)

∂Φ3

∂τ
= −

(
λδ
2
− ja

)
Φ3 +

S cω
2
y

8ωδ
Φ2F(|Φ2|). (66b)

Using the polar coordinates (57) and separating real and imag-
inary parts, Eqs. (66) takes the following form
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(b)
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�s�
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(c)

Figure 7: Phase portraits of the desingularized super-slow subsystem (76) for constant value of N3. To take into account that the desingularization
reverses the direction of time on the repelling part of the CM, the direction of the flow is reversed (i.e. the arrows are reversed) between LM

and Lm. Parameters used: ωy = 1, α3 = 2, µ = 0.2, S c = 2, S d = 1, λy = 0.3, λδ = 0.2 and a = −0.4. For this set of parameters we have:
Ncr

3,M = 0.121 and Ncr
3,m = 0.426. (a) N3 = 0.02 < Ncr

3,M , (b) Ncr
3,M < N3 = 0.3 < Ncr

3,m and (c) N3 = 0.7 > Ncr
3,m.



FR
∂N2

∂τ
− N2

∂Θ2

∂τ
FI + N2

∂N2

∂τ
F′R =

−λ
2

N2FR +
ωy

2
N2FI + S dωyN3 cos (∆32) (67a)

N2
∂Θ2

∂τ
FR +

∂N2

∂τ
FI + N2

∂N2

∂τ
F′I =

−λ
2

N2FI −
ωy

2
N2 (FR − 1) + S dωyN3 sin (∆32) (67b)

∂N3

∂τ
= −λ

2
N3 +

S cω
2
y

8ωδ
N2

(
FR cos (∆32) + FI sin (∆32)

)
(67c)

∂Θ3

∂τ
= aN3 +

S cω
2
y

8ωδ
N2

(
FI cos (∆32) − FR sin (∆32)

)
, (67d)

involving the argument difference ∆32 = Θ3 − Θ2. Combining
Eqs (67a-67d), system of Eqs. (67) can be finally reduced (after
some calculation steps) to the following form



g(N2)
∂N2

∂τ
= fN2 (N2,N3,∆32) (68a)

g(N2)
∂∆32

∂τ
= f∆32 (N2,N3,∆32) (68b)

∂N3

∂τ
= fN3 (N2,N3,∆32) , (68c)

where
g(x) =

H′(x)
2

, (69)

fN2 (N2,N3,∆32) = a11 cos ∆32 + a12 sin ∆32 − c1, (70)
f∆32 (N2,N3,∆32) = a21 cos ∆32 + a22 sin ∆32 − c2, (71)
fN3 (N2,N3,∆32) = a31 cos ∆32 + a32 sin ∆32 − c3, (72)

a11 = N2N3S dωyFR,
a12 = N2N3S dωyFI ,

a21 = g(N2)
N2S cω

2
y

N38ωδ
FI + N3S dωy(FI + F′I N2),

a21 = −g(N2)
N2S cω

2
y

N38ωδ
FR + N3S dωy(FR + F′RN2),

a31 =
N2S cω

2
y

8ωδ
FR,

a32 =
N2S cω

2
y

8ωδ
FI ,

(73)

and,

c1 =
N2

2
2

(
λy

(
F2

R + F2
I

)
− FIωy

)
,

c2 = −N2
ωy

2

(
F2

I + FI F′I N2 + (FR − 1)
(
FR + F′RN2

))
−λyN2

2

(
FI F′R − F′I FR

)
+ 2a g (N2) ,

c3 = N3
λδ
2 .

(74)

From Eqs. (68), it is possible to detect fixed points and folded
singularities.

Fixed points. The (regular) fixed points of Eqs. (68),{
Ne

2,N
e
3,∆

e
32

}
, are defined by:

fN2

(
Ne

2,N
e
3,∆

e
32

)
= 0, (75a)

f∆32

(
Ne

2,N
e
3,∆

e
32

)
= 0, (75b)

fN3

(
Ne

2,N
e
3,∆

e
32

)
= 0 (75c)

g(Ne
2) , 0. (75d)

If ε � 1, fixed points computed from Eqs. (75) corresponds to
fixed points of the system (43) obtained in Sect. 4.2. As usual,
stability of the fixed points are found by looking the sign of
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the eigenvalues real parts of the Jacobian matrix of the vector
function F1 =

(
fN2/g, f∆32/g, fN3

)
evaluated at

{
Ne

2,N
e
3,∆

e
32

}
.

Folded singularities. The folded singularities
{
N2,m/M ,N s

3,∆
s
32

}
(where N2,m/M denotes indistinctly N2,M or N2,m) are points of
the folded lines LM and Lm at which the attractivity of the folded
lines changes. Folded singularities are defined as the fixed points
of the desingularized super-slow subsystem, which is obtained
introducing the time rescaling τ→ τ′g(N2) [26]



∂N2

∂τ′
= fN2 (N2,N3,∆32) (76a)

∂∆32

∂τ′
= f∆32 (N2,N3,∆32) (76b)

∂N3

∂τ′
= g(N2) fN3 (N2,N3,∆32) . (76c)

Note that because g (N2) < 0 between the N2,M and N2,m, the
previous time rescaling reverses the direction of time on the re-
pelling part of the CM. Since g

(
N2,m/M

)
= 0, folded singularities

are defined from (76) by

fN2

(
N2,m/M ,N s

3,∆
s
32

)
= 0, (77a)

f∆32

(
N2,m/M ,N s

3,∆
s
32

)
= 0. (77b)

The folded singularities are obtained first solving the (lin-
ear) system of Eqs. (77) with respect to (cos ∆s

32, sin ∆s
32) (see

Eqs. (70) and (71)). The associated determinant of this linear
system satisfies:

a11a22 − a21a12 = −S 2
dω

2
y N2

3 g
(
N2,m/M

)
= 0 (78)

showing that one of the two equations (77a) and (77b) can be
removed. Therefore, the folded singularities can be only defined
by

fN2

(
N2,m/M ,N s

3,∆
s
32

)
= 0. (79)

Eq. (79) reads as (using Eqs. (70) and (73))

a11

(
N2,m/M ,N s

3

)
cos ∆s

32 + a12

(
N2,m/M ,N s

3

)
sin ∆s

32 =

c1

(
N2,m/M ,N s

3

)
, (80)

which can be solved with respect to ∆s
32 giving the following four

solutions (2 for each folded line)

∆s±
32,m/M = arcsin

 a12

(
N2,m/M ,N s

3

)
√

a11

(
N2,m/M ,N s

3

)2
+ a12

(
N2,m/M ,N s

3

)2


± arccos

 c1

(
N2,m/M ,N s

3

)
√

a11

(
N2,m/M ,N s

3

)2
+ a12

(
N2,m/M ,N s

3

)2

 , (81)

if the conditions∣∣∣∣∣∣∣∣∣
c1

(
N2,m/M ,N s

3

)
√

a11

(
N2,m/M ,N s

3

)2
+ a12

(
N2,m/M ,N s

3

)2

∣∣∣∣∣∣∣∣∣ ≤ 1, (82)

are satisfied.

Conditions (82) show that the folded singularities exist for val-
ues of N s

3 defined through Eqs. (73) and (74) by the inequalities

N s
3 ≥ Ncr

3,m/M (83)

with the lower bounds, named critical values, are given by

Ncr
3,m/M =

N2,m/M

(
λy

(
FR

(
N2,m/M

)2
+ FI

(
N2,m/M

)2
)
− ωyFI

(
N2,m/M

))
2S d

√
FR

(
N2,m/M

)2
+ FI

(
N2,m/M

)2
.

(84)

Phase portraits of the desingularized super-slow subsys-
tem (76) are plotted in Fig. 7. Note that, to take into account
that the desingularization reverses the direction of time on the
repelling part of the CM, the direction of the flow is reversed (i.e.
the arrows are reversed) between LM and Lm. A complete phase
portrait must take into account the whole dynamics, including
the variable N3. However, to facilitate the interpretation of the
phase portraits and understand the role of the folded singularities,
the phase portraits are computed for constant values of N3 and
plotted in the plan (∆32,N2). Three representative values of N3
are chosen: N3 < Ncr

3,M , Ncr
3,M < N3 < Ncr

3,m and N3 > Ncr
3,m. If

N3 < Ncr
3,M (see Fig. 7(a)), there are no folded singularities, and

we notice that the folded line LM is repulsive and the folded line
Lm is attractive. The repulsivity of LM prevents jumps from S 0 to
P0 (see Fig. 6) and therefore sustained relaxation oscillations and
explosion are not possible. If Ncr

3,M < N3 < Ncr
3,m (see Fig. 7(b)),

there are folded singularities ∆s±
32,M on the folded line LM which

becomes attractive between them. Since the attractivity of Lm

in unchanged, this situation allows the existence of sustained
relaxation oscillations or explosion. Finally, if N3 > Ncr

3,m (see
Fig. 7(c)), there are also folded singularities ∆s±

32,m on the folded
line Lm which becomes repulsive between them. As long as Lm

have attractive part, this situation allows also the existence of
sustained relaxation oscillations or explosion.

Finally, inequalities (83) can be therefore interpreted as a nec-
essary condition to relaxation oscillations occur. Relaxation os-
cillations can be possible if during transient regime N3(t) reaches
at least Ncr

3,m, allowing N2(t) to reach the folded line LM be-
tween ∆s+

32,M and ∆s−
32,M obtained from Eq. (81) evaluated with

N s
3 = N3(t). Unfortunately, this scenario cannot be predicted a

priori. From these results, it seems to be difficult for example
to develop a tool to predict stability of relaxation oscillations as
done in [10] with the 1D mapping tool. In the sequel we will
only verify if the senario is satisfied when the response regimes
of Eqs. (34) is not periodic.
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5. Prediction of the steady-state response regimes of
the SHM+NES

The prediction of the steady-state response regimes of the
SHM+NES (31) is obtained checking first the local stability prop-
erty of the trivial equilibrium point of Eqs. (31) (see Sect. 3.1) and
using the asymptotic analysis of the full slow-flow system (49)
to characterize the response regimes when the trivial equilibrium
point of Eqs. (31) is unstable. From the asymptotic analysis of
slow-flow system (49) performed in Sect. 4.3, we characterize

• the CM (55) and its the fold points N2,M and N2,m (see
Eqs. (59) and (60)) and the points N2,d and N2,u defined in
Eqs (64) and (65) respectively,

• the stable periodic regimes of Eqs. (31) as the stable fixed
points of Eqs. (68),

• the non periodic response regimes (SMRs or no suppression)
of Eqs. (31) from the unstable fixed points of Eqs. (68).

The study is restricted to the prediction of steady-state re-
sponse regimes resulting from initial conditions not too far from
the trivial equilibrium position of Eqs (34). Moreover, in the
remaining of the section, analytical and numerical results are
computed using the following set of parameters

ωy = 1, ωδ = 2, λy = 0.3, S c = 2,
S d = 1, α3 = 2, µ = 0.2, ε = 0.01. (85)

For this set of parameters the characteristic points of the CM
are: N2,M = 0.486, N2,m = 0.808, N2,u = 0.928, N2,u = 0.166,
and the critical values with respect to N3 are: Ncr

3,M = 0.121 and
Ncr

3,m = 0.426. Moreover, Eqs. (68) admits 0, 1 or 2 fixed points.
The nature of the steady-response regimes is studied with

respect to the damping coefficient of a blade λδ and the detuning
parameter a (defined in Eq. (45)).

The steady-state response regimes are classified in five domain:

Domain 0 Complete suppression

Domain 1 Partial suppression through PR

Domain 2 Partial suppression through PR or SMR

Domain 3 Partial suppression through SMR

Domain 4 No suppresion

The diagram of the Fig. 9 summarizes the algorithm used to
determine the response regimes domains. Results are plotted
in Fig. 10 in which each domain is represented by an area of
the plane (λδ, a). Finally, for each domain (expect for Domain
0 which characterizes the Complete suppression) one or two
examples are selected and studied deeply. Results are presented
in Figs. 11 to 17. The values of λδ and a used for these examples
and the corresponded coordinates Ne

1, Ne
2 and Ne

3 of the fixed
points of (68) are indicated in Tab. 1.
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Figure 8: λδ,wn and λδ,won as a function of a. Parameters used: see
Eq. (85).

5.1. Domain 0: Complete suppression

Analytical prediction of the complete suppression is performed
in Sect. 3.1. However, it is interesting to compare the region of
linear stability of the system with and without NES. To achieve
that, the values of λδ that annul one of the eigenvalues of Eqs. (30)
and Eqs. (31), denoted respectively λδ,won and λδ,wn, are computed
with respect to the parameter a and plotted in Fig. 8. For each
curve λδ,won(a) and λδ,wn(a), the area upper the curve corresponds
to stable trivial solution and in the area under the curve the trivial
solution in unstable. One can notice that for approximatively
−0.65 . a . 0.65, the NES attachment favors the linear stability
of the trivial solution. This is the opposite for a . −0.65 and
a & 0.65 but to a lesser extent.

The area upper the curve λδ,wn(a) defined the Domain 0, it is
depicted in gray in Fig. 10.

5.2. Local stability of one of the fixed point of the slow-flow
system: Domain 1 and 2

Fixed points of the slow-flow system correspond to periodic solu-
tions of the SHM+NES. Therefore, the domain of existence the
Partial suppression through Periodic Response may correspond
to the domain of local stability of one of the fixed point. However,
as in Sect. 4.3.1 (§ A fixed point of the slow-flow is reached), the
two following situations must be considered: Ne

2 < N2,M and
Ne

2 > N2,m where Ne
2 is the N2-coordinate of a stable fixed point.

The two situations correspond to domain 1 and 2 respectively.

5.2.1. Domain 1: partial suppression through PR

This domain is represented by gray dots ("•") in Fig. 10. For
Ne

2 < N2,M , the stable fixed point is reached before the folded
line LM . This corresponds to the scenario depicted in Fig. 6(a).

In this situation, relaxation oscillations or explosion of the
slow-flow system and therefore SMR or no suppression regimes
for the SHM+NES are avoided. Therefore, domain 1 corresponds
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Table 1: Values of λδ and a used in Examples 1, 2a, 2b, 3a, 3b, 4a and 4b. Coordinates Ne
1 , Ne

2 and Ne
3 of the corresponding fixed points of (68) are

also indicated. S ≡ stable and U ≡ unstable.

Example λδ a Number of
Fixed Pt.

Fixed Pt. 1:
{
Ne

1 ,N
e
2 ,N

e
3

}
Fixed Pt. 2:

{
Ne

1 ,N
e
2 ,N

e
3

}
1 0.35 -0.4 2 {0.323, 0.433, 0.157} S {1.18, 1.15, 0.494} U
2 0.08 0 2 {0.187, 0.853, 0.494} S {1.19, 1.16, 1.04} U

2b 0.06 0.5 1 {0.203, 0.865, 0.581} S −
3a 0.2 0.4 1 {0.223, 0.712, 0.269} U −
3b 0.2 -0.4 2 {0.316, 0.564, 0.242} U {0.853, 1.08, 0.532} U
4a 0.1 -0.7 2 {0.293, 0.614, 0.356} U {0.181, 0.847, 0.438} U
4b 0.035 -0.4 0 − −

Domain 4

Number of Fixed Points (FP)!
of the !

super-slow subsystem (Eqs. (75))!

If stable If Unstable

Ne
2 < N2,M Ne

2 > N2,m

Domain 1 Domain 2

Both!
stable

1 stable!
1 unstable

Both!
unstable

Not 
uncountered

For the!
Stable FP

Ne
2 < N2,M Ne

2 > N2,m

Domain 1 Domain 2

For the largest !
unstable FP: mmmmm           

Domain 3 Domain 4

Domain 3

0 FP 

Trivial solution of !
the SHM+NES (Eqs. (31))

If stableIf  unstable

Domain 0

1 FP 2 FP 

Max[Ne
2 ] < N2,uMax[Ne

2 ] > N2,u

Max[Ne
2 ]

Figure 9: Algorithm for the determination of the domain of existence of the steady-state regimes of the SHM+NES (34). Each domain is described
precisely in Sects. 5.1 to 5.4.

to Partial suppression through Periodic Response. Fig. 11 shows
an example of this situation.

5.2.2. Domain 2: partial suppression through PR or SMR

This domain is represented by black crosses ("×") in Fig. 10.
The case of one stable fixed point which satisfies the condition
Ne

2 > N2,m highlights the limit of the local stability study. Indeed,
in this case, a least one jump from N2,M to N2,u is needed to reach
the fixed point. After that, the fixed point can be really reached
(as depicted in Fig. 6(b)) or sustained relaxation oscillations of
the the slow-flow system are observed (as depicted in Fig. 6(c)).

Examples of the two possible situations are shown in Figs. 12
(PR, Example 2a) and 13 (SMR, Example 2b).

To better understand the behavior of the system in these two
situations, phase portraits of the desingularized super-slow sub-
system (76) is compared to the trajectory of the full slow-flow
system (49) in the (∆32,N2,N3)-space in Figs. 12(c) and 12(d)
for example 2a and in Figs. 13(c) and 13(d) for example 2b. For
both examples 2a and 2b a top view and an "optimized" view are
presented. Only the end of the trajectory of the full slow-flow
system (49) is plotted (see details in figures captions).

In Fig. 12(d) we can see that during its transient regimes
the full slow-flow system reaches streamlines which bring it
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Figure 10: Prediction, in the plane (λδ, a), of the domains of existence of the four steady-regimes: Complete suppression (the gray area outside the
curve λδ,wn(a)), Partial suppression through Periodic Response (•), Partial suppression through Strongly Modulated Response ("�") and
no suppression ("�"). Parameters used: see Eq. (85).

to the stable fixed point (green disk marker in Figs 12(d) and
fig:Example1bc). On the contrary, in Fig. 13(d), we can see
that the full slow-flow system never reach these streamlines and
sustained relaxation oscillations are observed.

To know what situation will actually be observed, global stabil-
ity of the SMR should be investigated. To achieve this, Starosvet-
sky and Gendelman [10] propose the method of 1D mapping.
Unfortunately, the lack of information on the amplitude of N3
when SMR are observed makes this method unsuitable here.

5.3. Domain 3: partial suppression through SMR

This domain is represented by squares ("�") in Fig. 10 and corre-
sponds to two situations. In the first situation, it exists one fixed
point and it is unstable. In the second situation, there are two
unstable fixed points and the larger of them should satisfied the
following condition: Ne

2 > N2,u. Example 3a and Example 3b
illustrate these two situations respectively (see Figs. 14 and 15).
One can see in Figs. 14(b) and 15(b) that, in these situations, the
fold points are reached by the system giving rise to relaxation
oscillations of the slow-flow system which correspond to SMR
for the SHM+NES.

5.4. Domain 4: no suppression

This domain is represented by dotted circles ("�") in Fig. 10 and
corresponds to two situations. The first situation corresponds to
the case of two unstable fixed points and for both fixed points
we have: N2,M < Ne

2 < N2,u (see Example 4a in Fig. 16). In
the second situation, the slow-flow system has no fixed points.
Therefore, there exists only the trivial solution of the SHM+NES,
and it is unstable (see Example 4b in Fig. 17). In the case of
no suppression, the GR instability is to strong to be suppressed
by the NES attachment through PRs or SMRs and after a tran-
sient regime an explosion of the slow-flow in finally observed (a
depicted in 6(d)).

6. Conclusion

In the framework of NES properties exploration , we studied
the steady-state response regimes of a ground resonance heli-
copter model including a ungrounded NES on the fuselage. An
helicopter model involving blade and fuselage dynamics was
reduced applying successively Coleman and binormal transfor-
mations and coupled to an ungrounded cubic NES defining the
SHM+NES (Simplest Helicopter Model + Non Linear Energy
Sink) model. This model reproduces the Ground Resonance
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(GR) instability corresponding to frequency coalescence of the
fuselage mode and the regressive rotor mode. Selecting dif-
ferent values of the blade damping, four steady-state response
regimes were highlighted: complete suppression, partial suppres-
sion through strongly modulated response, partial suppression
through periodic response and no suppression of the GR instabil-
ity.

The first regime corresponds to the local stability of the triv-
ial solution of the SHM+NES. To explain all the regimes the
slow flow of the system is determined using complexification-
averaging approach. The presence a small dimensionless parame-
ter related to the mass of the NES in the slow-flow system implies
that it involves one "slow" complex variable and two "super-slow"
complex variables. The "super-slow/slow" nature of the system
allowed us to use the so-called geometric singular perturbation
theory to analyze it. In particular, the Critical Manifold of the
slow flow was determined. Its shape involving two folded lines
and the associated stability properties provide an analytical tool
to explain and predict the existence of three regimes: periodic
response regimes, strongly modulated response regimes and no
suppression regimes which appear when the trivial solution is
unstable.

A procedure which allow to determine the domains of exis-
tence of these regimes was proposed. This procedure was used
to analysis the influence of the damping of the blades and the
rotor speed on the response regimes of the SHM+NES model
for a set of nominal numerical values of the other parameters of
the SHM+NES model. In the unstable trivial solution area, four
regimes were predicted: partial suppression through periodic re-
sponse, partial suppression through strongly modulated response,
partial suppression through periodic response or strongly mod-
ulated response and no suppression. All these regimes were
validated from direct numerical integration of the SHM+NES
model.

The analytical nature of this approach makes possible other
parametric studies. for example with respect to the NES parame-
ters in order to know if it is possible to design a NES compatible
with engineering applications.
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A. About the link between the periodic solutions of the
SHM+NES and the fixed points of the
complexified-averaged system

Let’s consider a periodic steady-state regime of the system (34)
defined by

vp(t) = V sin
(
(ωy + ∆ω)t + θv

)
(86)

wp(t) = W sin
(
(ωy + ∆ω)t + θw

)
(87)

q1,p(t) = Q1 exp
[
j
(
(ωy + ∆ω)t + θq1

)]
, (88)

where V , W, Q1, θy, θh θq1 and ∆ω are real constant. ∆ω char-
acterizes the error made using ωy as fast component frequency
in the complexification-averaging method. Even if this error is
very small, it must be taken into account to obtain an accurate
definition of the periodic regimes of Eqs. (34) from slow-flow
system (39).

Through Eqs. (35), (38), (86), (87) and (88), we have

φ1 =
(
v̇p + jωyvp

)
e− jωyt

= V
(
ωy +

∆ω

2

)
e j(∆ωt+θv) + t.h.f, (89)

φ2 =
(
ẇp + jωywp

)
e− jωyt

= W
(
ωy +

∆ω

2

)
e j(∆ωt+θw) + t.h.f, (90)

where "t.h.f" means term of higher frequency, and finally,

φ3 = q1,pe− jωyt

= Q1e j(∆ωt+θq1 ). (91)

Looking at Eqs. (89), (90) and (91), it is easy to show that
the periodic solutions of Eqs. (34) cannot be defined directly as
the fixed point of the complexified-averaged system (39) (i.e. as
φ̇ = 0). Indeed, the frequency error ∆ω caused a linear growth
of the arguments of the complex amplitude which are therefore
not stationary. However, the slope ∆ω of this linear variation is
the same for each variable φi. Therefore, from the polar form
φi(t) = ni(t)e jθi(t), the argument differences

{
δ21 = θ2(t) − θ1(t) = θw − θv (92a)
δ31 = θ3(t) − θ1(t) = θq1 − θv, (92b)

(where the component φ1(t) is chosen arbitrary as a master com-
ponent) are stationary. Therefore, the periodic solutions of the
system of Eqs. (34) may be defined from the complexified-
averaged system (39) as the fixed points of the system of dif-
ferential equations describing the dynamic of the variables n1, n2,
n3, δ21 and δ31.
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Figure 11: Example 1. Parameters used: see Eq. (85), a = −0.4 and λδ = 0.35. (a) Comparison between numerical simulation of the SHM+NES (34)
(gray solid line)) and the full slow-flow system (49) (black dashed line). (b) Comparison between the trajectory of the simulated
slow-flow system (49) in the plane (N2,N1) and the Slow Invariant Manifold (58a). "�": position (N2,M ,N1,M), (N2,m,N1,m), (N2,u,N1,M)
and (N2,d,N1,m), _: stable fixed points, "�": unstable fixed points and ×: initial conditions.
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Figure 12: Example 2a. Parameters used: see Eq. (85), a = 0 and λδ = 0.08. (a) and (b) same caption as for Fig. 11. (c) and (d) Phase portraits of
the desingularized super-slow subsystem (76) (shaded solid lines from orange to blue, only streamlines in the stable part of the CM are
shown) compared to the trajectory of the full slow-flow system (49) (solid magenta lines) in the (∆32,N2,N3)-space. Green disk marker
indicates the position of the stable fixed point and arrows indicates the direction of the flow. The trajectory of full slow-flow system (49)
is only plotted from t = 3250s to the end (t = 14000s).
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Figure 13: Example 2b. Parameters used: see Eq. (85), a = 0.5 and λδ = 0.06. Same caption as for Fig. 11. (c) and (d) Phase portraits of the
desingularized super-slow subsystem (76) (shaded solid lines from orange to blue, only streamlines in the stable part of the CM are
shown) compared to the trajectory of the full slow-flow system (49) (solid magenta lines) in the (∆32,N2,N3)-space. Green disk marker
indicates the position of the stable fixed point and arrrows indicates the direction of the flow. The trajectory of full slow-flow system (49)
is only plotted from t = 13000s to the end (t = 20000s).
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Figure 14: Example 3a. Parameters used: see Eq. (85), a = 0.4 and λδ = 0.2. Same caption as for Fig. 11.
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Figure 15: Example 3b. Parameters used: see Eq. (85), a = −0.4 and λδ = 0.2. Same caption as for Fig. 11.
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Figure 16: Example 4a. Parameters used: see Eq. (85), a = −0.7 and λδ = 0.1. Same caption as for Fig. 11.
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Figure 17: Example 4b. Parameters used: see Eq. (85), a = −0.4 and λδ = 0.035. Same caption as for Fig. 11.
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